化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1224-1240.DOI: 10.16085/j.issn.1000-6613.2021-2009
华亚妮1(), 冯少广2(), 党欣悦1, 郝文斌1, 张保文1, 高展1()
收稿日期:
2021-09-23
修回日期:
2021-11-08
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
高展
作者简介:
华亚妮(1986—),女,博士,助理教授,研究方向为CO2电催化还原。E-mail:基金资助:
HUA Yani1(), FENG Shaoguang2(), DANG Xinyue1, HAO Wenbin1, ZHANG Baowen1, GAO Zhan1()
Received:
2021-09-23
Revised:
2021-11-08
Online:
2022-03-23
Published:
2022-03-28
Contact:
GAO Zhan
摘要:
CO2电催化还原产合成气是通过CO2资源化利用实现碳中和的有效途径之一,但仍存在过电位高、选择性差、难以精准调控合成气组成比例等问题。本文综述了CO2电催化还原产合成气的催化剂研究进展,包括金属催化剂、金属配合物催化剂、金属氧化物及硫化物催化剂、金属单原子催化剂以及非金属催化剂等;进一步地,概述了H型电解池、连续流电解池、固体氧化物电解池以及膜反应器电解池等电化学反应池特征。在此基础上,总结了提升CO2电催化还原产合成气效率的有效策略,包括阳极反应耦合、双活性位催化剂结构设计以及催化剂多级形貌调控等。最后探讨了CO2电催化还原产合成气领域未来的发展方向:通过机器学习辅助催化剂设计筛选;结合多尺度模拟理解电化学界面过程;利用原位表征技术探究反应机理等。
中图分类号:
华亚妮, 冯少广, 党欣悦, 郝文斌, 张保文, 高展. CO2电催化还原产合成气研究进展[J]. 化工进展, 2022, 41(3): 1224-1240.
HUA Yani, FENG Shaoguang, DANG Xinyue, HAO Wenbin, ZHANG Baowen, GAO Zhan. Research progress of CO2 electrocatalytic reduction to syngas[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1224-1240.
电化学半反应 | 电极电位(vs. SHE)/V |
---|---|
-0.42 | |
-0.52 | |
-0.61 | |
-0.51 | |
-0.38 | |
-0.24 | |
0.064 | |
0.084 |
表1 电化学还原CO2半反应的电极电位(标准试验条件)[10]
电化学半反应 | 电极电位(vs. SHE)/V |
---|---|
-0.42 | |
-0.52 | |
-0.61 | |
-0.51 | |
-0.38 | |
-0.24 | |
0.064 | |
0.084 |
1 | JACKSON R B, LE QUÉRÉ C, ANDREW R M, et al. Global energy growth is outpacing decarbonization[J]. Environmental Research Letters, 2018, 13(12): 120401. |
2 | 王深, 吕连宏, 张保留, 等. 基于多目标模型的中国低成本碳达峰、碳中和路径[J]. 环境科学研究, 2021, 34(9): 2044-2055. |
WANG S, LYU L H, ZHANG B L, et al. Multi objective programming model of low-cost path for China’s peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences, 2021, 34(9): 2044-2055. | |
3 | RONG W F, ZOU H Y, ZANG W J, et al. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction[J]. Angewandte Chemie International Edition, 2021, 60(1): 466-472. |
4 | NAM D H, DE LUNA P, ROSAS-HERNÁNDEZ A, et al. Molecular enhancement of heterogeneous CO2 reduction[J]. Nature Materials, 2020, 19(3): 266-276. |
5 | PAN F P, YANG Y. Designing CO2 reduction electrode materials by morphology and interface engineering[J]. Energy & Environmental Science, 2020, 13(8): 2275-2309. |
6 | YAN C C, LIN L, WANG G X, et al. Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction[J]. Chinese Journal of Catalysis, 2019, 40(1): 23-37. |
7 | SU X, YANG X F, HUANG Y Q, et al. Single-atom catalysis toward efficient CO2 conversion to CO and formate products[J]. Accounts of Chemical Research, 2019, 52(3): 656-664. |
8 | ZHANG W J, HU Y, MA L B, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals[J]. Advanced Science, 2018, 5(1): 1700275. |
9 | 孙睿, 徐跃, 刘建芳, 等. CO2催化还原转化为高附加值化学品[J].中国科学:化学, 2018, 48(6): 547-561. |
SUN Rui, XU Yue, LIU Jianfang, et al. Recent progress in CO2 catalytic reduction to high value-added chemicals[J]. Scientia Sinica (Chimica), 2018, 48(6): 547-561. | |
10 | CUI H J, GUO Y B, GUO L M, et al. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction[J]. Journal of Materials Chemistry A, 2018, 6(39): 18782-18793. |
11 | XIE H, WANG T Y, LIANG J S, et al. Cu-based nanocatalysts for electrochemical reduction of CO2 [J]. Nano Today, 2018, 21: 41-54. |
12 | FAN Q, ZHANG M L, JIA M W, et al. Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies[J]. Materials Today Energy, 2018, 10: 280-301. |
13 | ABDULRASHEED A, JALILAB A A, GAMBO Y, et al. A review on catalyst development for dry reforming of methane to syngas: recent advances[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 175-193. |
14 | JANG W J, SHIM J O, KIM H M, et al. A review on dry reforming of methane in aspect of catalytic properties[J]. Catalysis Today, 2019, 324: 15-26. |
15 | MESTERS C. A selection of recent advances in C1 chemistry[J]. Annual Review of Chemical and Biomolecular Engineering, 2016, 7: 223-238. |
16 | MA S C, HUANG S D, LIU Z P. Dynamic coordination of cations and catalytic selectivity on zinc-chromium oxide alloys during syngas conversion[J]. Nature Catalysis, 2019, 2(8): 671-677. |
17 | HE R, ZHANG A, DING Y L, et al. Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction[J]. Advanced Materials, 2018, 30(7): 1705872. |
18 | PAN F P, LI B Y, SARNELLO E, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction[J]. ACS Catalysis, 2020, 10(19): 10803-10811. |
19 | LU S S, SHI Y M, MENG N N, et al. Electrosynthesis of syngas via the co-reduction of CO2 and H2O[J]. Cell Reports Physical Science, 2020, 1(11): 100237. |
20 | DELAFONTAINE L, ASSET T, ATANASSOV P. Metal-nitrogen-carbon electrocatalysts for CO2 reduction towards syngas generation[J]. ChemSusChem, 2020, 13(7): 1688-1698. |
21 | QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
22 | DAIYAN R, CHEN R, KUMAR P, et al. Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9307-9315. |
23 | REN W H, TAN X, YANG W F, Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO 2[J]. Angewandte Chemie International Edition, 2019, 58(21): 6972-6976. |
24 | ZENG J Q, BEJTKA K, DI MARTINO G, et al. Microwave-assisted synthesis of copper-based electrocatalysts for converting carbon dioxide to tunable syngas[J]. ChemElectroChem, 2020, 7(1): 229-238. |
25 | QIN B H, ZHANG Q, LI Y H, et al. Formation of lattice-dislocated zinc oxide via anodic corrosion for electrocatalytic CO2 reduction to syngas with a potential-dependent CO:H2 ratio[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30466-30473. |
26 | HANSEN H A, VARLEY J B, PETERSON A A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392. |
27 | ZHU W L, MICHALSKY R, METIN Ö, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society, 2013, 135(45): 16833-16836. |
28 | FENG X F, JIANG K L, FAN S S, et al. Grain-boundary-dependent CO2 electroreduction activity[J]. Journal of the American Chemical Society, 2015, 137(14): 4606-4609. |
29 | ZHU W L, ZHANG Y J, ZHANG H Y, et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires[J]. Journal of the American Chemical Society, 2014, 136(46): 16132-16135. |
30 | LIU S B, TAO H B, ZENG L, et al. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. Journal of the American Chemical Society, 2017, 139(6): 2160-2163. |
31 | SHENG W C, KATTEL S, YAO S Y, et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios[J]. Energy & Environmental Science, 2017, 10(5): 1180-1185. |
32 | LIU Y M, TIAN D, BISWAS A N, et al. Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2020, 59(28): 11345-11348. |
33 | CHEN C J, SUN X F, YAN X P, et al. Boosting CO2 electroreduction on N,P-co-doped carbon aerogels[J]. Angewandte Chemie International Edition, 2020, 59(27): 11123-11129. |
34 | HOU C C, WANG H F, LI C X, et al. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications[J]. Energy & Environmental Science, 2020, 13(6): 1658-1693. |
35 | QIN B H, LI Y H, FU H Q, et al. Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of earth-abundant Zn catalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20530-20539. |
36 | JEON H S, SINEV I, SCHOLTEN F, et al. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction[J]. Journal of the American Chemical Society, 2018, 140(30): 9383-9386. |
37 | LI X G, BI W T, CHEN M L, et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(42): 14889-14892. |
38 | YAN C C, LI H B, YE Y F, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science, 2018, 11(5): 1204-1210. |
39 | WATANABE M, SHIBATA M, KATO A, et al. Design of alloy electrocatalysts for CO2 reduction (Ⅲ): the selective and reversible reduction of on Cu alloy electrodes[J]. Journal of the Electrochemical Society, 1999, 138(11): 3382-3389. |
40 | ZHENG X L, JI Y F, TANG J, et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials[J]. Nature Catalysis, 2019, 2(1): 55-61. |
41 | FAN M Y, ESLAMIBIDGOL M J, ZHU X W, et al. Understanding the improved activity of dendritic Sn1Pb3 alloy for the CO2 electrochemical reduction: a computational-experimental investigation[J]. ACS Catalysis, 2020, 10(18): 10726-10734. |
42 | ROSS M B, LI Y F, DE LUNA P, et al. Electrocatalytic rate alignment enhances syngas generation[J]. Joule, 2019, 3(1): 257-264. |
43 | XU J Q, LI X D, LIU W, et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers[J]. Angewandte Chemie International Edition, 2017, 56(31): 9121-9125. |
44 | COSTENTIN C, ROBERT M, SAVÉANT J M. Current issues in molecular catalysis illustrated by iron porphyrins as catalysts of the CO2-to-CO electrochemical conversion[J]. Accounts of Chemical Research, 2015, 48(12): 2996-3006. |
45 | FISHER B J, EISENBERG R. Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt[J]. Journal of the American Chemical Society, 1980, 102(24): 7361-7363. |
46 | WANG J W, HUANG H H, SUN J K, et al. Syngas production with a highly-robust nickel(Ⅱ) homogeneous electrocatalyst in a water-containing system[J]. ACS Catalysis, 2018, 8(8): 7612-7620. |
47 | WANG Y, GONELL S, MATHIYAZHAGAN U R, et al. Simultaneous electrosynthesis of syngas and an aldehyde from CO2 and an alcohol by molecular electrocatalysis[J]. ACS Applied Energy Materials, 2019, 2(1): 97-101. |
48 | MAO C L, WANG J X, ZOU Y J, et al. Hydrogen spillover to oxygen vacancy of TiO2- x H y /Fe: breaking the scaling relationship of ammonia synthesis[J]. Journal of the American Chemical Society, 2020, 142(41): 17403-17412. |
49 | QIN B H, LI Y H, WANG H J, et al. Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies[J]. Nano Energy, 2019, 60: 43-51. |
50 | GENG Z G, KONG X D, CHEN W W, et al. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO[J]. Angewandte Chemie International Edition, 2018, 57(21): 6054-6059. |
51 | ASADI M, KUMAR B, BEHRANGINIA A, et al. Robust carbon dioxide reduction on molybdenum disulphide edges[J]. Nature Communications, 2014, 5: 4470. |
52 | DAIYAN R, LOVELL E C, HUANG B S, et al. Uncovering atomic-scale stability and reactivity in engineered zinc oxide electrocatalysts for controllable syngas production[J]. Advanced Energy Materials, 2020, 10(28): 2001381. |
53 | PAN F P, ZHANG H G, LIU K X, et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts[J]. ACS Catalysis, 2018, 8(4): 3116-3122. |
54 | ZHANG L L, REN Y J, LIU W G, et al. Single-atom catalyst: a rising star for green synthesis of fine chemicals[J]. National Science Review, 2018, 5(5): 653-672. |
55 | ZHANG L L, ZHOU M X, WANG A Q, et al. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms[J]. Chemical Reviews, 2020, 120(2): 683-733. |
56 | YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. |
57 | REN Y J, TANG Y, ZHANG L L, et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst[J]. Nature Communications, 2019, 10(1): 4500. |
58 | CHENG Y, ZHAO S Y, LI H B, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 [J]. Applied Catalysis B: Environmental, 2019, 243: 294-303. |
59 | YANG H B, HUNG S F, LIU S, et al. Atomically dispersed Ni(Ⅰ) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2): 140-147. |
60 | CHUNG H T, CULLEN D A, HIGGINS B D, et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J]. Science, 2017, 357(6350): 479-484. |
61 | 张钰宁, 钮东方, 胡硕真, 等. 基于纳米金属的增强效应在CO2电还原反应中的应用进展[J]. 电化学, 2020, 26(4): 495-509. |
ZHANG Yuning, NIU Dongfang, HU Shuozhen, et al. Recent progress on enhancing effect of nanosized metals for electrochemical CO2 reduction[J]. Journal of Electrochemistry, 2020, 26(4): 495-509. | |
62 | SONG X K, ZHANG H, YANG Y Q, et al. Bifunctional nitrogen and cobalt codoped hollow carbon for electrochemical syngas production[J]. Advance Science, 2018, 5(7): 1800177. |
63 | GU J, HSU C S, BAI L C, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094. |
64 | LI J J, GUAN Q Q, WU H, et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions[J]. Journal of the American Chemical Society, 2019, 141(37): 14515-14519. |
65 | SUN Z Y, MA T, TAO H C, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem, 2017, 3(4): 560-587. |
66 | LIU W G, ZHANG L L, LIU X, et al. Discriminating catalytically active FeN x species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond[J]. Journal of the American Chemical Society, 2017, 139(31): 10790-10798. |
67 | LI T B, LIU F, TANG Y, et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols[J]. Angewandte Chemie International Edition, 2018, 57(26): 7795-7799. |
68 | WANG Q C, LEI Y P, WANG D S, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy & Environmental Science, 2019, 12(6): 1730-1750. |
69 | TERRONES M, BOTTELLO-MÉNDEZ A R, CAMPOS-DELGADO J, et al. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications[J]. Nano Today, 2010, 5(4): 351-372. |
70 | LUO J, WANG K J, HUA X, et al. Pyridinic-N protected synthesis of 3D nitrogen-doped porous carbon with increased mesoporous defects for oxygen reduction[J]. Small, 2019, 15(11): e1805325. |
71 | KUMAR B, ASADI M, PISASALE D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nature Communications, 2013, 4: 2819. |
72 | JI Y, SHI Y M, LIU C B, et al. Plasma-regulated N-doped carbon nanotube arrays for efficient electrosynthesis of syngas with a wide CO/H2 ratio[J]. Science China Materials, 2020, 63(11): 2351-2357. |
73 | XIE J F, ZHAO X T, WU M X, et al. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57(31): 9640-9644. |
74 | 张少阳, 商阳阳, 赵瑞花, 等. 电催化还原二氧化碳制一氧化碳催化剂研究进展[J]. 化工进展. DOI: 10.16085/j.issn.1000-6613.2021-0804 . |
ZHANG Shaoyang, SHANG Yangyang, ZHAO Ruihua, et al. Research progress on catalysts for electrocatalytic reduction of carbon dioxide to carbon monoxide[J]. Chemical Industry and Engineering Progress. DOI: 10.16085/j.issn.1000-6613.2021-0804 . | |
75 | MOHD ADLI N, SHAN W T, HWANG S, et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction[J]. Angewandte Chemie International Edition, 2020, 60(2): 1022-1032. |
76 | HARA K, SAKATA T. Large current density CO2 reduction under high pressure using gas diffusion electrodes[J]. Bulletin of the Chemical Society of Japan, 1997, 70(3): 571-576. |
77 | XIANG H, RASUL S, HOU B, et al. Copper-indium binary catalyst on a gas diffusion electrode for high-performance CO2 electrochemical reduction with record CO production efficiency[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 601-608. |
78 | XIE H, WAN Y Y, WANG X M, et al. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites[J]. Applied Catalysis B: Environmental, 2021, 289: 119783. |
79 | SONG Y F, ZHANG X M, XIE K, et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects[J]. Advanced Materials, 2019, 31(50): 1902033. |
80 | HWANG J, AKKIRAJU K, CORCHADO-GARCÍA J, et al. A perovskite electronic structure descriptor for electrochemical CO2 reduction and the competing H2 evolution reaction[J]. The Journal of Physical Chemistry C, 2019, 123(40): 24469-24476. |
81 | ZHOU Y J, ZHOU Z W, SONG Y F, et al. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell[J]. Nano Energy, 2018, 50: 43-51. |
82 | GAUDILLERE C, NAVARRET L, SERRA J M. Syngas production at intermediate temperature through H2O and CO2 electrolysis with a Cu-based solid oxide electrolyzer cell[J].International Journal of Hydrogen Energy, 2014, 39(7): 3047-3054. |
83 | ZHU Y L, ZHOU W, RAN R, et al. Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells[J]. Nano Letters, 2016, 16(1): 512-518. |
84 | ZENG S, KAR P, THAKUR U K, et al. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials[J]. Nanotechnology, 2018, 29(5): 052001. |
85 | DELACOURT C, RIDGWAY P L, KERR J B, et al. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of the Electrochemical Society, 2008, 155(1): B42. |
86 | MA M, CLARK E L, THERKILDSEN K T, et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs[J]. Energy & Environmental Science, 2020, 13(3): 977-985. |
87 | GAO D F, WEI P F, LI H F, et al. Designing electrolyzers for electrocatalytic CO2 reduction[J]. Acta Physico Chimica Sinica, 2021, 37(5): 2009021. |
88 | JIANG K, SIAHROSTAMI S, ZHENG T T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science, 2018, 11(4): 893-903. |
89 | LI Y C, ZHOU D K, YAN Z F, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016, 1(6): 1149-1153. |
90 | SUN K, LIU R, CHEN Y K, et al. Solar-driven water splitting: a stabilized, intrinsically safe, 10% efficient, solar-driven water-splitting cell incorporating earth-abundant electrocatalysts with steady-state pH gradients and product separation enabled by a bipolar membrane[J]. Advanced Energy Materials, 2016, 6(13): 201670077. |
91 | MCDONALD M B, ARDO S, LEWIS N S, et al. Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting[J]. ChemSusChem, 2014, 7(11): 3021-3027. |
92 | HUANG Y Y, YANG R, ANANDHABABU G, et al. Cobalt/iron(oxides) heterostructures for efficient oxygen evolution and benzyl alcohol oxidation reactions[J]. ACS Energy Letters, 2018, 3(8): 1854-1860. |
93 | VERMA S, LU S, KENIS P J A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption[J]. Nature Energy, 2019, 4(6): 466-474. |
94 | LI T F, CAO Y, HE J F, et al. Electrolytic CO2 reduction in tandem with oxidative organic chemistry[J]. ACS Central Science, 2017, 3(7): 778-783. |
95 | WEI X F, LI Y, CHEN L S, et al. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation[J]. Angewandte Chemie International Edition, 2021, 60(6): 3148-3155. |
96 | CHEN Z F, KANG P, ZHANG M T, et al. Cu(Ⅱ)/Cu(0) electrocatalyzed CO2 and H2O splitting[J]. Energy & Environmental Science, 2013, 6(3):813-817. |
97 | ZHANG X, WU Z S, ZHANG X, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nature Communications, 2017, 8: 14675. |
98 | HE Q, LIU D B, LEE J H, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(8): 3033-3037. |
99 | LAN Y, CHEN J L, ZHANG H, et al. Fe/Fe3C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction[J]. Journal of Materials Chemistry A, 2020, 8(31): 15853-15863. |
100 | YAN X X, GU M Y, WANG Y, et al. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis[J]. Nano Research, 2020, 13(4): 975-982. |
101 | SUN H, CHEN L, LIAN Y B, et al. Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation[J]. Advanced Materials, 2020, 32(52): e2006784. |
102 | BEHESHTI M, KAKOOEI S, ISMAIL M C, et al. Investigation of CO2 electrochemical reduction to syngas on Zn/Ni-based electrocatalysts using the cyclic voltammetry method[J]. Electrochimica Acta, 2020, 341: 135976. |
103 | PAN F P, LI B Y, SARNELLO E, et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction[J]. ACS Nano, 2020, 14(5): 5506-5516. |
104 | ZHENG Y, ZHENG S S, XUE H G, et al. Metal-organic frameworks/graphene-based materials: preparations and applications[J]. Advanced Functional Materials, 2018, 28(47): 1804950. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[8] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |