化工进展 ›› 2022, Vol. 41 ›› Issue (2): 1063-1072.DOI: 10.16085/j.issn.1000-6613.2021-0412
聂紫萌(), 杨点, 熊玉路, 李英杰(), 田森林, 宁平
收稿日期:
2021-03-01
修回日期:
2021-07-02
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
李英杰
作者简介:
聂紫萌(1997—),女,硕士研究生,主要研究方向为工业含硫烟气净化技术。E-mail:基金资助:
NIE Zimeng(), YANG Dian, XIONG Yulu, LI Yingjie(), TIAN Senlin, NING Ping
Received:
2021-03-01
Revised:
2021-07-02
Online:
2022-02-05
Published:
2022-02-23
Contact:
LI Yingjie
摘要:
电解锰渣是电解锰生产过程中产生的锰矿石酸浸渣,富含锰、铁等活性组分,理论上可催化氧化SO2实现烟气脱硫,同时脱硫后的电解锰渣可资源化利用,然而目前尚未见电解锰渣矿浆脱硫的研究报道。本文研究了工艺参数对电解锰渣浆液脱除SO2性能的影响,探究了电解锰渣浆液烟气脱硫的过程机制。结果表明:锰渣粒径为200目(<75μm)、锰渣浆液初始浓度5000mg/L、气体流量400mL/min、进口SO2体积分数0.20%、反应温度50℃、反应时间180min的条件下,电解锰渣浆液脱硫率最高可达93.87%。脱硫前后电解锰渣XRD、SEM、XPS表征结果表明,MnO2、MnO、Fe2O3等活性组分参与SO2反应,且浆液中的Mn2+、Fe3+等过渡金属离子液相催化氧化SO2生成H2SO4,实现烟气脱硫。
中图分类号:
聂紫萌, 杨点, 熊玉路, 李英杰, 田森林, 宁平. 电解锰渣浆液烟气脱硫性能及机制[J]. 化工进展, 2022, 41(2): 1063-1072.
NIE Zimeng, YANG Dian, XIONG Yulu, LI Yingjie, TIAN Senlin, NING Ping. Performance and mechanism of electrolytic manganese slag slurry for flue gas desulfurization[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1063-1072.
Fe2O3 | SiO2 | TiO2 | Na2O | MnO | Cr2O3 | CaO | Al2O3 | MgO | P2O5 | SO3 |
---|---|---|---|---|---|---|---|---|---|---|
33.64 | 18.97 | 12.82 | 12.29 | 7.57 | 4.83 | 4.42 | 1.97 | 1.41 | 0.29 | 0.10 |
表1 电解锰渣的化学成分(质量分数) (%)
Fe2O3 | SiO2 | TiO2 | Na2O | MnO | Cr2O3 | CaO | Al2O3 | MgO | P2O5 | SO3 |
---|---|---|---|---|---|---|---|---|---|---|
33.64 | 18.97 | 12.82 | 12.29 | 7.57 | 4.83 | 4.42 | 1.97 | 1.41 | 0.29 | 0.10 |
时间 | Mn | Fe | Ca | Al | Co | Cu | Ni | Zn | SO |
---|---|---|---|---|---|---|---|---|---|
0 | 0.14 | 0.13 | 1.52 | 1.19×10-2 | 1.89×10-2 | 1.14×10-3 | 1.15×10-3 | 0.20×10-2 | 63.43 |
60min | 2.76 | 0.71 | 6.80 | 3.41 | 2.05×10-2 | 9.43×10-3 | 1.94×10-3 | 3.08×10-2 | 514.86 |
180min | 7.35 | 4.19 | 8.65 | 5.54 | 2.13×10-2 | 12.40×10-3 | 4.25×10-3 | 2.48×10-2 | 1623.43 |
增长百分比/% | 5150 | 3123.08 | 469.08 | 46454.62 | 12.70 | 987.72 | 269.57 | 1140 | 2459.40 |
表2 不同时间下脱硫浆液中离子浓度变化 (mg/L)
时间 | Mn | Fe | Ca | Al | Co | Cu | Ni | Zn | SO |
---|---|---|---|---|---|---|---|---|---|
0 | 0.14 | 0.13 | 1.52 | 1.19×10-2 | 1.89×10-2 | 1.14×10-3 | 1.15×10-3 | 0.20×10-2 | 63.43 |
60min | 2.76 | 0.71 | 6.80 | 3.41 | 2.05×10-2 | 9.43×10-3 | 1.94×10-3 | 3.08×10-2 | 514.86 |
180min | 7.35 | 4.19 | 8.65 | 5.54 | 2.13×10-2 | 12.40×10-3 | 4.25×10-3 | 2.48×10-2 | 1623.43 |
增长百分比/% | 5150 | 3123.08 | 469.08 | 46454.62 | 12.70 | 987.72 | 269.57 | 1140 | 2459.40 |
1 | XU Fuyuan, JIANG Linhua, DAN Zhigang, et al. Water balance analysis and wastewater recycling investigation in electrolytic manganese industry of China—A case study[J]. Hydrometallurgy, 2014, 149: 12-22. |
2 | 姚露, 辛广智, 杨林, 等. 铁强化电解锰阳极液体系中氧化锰矿烟气脱硫和锰浸出工艺[J]. 化工进展, 2021, 40(5): 2859-2866. |
YAO Lu, XIN Guangzhi, YANG Lin, et al. Using iron promoted manganese oxide ore for simmultaneous flue gas desulfurization and Mn leaching: a process study[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2859-2866. | |
3 | YANG Chao, Xiaoxin LYU, TIAN Xike, et al. An investigation on the use of electrolytic manganese residue as filler in sulfur concrete[J]. Construction and Building Materials, 2014, 73: 305-310. |
4 | NING Duan, WANG Fan, ZHOU Changbo, et al. Analysis of pollution materials generated from electrolytic manganese industries in China[J]. Resources, Conservation and Recycling, 2010, 54(8): 506-511. |
5 | ZHANG Ruirui, MA Xiaotian, SHEN Xiaoxu, et al. Life cycle assessment of electrolytic manganese metal production[J]. Journal of Cleaner Production, 2020, 253: 119951. |
6 | 何德军, 舒建成, 陈梦君, 等. 电解锰渣建材资源化研究现状与展望[J]. 化工进展, 2020, 39(10): 4227-4237. |
HE Dejun, SHU Jiancheng, CHEN Mengjun, et al. Current status and future prospects of electrolytic manganese residue reused as building materials[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4227-4237. | |
7 | HE Shichao, WILSON B P, LUNDSTRÖM M, et al. Hazard-free treatment of electrolytic manganese residue and recovery of manganese using low temperature roasting-water washing process[J]. Journal of Hazardous Materials, 2021, 402: 123561. |
8 | SHU Jiancheng, LIN Fan, CHEN Mengjun, et al. An innovative method to enhance manganese and ammonia nitrogen leaching from electrolytic manganese residue by surfactant and anode iron plate[J]. Hydrometallurgy, 2020, 193:105311. |
9 | LI Qingzhu, LIU Qin, PENG Bing, et al. Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue[J]. Construction and Building Materials, 2016, 106: 236-242. |
10 | SHU Jiancheng, LIU Renlong, WU Haiping, et al. Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 351-359. |
11 | ZHANG Yuliang, LIU Xiaoming, XU Yingtang, et al. Synergic effects of electrolytic manganese residue-red mud-carbide slag on the road base strength and durability properties[J]. Construction and Building Materials, 2019, 220: 364-374. |
12 | TANG Binwen, GAO Shuai, WANG Yaguang, et al. Pore structure analysis of electrolytic manganese residue based permeable brick by using industrial CT[J]. Construction and Building Materials, 2019, 208: 697-709. |
13 | 孙丽娜, 李凯, 汤立红, 等. 常见金属氧化物烟气脱硫研究进展[J]. 化工进展, 2017, 36(1): 181-188. |
SUN Lina, LI Kai, TANG Lihong, et al. Research progress of common metal oxides for flue gas desulfurization[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 181-188. | |
14 | 孙峻, 苏仕军, 丁桑岚, 等. 软锰矿浆烟气脱硫资源化利用新工艺[J]. 环境工程, 2007, 25(4): 49-52. |
SUN Jun, SU Shijun, DING Sanglan, et al. The new process of utilizing the resource from flue gas desulfurization with pyrolusite pulp[J]. Environmental Engineering, 2007, 25(4): 49-52. | |
15 | 朱晓帆, 蒋文举, 苏仕军, 等. 软锰矿浆烟气脱硫反应机理研究[J]. 环境污染治理技术与设备, 2002, 3(3): 44-46. |
ZHU Xiaofan, JIANG Wennju, SU Shijun, et al. The study of reaction mechanism of desulfurization in flue gas with pyrolusite pulp[J]. Techniques and Equipment for Environmental Pollution Control, 2002, 3(3): 44-46. | |
16 | 汤争光, 蒋文举. 软锰矿催化氧化二氧化硫的过程与机理研究[J]. 环境科学与技术, 2008, 31(2): 13-15, 37. |
TANG Zhengguang, JIANG Wenju. Process and mechanism of catalyzed oxidation of SO2 with pyrolusite slurry[J]. Environmental Science & Technology, 2008, 31(2): 13-15, 37. | |
17 | 张冬冬, 魏爱斌, 张晋鸣, 等. 液相催化氧化SO2研究进展[J]. 昆明理工大学学报(自然科学版), 2015, 40(5): 97-107. |
ZHANG Dongdong, WEI Aibin, ZHANG Jinming, et al. Research progress on liquid-phase catalytic oxidization of SO2[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2015, 40(5): 97-107. | |
18 | COICHEV N, REDDY K B, ELDIK R VAN. The synergistic effect of manganese (Ⅱ) in the sulfite-induced autoxidation of metal ions and complexes in aqueous solution[J]. Atmospheric Environment A: General Topics, 1992, 26(13): 2295-2300. |
19 | ZHOU Danna, CHEN Long, LI Jinjun, et al. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: a state-of-the-art minireview[J]. Chemical Engineering Journal, 2018, 346: 726-738. |
20 | HUSS A, LIM P K, ECKERT C A. Oxidation of aqueous sulfur dioxide. (): Homogeneous manganese (Ⅱ) and iron (Ⅱ) catalysis at low pH[J]. The Journal of Physical Chemistry, 1982, 86(21): 4224-4228. |
21 | PASIUK-BRONIKOWSKA W, BRONIKOWSKI T. The rate equation for SO2 autoxidation in aqueous MnSO4 solutions containing H2SO4[J]. Chemical Engineering Science, 1981, 36(1):215-219. |
22 | HUSS A, LIM P K, ECKERT C A. Oxidation of aqueous sulfur dioxide. (Ⅱ): High-pressure studies and proposed reaction mechanisms[J]. The Journal of Physical Chemistry, 1982, 86(21): 4229-4233. |
23 | BERGLUND J, FRONAEUS S, ELDING L I. Kinetics and mechanism for manganese-catalyzed oxidation of sulfur (Ⅳ) by oxygen in aqueous solution[J]. Inorganic Chemistry, 1993, 32(21): 4527-4538. |
24 | 陶雷, 王学谦, 宁平, 等. 矿浆烟气脱硫及资源化研究进展[J]. 化工进展, 2017, 36(5): 1868-1879. |
TAO Lei, WANG Xueqian, NING Ping, et al. Research progress on flue gas desulfurization and utilization with slurry[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1868-1879. | |
25 | 中华人民共和国地质矿产部. 地下水质检验方法. 比浊法测定硫酸根: [S]. 1993. |
Ministry of Geology and Mineral Resources of the People’s Republic of China. Groundwater quality inspection method. Determination of sulfate by turbidimetric method: [S]. 1993. | |
26 | 国家环境保护局. 水质 铁、锰的测定 火焰原子吸收分光光度法: [S]. 北京: 中国标准出版社, 1989. |
State Bareau of Environmental Protection of the People’s Republic of China. Water quality—Determination of iron and manganese—Flame atomic absorption spectrometric method: [S]. Beijing: Standards Press of China, 1989. | |
27 | 袁进, 江霞, 刘一天, 等. 氧化锰共生矿烟气脱硫的机理及影响因素[J]. 环境工程学报, 2018, 12(4): 1104-1111. |
YUAN Jin, JIANG Xia, LIU Yitian, et al. Mechanism and influence factors of flue gas desulfurization by symbiotic manganese oxides ore[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1104-1111. | |
28 | 陈红亮, 刘仁龙, 李文生, 等. 电解锰渣的理化特性分析研究[J]. 金属材料与冶金工程, 2014, 42(1): 3-5, 17. |
CHEN Hongliang, LIU Renlong, LI Wensheng, et al. Physicochemical analysis of electrolytic manganese residue[J]. Metal Materials and Metallurgy Engineering, 2014, 42(1): 3-5, 17. | |
29 | 彭铁锋. 电解锰渣制四氧化三锰及其结构性能表征[D]. 重庆: 重庆大学, 2010. |
PENG Tiefeng. Preparation and characterization of Mn3O4 from electrolytic manganese residue[D]. Chongqing: Chongqing University, 2010. | |
30 | 李圭白, 杨艳玲, 李星. 锰化合物净水技术[M]. 北京: 中国建筑工业出版社, 2006: 33. |
LI Guibai, YANG Yanling, LI Xing. Manganese compound water purification technology[M]. Beijing: China Architecture & Building Press, 2006: 33. | |
31 | 陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J].硅酸盐通报, 2011, 30(4): 934-937. |
CHEN Hesheng, SUN Zhenya, SHAO Jingchang. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 934-937. | |
32 | 李昌新, 喻源, 张庆武, 等.合成条件对电解锰渣制备沸石过程中沸石种类和性能的影响[J]. 中南大学学报(自然科学版), 2019, 50(12): 2932-2937. |
LI Changxin, YU Yuan, ZHANG Qingwu, et al. Effects of synthesis conditions on formation process and property of zeolite prepared from electrolytic manganese residue[J]. Journal of Central South University (Science and Technology), 2019, 50(12): 2932-2937. | |
33 | 刘建英, 蒋文举, 谭显东, 等. 低浓度软锰矿浆烟气脱硫过程中的催化作用[J]. 环境工程学报, 2007, 1(6): 72-76. |
LIU Jianying, JIANG Wenju, TAN Xiandong, et al. Catalysis in the process of flue gas desulphurization by low concentration pyrolusite slurry[J]. Chinese Journal of Environmental Engineering, 2007, 1(6): 72-76. | |
34 | 陈昭琼, 童志权. 软锰矿浆烟气脱硫过程机理探讨及过程强化[J]. 湘潭大学自然科学学报, 1998(3): 112-116. |
CHEN Zhaoqiong, TONG Zhiquan. Approach a mechanism of flue gas desulfurization with pyrolusite slurry and strengthen the process[J]. Natural Science Journal of Xiangtan University, 1998(3):112-116. | |
35 | 赵栋, 李光强, 王恒辉, 等. 高磷鲕状赤铁矿酸浸脱磷动力学[J]. 钢铁研究学报, 2017, 29(11): 883-891. |
ZHAO Dong, LI Guangqiang, WANG Henghui, et al. Kinetics of acid leaching for high phosphorus oolitic hematite dephosphorization[J]. Journal of Iron and Steel Research, 2017, 29(11): 883-891. |
[1] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[2] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[3] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[4] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[5] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
[6] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[7] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[8] | 张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331. |
[9] | 陈姝晖, 伍岳, 张文祥, 王闪闪, 马和平. 离子型有机多孔聚合物的制备及其烟气脱硫耦合脱碳性质[J]. 化工进展, 2023, 42(2): 1028-1038. |
[10] | 郭晓宇, 李冬晨, 赵炜, 杜朕屹, 李晓良. Au-Pd/MnO2催化剂的制备及其苯甲醇氧化性能[J]. 化工进展, 2023, 42(10): 5223-5231. |
[11] | 高宁博, 胡雅迪, 全翠. 餐厨垃圾的热转化和生物处理研究进展[J]. 化工进展, 2022, 41(S1): 507-515. |
[12] | 张铭, 高永康, 纪德龙, 刘福杰, 朱文帅, 李华明. 多酸材料在燃油脱硫中的研究进展[J]. 化工进展, 2022, 41(9): 4782-4789. |
[13] | 李兴, 黄宏宇, 大坂侑吾, 呼和涛力, 肖林发, 李军. 碳材料吸附脱除二氧化硫性能的影响因素[J]. 化工进展, 2022, 41(9): 4963-4972. |
[14] | 曾一凡, 舒建成, 杨慧敏, 赵志胜, 陈梦君, 杨勇, 刘仁龙. 铵盐体系电解锰渣中石膏的转变规律[J]. 化工进展, 2022, 41(9): 5115-5121. |
[15] | 余正伟, 张晓霞, 雷杰, 李澳, 王光应, 丁祥, 龙红明. 废CeO x -MnO x 基SCR脱硝催化剂还原酸浸综合回收铈锰[J]. 化工进展, 2022, 41(9): 5122-5131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |