化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1209-1223.DOI: 10.16085/j.issn.1000-6613.2021-1936
郑元波(), 张前, 石坚, 李佳霖, 梅苏宁, 余秦伟(), 杨建明(), 吕剑
收稿日期:
2021-09-09
修回日期:
2021-12-16
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
余秦伟,杨建明
作者简介:
郑元波(1997—),男,硕士研究生,研究方向为工业催化。E-mail:基金资助:
ZHENG Yuanbo(), ZHANG Qian, SHI Jian, LI Jialin, MEI Suning, YU Qinwei(), YANG Jianming(), LYU Jian
Received:
2021-09-09
Revised:
2021-12-16
Online:
2022-03-23
Published:
2022-03-28
Contact:
YU Qinwei,YANG Jianming
摘要:
电催化还原CO2生成含碳产物技术,能有效解决CO2过量导致的温室效应及能源短缺问题。但是,电催化还原CO2会生成多种产物,因此,研究制备催化活性较好的高选择性催化剂是研究重点。本文简述了电催化还原CO2的基本原理、不同还原产物的形成途径、活性中间体、速控步及活性催化剂,分析了电催化还原CO2生成不同产物存在的问题。并且针对催化剂催化活性及催化反应过程中的这些问题,提出了提高催化剂催化活性的方法,总结了催化剂发展趋势,一般策略包括制造纳米结构材料、催化剂负载在高比表面积的载体上、杂原子掺杂、合金化、引入缺陷等,分析了这些方法通过改变电子传输等因素对催化剂活性及选择性的影响。
中图分类号:
郑元波, 张前, 石坚, 李佳霖, 梅苏宁, 余秦伟, 杨建明, 吕剑. 电催化还原CO2生成多种产物催化剂研究进展[J]. 化工进展, 2022, 41(3): 1209-1223.
ZHENG Yuanbo, ZHANG Qian, SHI Jian, LI Jialin, MEI Suning, YU Qinwei, YANG Jianming, LYU Jian. Research progress of catalysts for electrocatalytic reduction of CO2 to various products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1209-1223.
1 | BENN D I, SUGDEN D E. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster[J]. Scottish Geographical Journal, 2020, 136(1/2/3/4): 13-23. |
2 | SCHNEIDER S H. The greenhouse effect: science and policy[J]. Science, 1989, 243(4892): 771-781. |
3 | QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
4 | LIU M, PANG Y J, ZHANG B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 2016, 537(7620): 382-386. |
5 | YANG H P, YUE Y N, QIN S, et al. Selective electrochemical reduction of CO2 to different alcohol products by an organically doped alloy catalyst[J]. Green Chemistry, 2016, 18(11): 3216-3220. |
6 | HANC-SCHERER F A, MONTIEL M A, MONTIEL V, et al. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 23909-23916. |
7 | QIU Y L, ZHONG H X, ZHANG T T, et al. Copper electrode fabricated via pulse electrodeposition: toward high methane selectivity and activity for CO2 electroreduction[J]. ACS Catalysis, 2017, 7(9): 6302-6310. |
8 | SONG R B, ZHU W L, FU J J, et al. Electrode materials engineering in electrocatalytic CO2 reduction: energy input and conversion efficiency[J]. Advanced Materials, 2020, 32(27): 1903796. |
9 | KATURI K P, KALATHIL S, RAGAB A, et al. Dual-function electrocatalytic and macroporous hollow-fiber cathode for converting waste streams to valuable resources using microbial electrochemical systems[J]. Advanced Materials, 2018, 30(26): 1707072. |
10 | WHITE J L, HERB J T, KACZUR J J, et al. Photons to formate: Efficient electrochemical solar energy conversion via reduction of carbon dioxide[J]. Journal of CO2 Utilization, 2014, 7: 1-5. |
11 | KORTLEVER R, SHEN J, SCHOUTEN K J, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. The Journal of Physical Chemistry Letters, 2015, 6(20): 4073-4082. |
12 | FAVARO M, XIAO H, CHENG T, et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(26): 6706-6711. |
13 | CHANG X X, WANG T, GONG J L. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
14 | 苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3): 1384-1394. |
SU Wenli, FAN Yu. Progress of electrocatalytic reduction of CO2 on metal-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1384-1394. | |
15 | HANSEN H A, VARLEY J B, PETERSON A A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392. |
16 | ZHANG S, KANG P, MEYER T J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate[J]. Journal of the American Chemical Society, 2014, 136(5): 1734-1737. |
17 | BARUCH M F, PANDER J E, WHITE J L, et al. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy[J]. ACS Catalysis, 2015, 5(5): 3148-3156. |
18 | SUN Z Y, MA T, TAO H C, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem, 2017, 3(4): 560-587. |
19 | ZHAO Y, LIU X, LIU Z, et al. Spontaneously Sn-doped Bi/BiO x core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel[J]. Nano Letters, 2021, 21(16): 6907-6913. |
20 | ZHANG M, WEI W B, ZHOU S H, et al. Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability[J]. Energy & Environmental Science, 2021, 14(9): 4998-5008. |
21 | GONG Q F, DING P, XU M Q, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10: 2807. |
22 | JIA L, SUN M Z, XU J, et al. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals[J]. Angewandte Chemie, 2021, 133(40): 21909-21913. |
23 | ZHANG T T, QIU Y L, YAO P F, et al. Bi-modified Zn catalyst for efficient CO2 electrochemical reduction to formate[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15190-15196. |
24 | WANG Z T, ZHOU Y S, XIA C F, et al. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst[J]. Angewandte Chemie International Edition, 2021, 60(35): 19107-19112. |
25 | NIE X W, ESOPI M R, JANIK M J, et al. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps[J]. Angewandte Chemie International Edition, 2013, 52(9): 2459-2462. |
26 | MONTEIRO M C O, DATTILA F, HAGEDOORN B, et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution[J]. Nature Catalysis, 2021, 4(8): 654-662. |
27 | ZHENG T T, JIANG K, WANG H T. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts[J]. Advanced Materials, 2018, 30(48): 1802066. |
28 | ZHU W, ZHANG Y J, ZHANG H, et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires[J]. Journal of the American Chemical Society, 2014, 136(46): 16132-16135. |
29 | ZHUANG S L, CHEN D, LIAO L W, et al. Hard-sphere random close-packed Au47Cd2(TBBT)31 nanoclusters with a faradaic efficiency of up to 96% for electrocatalytic CO2 reduction to CO[J]. Angewandte Chemie International Edition, 2020, 59(8): 3073-3077. |
30 | GAO D, ZHANG Y, ZHOU Z, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655. |
31 | LU Q, ROSEN J, ZHOU Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nature Communications, 2014, 5: 3242. |
32 | BI W T, LI X G, YOU R, et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction[J]. Advanced Materials, 2018, 30(18): 1706617. |
33 | KUMAR B, ASADI M, PISASALE D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nature Communications, 2013, 4: 2819. |
34 | PETERSON A A, ABILD-PEDERSEN F, STUDT F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010, 3(9): 1311. |
35 | 徐敏杰, 朱明辉, 陈天元, 等. CO2高值化利用:CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576. |
XU Minjie, ZHU Minghui, CHEN Tianyuan, et al. High value utilization of CO2: research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 565-576. | |
36 | ZHENG Y, VASILEFF A, ZHOU X, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts[J]. Journal of the American Chemical Society, 2019, 141(19): 7646-7659. |
37 | ZHAO R B, DING P, WEI P P, et al. Recent progress in electrocatalytic methanation of CO2 at ambient conditions[J]. Advanced Functional Materials, 2021, 31(13): 2009449. |
38 | AZUMA M, HASHIMOTO K, HIRAMOTO M, et al. Carbon dioxide reduction at low temperature on various metal electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 260(2): 441-445. |
39 | AZUMA M, HASHIMOTO K, HIRAMOTO M, et al. Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media[J]. Journal of the Electrochemical Society, 1990, 137(6): 1772-1778. |
40 | MANTHIRAM K, BEBERWYCK B J, ALIVISATOS A P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst[J]. Journal of the American Chemical Society, 2014, 136(38): 13319-13325. |
41 | CHOI C, CAI J, LEE C, et al. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential[J]. Nano Research, 2021, 14(10): 3497-3501. |
42 | YE J J, RAO D W, YAN X H. Regulating the electronic properties of MoSe2 to improve its CO2 electrocatalytic reduction performance via atomic doping[J]. New Journal of Chemistry, 2021, 45(12): 5350-5356. |
43 | GUO W W, LIU S J, TAN X X, et al. Highly efficient CO2 electroreduction to methanol through atomically dispersed Sn coupled with defective CuO catalysts[J]. Angewandte Chemie International Edition, 2021, 60(40): 21979-21987. |
44 | ZHANG W Y, QIN Q, DAI L, et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018, 57(30): 9475-9479. |
45 | HORI Y, TAKAHASHI R, YOSHINAMI Y, et al. Electrochemical reduction of CO at a copper electrode[J]. The Journal of Physical Chemistry B, 1997, 101(36): 7075-7081. |
46 | YANG K D, LEE C W, JIN K, et al. Current status and bioinspired perspective of electrochemical conversion of CO2 to a long-chain hydrocarbon[J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 538-545. |
47 | GENOVESE C, AMPELLI C, PERATHONER S, et al. Mechanism of C—C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry[J]. Green Chemistry, 2017, 19(10): 2406-2415. |
48 | SUN X F, ZHU Q G, KANG X C, et al. Design of a Cu(Ⅰ)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid[J]. Green Chemistry, 2017, 19(9): 2086-2091. |
49 | ZHANG S S, ZHAO S L, QU D X, et al. Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness[J]. Small, 2021, 17(37): 2102293. |
50 | SIKDAR N, JUNQUEIRA J R C, DIECKHÖFER S, et al. A metal-organic framework derived Cu x O y C z catalyst for electrochemical CO2 reduction and impact of local pH change[J]. Angewandte Chemie International Edition, 2021, 60(43): 23427-23434. |
51 | RAAIJMAN S J, SCHELLEKENS M P, CORBETT P J, et al. High-pressure CO electroreduction at silver produces ethanol and propanol[J]. Angewandte Chemie International Edition, 2021, 60(40): 21732-21736. |
52 | LI M H, MA Y Y, CHEN J, et al. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C 2 + [J]. Angewandte Chemie International Edition, 2021, 60(20): 11588-11594. |
53 | ZHU Q G, SUN X F, YANG D X, et al. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex[J]. Nature Communications, 2019, 10: 3851. |
54 | WANG H X, TZENG Y K, JI Y F, et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface[J]. Nature Nanotechnology, 2020, 15(2): 131-137. |
55 | MUNIR S, VARZEGHANI A R, KAYA S. Electrocatalytic reduction of CO2 to produce higher alcohols[J]. Sustainable Energy & Fuels, 2018, 2(11): 2532-2541. |
56 | WANG G, CHEN J, DING Y, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products[J]. Chemical Society Reviews, 2021, 50(8): 4993-5061. |
57 | HUSSAIN J, JÓNSSON H, SKÚLASON E. Calculations of product selectivity in electrochemical CO2 reduction[J]. ACS Catalysis, 2018, 8(6): 5240-5249. |
58 | BENCK J D, HELLSTERN T R, KIBSGAARD J, et al. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catalysis, 2014, 4(11): 3957-3971. |
59 | RESKE R, MISTRY H, BEHAFARID F, et al. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(19): 6978-6986. |
60 | HOANG T T H, MA S C, GOLD J I, et al. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis[J]. ACS Catalysis, 2017, 7(5): 3313-3321. |
61 | LI Z, JI S, LIU Y, et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites[J]. Chemical Reviews, 2020, 120(2): 623-682. |
62 | SUN M, LIU H J, LIU Y, et al. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction[J]. Nanoscale, 2015, 7(4): 1250-1269. |
63 | ZHANG Z, AHMAD F, ZHAO W, et al. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide[J]. Nano Letters, 2019, 19(6): 4029-4034. |
64 | HUANG H J, WANG X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells[J]. J. Mater. Chem. A, 2014, 2(18): 6266-6291. |
65 | MA S C, LAN Y C, PEREZ G M J, et al. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction[J]. ChemSusChem, 2014, 7(3): 866-874. |
66 | LI Z, YANG Y, YIN Z L, et al. Interface-enhanced catalytic selectivity on the C2 products of CO2 electroreduction[J]. ACS Catalysis, 2021, 11(5): 2473-2482. |
67 | HUANG Y, ZHANG W Y, YUE Z, et al. Performance of SiO2-TiO2 binary oxides supported Cu-ZnO catalyst in ethyl acetate hydrogenation to ethanol[J]. Catalysis Letters, 2017, 147(11): 2817-2825. |
68 | ZHAO C, DAI X, YAO T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2 [J]. Journal of the American Chemical Society, 2017, 139(24): 8078-8081. |
69 | LIU Y M, CHEN S, QUAN X, et al. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond[J]. Journal of the American Chemical Society, 2015, 137(36): 11631-11636. |
70 | XU J Q, LI X D, LIU W, et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers[J]. Angewandte Chemie International Edition, 2017, 56(31): 9121-9125. |
71 | LIM H K, SHIN H, GODDARD W A III, et al. Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2 [J]. Journal of the American Chemical Society, 2014, 136(32): 11355-11361. |
72 | HE J F, DETTELBACH K E, SALVATORE D A, et al. High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction[J]. Angewandte Chemie International Edition, 2017, 56(22): 6068-6072. |
73 | CLARK E L, HAHN C, JARAMILLO T F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity[J]. Journal of the American Chemical Society, 2017, 139(44): 15848-15857. |
74 | SUN K, CHENG T, WU L N, et al. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles[J]. Journal of the American Chemical Society, 2017, 139(44): 15608-15611. |
75 | MISTRY H, CHOI Y W, BAGGER A, et al. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts[J]. Angewandte Chemie International Edition, 2017, 56(38): 11394-11398. |
76 | MISTRY H, VARELA A S, BONIFACIO C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12123. |
77 | GAO W, LI S, HE H C, et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas[J]. Nature Communications, 2021, 12: 4747. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[7] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[8] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[13] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[14] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[15] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |