化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6656-6663.DOI: 10.16085/j.issn.1000-6613.2022-0380
收稿日期:
2022-03-13
修回日期:
2022-04-27
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
黄健
作者简介:
彭伟(1989—),男,硕士,工程师,研究方向为矿产综合利用。E-mail:499096104@qq.com。
基金资助:
PENG Wei1(), HUANG Jian2(), WANG Zhenjie1, LIU Anrong3
Received:
2022-03-13
Revised:
2022-04-27
Online:
2022-12-20
Published:
2022-12-29
Contact:
HUANG Jian
摘要:
钨矿的冶炼势必伴随产生大量钨冶炼渣,作为危险固废的冶炼渣含有丰富的有价金属,直接堆积于尾矿库不仅会污染环境、占用土地,还会造成金属资源的浪费。因此,很有必要采用合适的选别工艺技术处理回收钨冶炼渣中Sn、W、Sc、Fe、Mn、Ta和Nb等有价金属,一方面能从源头减少钨冶炼渣排放量,另一方面增加有价金属循环利用率。文章详细阐述钨冶炼渣中不同有价金属选别回收的工艺方法,并对比了不同方法各自存在的优势和弊端,同时也指出了钨冶炼渣被用于生产不同特殊材料的现状。在此基础上,展望了未来钨冶炼渣处理技术的发展方向,为更好综合利用钨冶炼渣提供借鉴。
中图分类号:
彭伟, 黄健, 王振杰, 刘安荣. 钨冶炼渣中有价金属回收利用研究现状[J]. 化工进展, 2022, 41(12): 6656-6663.
PENG Wei, HUANG Jian, WANG Zhenjie, LIU Anrong. Research status of recycling and utilization of valuable metals in tungsten residue[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6656-6663.
有价金属 | 工艺方法 | 主要原理 | 优势 | 劣势 |
---|---|---|---|---|
锡 | 重选 | 锡石相对密度高于其他物质 | 绿色环保,试剂消耗少 | 对微细粒锡石选别效果差 |
浮选 | 浮选药剂与锡石表面活性位点结合,改变疏水性 | 微细粒锡石回收效果较好 | 易受残留表面的试剂影响,降低浮选回收率 | |
钨 | 湿法酸浸 | 强酸溶解至浸出液,再选择性回收钨 | 回收率高,反应条件温和,能耗低 | 除渣工艺复杂,流程较长,成本高 |
火法焙烧 | 杂质成分优先被反应,提高钨的暴露率 | 操作流程短,效率高,杂质量少 | 能耗高,易产生废气 | |
重选+浮选 | 金属钨与其他物质表面性质差异 | 试剂消耗少,流程短 | 粒径对回收效果影响明显 | |
钪 | 湿法酸浸 | 强酸溶解钪氧化物,溶剂萃取法选择性回收 | 针对性强,分离系数高 | 杂质含量高、除杂难度大、试剂消耗量大 |
火法焙烧 | 转变钪氧化物形式,提高溶解度 | 回收率高,杂质含量少 | 能耗高,存在二次污染风险 | |
铁和锰 | 湿法酸浸 | 无机强酸溶解含铁锰的物质,除杂后选择性回收 | 针对性强,回收率高 | 试剂消耗量大,产品较廉价 |
还原焙烧+磁选 | 将铁转化成带磁性物质,磁选选择性分离 | 铁回收率高,杂质少 | 产生大量温室气体,影响锰的回收 | |
钽和铌 | 湿法酸浸 | 无机强酸溶解钽铌物质,溶解后提取分离 | 回收率高,能耗低 | 试剂消耗大,氢氟酸溶解存在安全隐患 |
高温碱溶 | 富集钽铌物质,转化赋存形式 | 避免氢氟酸应用,降低了杂质含量 | 能耗成本高 |
表1 钨冶炼渣中不同有价金属回收工艺存在的优劣势
有价金属 | 工艺方法 | 主要原理 | 优势 | 劣势 |
---|---|---|---|---|
锡 | 重选 | 锡石相对密度高于其他物质 | 绿色环保,试剂消耗少 | 对微细粒锡石选别效果差 |
浮选 | 浮选药剂与锡石表面活性位点结合,改变疏水性 | 微细粒锡石回收效果较好 | 易受残留表面的试剂影响,降低浮选回收率 | |
钨 | 湿法酸浸 | 强酸溶解至浸出液,再选择性回收钨 | 回收率高,反应条件温和,能耗低 | 除渣工艺复杂,流程较长,成本高 |
火法焙烧 | 杂质成分优先被反应,提高钨的暴露率 | 操作流程短,效率高,杂质量少 | 能耗高,易产生废气 | |
重选+浮选 | 金属钨与其他物质表面性质差异 | 试剂消耗少,流程短 | 粒径对回收效果影响明显 | |
钪 | 湿法酸浸 | 强酸溶解钪氧化物,溶剂萃取法选择性回收 | 针对性强,分离系数高 | 杂质含量高、除杂难度大、试剂消耗量大 |
火法焙烧 | 转变钪氧化物形式,提高溶解度 | 回收率高,杂质含量少 | 能耗高,存在二次污染风险 | |
铁和锰 | 湿法酸浸 | 无机强酸溶解含铁锰的物质,除杂后选择性回收 | 针对性强,回收率高 | 试剂消耗量大,产品较廉价 |
还原焙烧+磁选 | 将铁转化成带磁性物质,磁选选择性分离 | 铁回收率高,杂质少 | 产生大量温室气体,影响锰的回收 | |
钽和铌 | 湿法酸浸 | 无机强酸溶解钽铌物质,溶解后提取分离 | 回收率高,能耗低 | 试剂消耗大,氢氟酸溶解存在安全隐患 |
高温碱溶 | 富集钽铌物质,转化赋存形式 | 避免氢氟酸应用,降低了杂质含量 | 能耗成本高 |
1 | LIAO Chunfa, XIE Sui, WANG Xu, et al. Thermodynamic and experimental analyses of the carbothermic reduction of tungsten slag[J]. JOM, 2021, 73(6): 1853-1860. |
2 | LIU Hu, LIU Haoling, NIE Chenxi, et al. Comprehensive treatments of tungsten slags in China: a critical review[J]. Journal of Environmental Management, 2020, 270: 110927. |
3 | KIM Joung Woon, LEE Won Geun, HWANG In Sung, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 73-77. |
4 | XIAO Luping, JI Lei, YIN Changsheng, et al. Tungsten extraction from scheelite hydrochloric acid decomposition residue by hydrogen peroxide[J]. Minerals Engineering, 2022, 179: 107461. |
5 | LIANG Jingjing, GENG Yong, ZENG Xianlai, et al. Toward sustainable utilization of tungsten: evidence from dynamic substance flow analysis from 2001 to 2019 in China[J]. Resources, Conservation and Recycling, 2022, 182: 106307. |
6 | ZHANG Juan, LIU Xinxing, LI Wei, et al. The metallogenic epoch and geological implications of the tungsten-tin polymetallic deposits in southern Jiangxi province, China: constraints from cassiterite U-Pb and molybdenite re-Os isotopic dating[J]. Ore Geology Reviews, 2021, 134: 104159. |
7 | 陈明, 李凤果, 胡兰文, 等. 赣南典型矿区河流沉积物钨的赋存特征及释放规律[J]. 化工进展, 2019, 38(9): 4320-4326. |
CHEN Ming, LI Fengguo, HU Lanwen, et al. Occurrence and release of tungsten from river depositions in typical mining areas of southern Jiangxi Province[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4320-4326. | |
8 | WANG Xu, QIN Wenqing, JIAO Fen, et al. Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: a case study of Luoyang Yulu Mining Company[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 980-998. |
9 | DONG Mengge, XUE Xiangxin, KUMAR Ashok, et al. A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation[J]. Journal of Hazardous Materials, 2018, 344: 602-614. |
10 | SHEN Leiting, LI Xiaobin, LINDBERG Daniel, et al. Tungsten extractive metallurgy: a review of processes and their challenges for sustainability[J]. Minerals Engineering, 2019, 142: 105934. |
11 | QUINTERO Gilberto, BRUNNER Erich, JIMÉNEZ Luz A, et al. Scheelite production from spent electroless nickel solutions as an alternative tungsten recycling source[J]. Hydrometallurgy, 2020, 197: 105453. |
12 | 曹国祥, 唐忠阳, 李江涛, 等. 白钨矿连续酸浸槽内固体颗粒的流动特性实验及模型研究[J]. 化工进展, 2018, 37(12): 4565-4571. |
CAO Guoxiang, TANG Zhongyang, LI Jiangtao, et al. Experimental and modelling studies on flow characteristics of solid particles in a continuous tank for leaching scheelite[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4565-4571. | |
13 | STAWOVY Michael T, MYERS Kyle, Scott OHM. Binder jet printing of tungsten heavy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2019, 83: 104981. |
14 | 万林生, 徐国钻, 严永海, 等. 中国钨冶炼工艺发展历程及技术进步[J]. 中国钨业, 2009, 24(5): 63-66, 92. |
WAN Linsheng, XU Guozuan, YAN Yonghai, et al. The development history and technology progress in China’s tungsten metallurgy[J]. China Tungsten Industry, 2009, 24(5): 63-66, 92. | |
15 | 刘谟禧. 黑钨矿压煮-萃取新工艺在我国的技术发展和工业实践[J]. 稀有金属与硬质合金, 1996, 24(2): 48-50. |
LIU Moxi. Development and commercial practice of digesting-solvent extraction-crystallization technique for processing wolframite in China[J]. Rare Metals and Cemented Carbides, 1996, 24(2): 48-50. | |
16 | GONG Dandan, ZHANG Yong, WAN Linsheng, et al. Efficient extraction of tungsten from scheelite with phosphate and fluoride[J]. Process Safety and Environmental Protection, 2022, 159: 708-715. |
17 | 廖利波, 董伟. 酸法工艺处理白钨精矿的最新进展[J]. 稀有金属与硬质合金, 2005, 33(3): 29-31. |
LIAO Libo, DONG Wei. The latest development of the acid process for scheelite concentrate[J]. Rare Metals and Cemented Carbides, 2005, 33(3): 29-31. | |
18 | REN Huichuan, LI Jiangtao, TANG Zhongyang, et al. Sustainable and efficient extracting of tin and tungsten from wolframite-scheelite mixed ore with high tin content[J]. Journal of Cleaner Production, 2020, 269: 122282. |
19 | LIU Qingsheng, TU Tao, GUO Hao, et al. Complexation extraction of scheelite and transformation behaviour of tungsten-containing phase using H2SO4 solution with H2C2O4 as complexing agent[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(10): 3150-3161. |
20 | CASTRO-GOMES J P, SILVA A P, CANO R P, et al. Potential for reuse of tungsten mining waste-rock in technical-artistic value added products[J]. Journal of Cleaner Production, 2012, 25: 34-41. |
21 | CHEN Xingyu, GUO Fuliang, CHEN Qiang, et al. Leaching tungsten and rare earth elements from scheelite through H2SO4-H3PO4 mixed acid decomposition[J]. Minerals Engineering, 2020, 156: 106526. |
22 | BEHERA S K, MISHRA D P, SINGH P, et al. Utilization of mill tailings, fly ash and slag as mine paste backfill material: review and future perspective[J]. Construction and Building Materials, 2021, 309: 125120. |
23 | 罗仙平, 刘北林, 唐敏康. 从钨冶炼渣中综合回收有价金属的试验研究[J]. 中国钨业, 2005, 20(3): 24-26. |
LUO Xianping, LIU Beilin, TANG Minkang. Experimental lnvestigation of complex recovery of valuable minerals components containing in the residue abandoned in wet-metallurgical process of wolframite ores[J]. China Tungsten Industry, 2005, 20(3): 24-26. | |
24 | 杨俊彦, 张建东, 闫国庆, 等. 一种从白钨冶炼渣回收锡石的方法: CN107858522A[P]. 2018-03-30. |
YANG Junyan, ZHANG Jiandong, YAN Guoqing, et al. Method for recovering cassiterite from scheelite smelting slag: CN107858522A[P]. 2018-03-30. | |
25 | 车小奎, 杨俊彦, 闫国庆, 等. 一种从白钨冶炼渣浮选回收钨锡的方法: CN108114818A[P]. 2018-06-05. |
CHE Xiaokui, YANG Junyan, YAN Guoqing, et al. Method for flotation and recycling of tungsten and tin from scheelite smelting slag: CN108114818A[P]. 2018-06-05. | |
26 | ZEILER Burghard, BARTL Andreas, SCHUBERT Wolf Dieter. Recycling of tungsten: current share, economic limitations, technologies and future potential[J]. International Journal of Refractory Metals and Hard Materials, 2021, 98: 105546. |
27 | 朱心蕊, 刘旭恒, 陈星宇, 等. 钨冶炼渣的综合利用及发展趋势[J]. 矿产保护与利用, 2019, 39(3): 119-124. |
ZHU Xinrui, LIU Xuheng, CHEN Xingyu, et al. Comprehensive utilization and development trend of tungsten smelting slag[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 119-124. | |
28 | 戴艳阳. 钨渣中有价金属综合回收新清洁工艺研究[D]. 长沙: 中南大学, 2013. |
DAI Yanyang. Study on the new cleaner process of comprehensive recovery of valuble metals from tungsten residues[D]. Changsha: Central South University, 2013. | |
29 | 杨俊彦, 齐申, 刘海, 等. 钨冶炼渣综合回收利用的研究进展[J]. 工程科学学报, 2018, 40(12): 1468-1475. |
YANG Junyan, QI Shen, LIU Hai, et al. Progress of research related to the comprehensive recovery and utilization of tungsten smelting slag[J]. Chinese Journal of Engineering, 2018, 40(12): 1468-1475. | |
30 | 王钦建. 黑钨渣的酸分解与萃取工艺优化研究[J]. 环境保护与循环经济, 2009, 29(11): 37-39. |
WANG Qinjian. Study on carbon decomposition and extraction process optimization of black tungsten residue[J]. Environmental Protection and Circular Economy, 2009, 29(11): 37-39. | |
31 | 肖超, 刘景槐, 吴海国. 低品位钨渣处理工艺试验研究[J]. 湖南有色金属, 2012, 28(4): 24-26, 71. |
XIAO Chao, LIU Jinghuai, WU Haiguo. Experimental study on the treatment process of low grade tungsten slag[J]. Hunan Nonferrous Metals, 2012, 28(4): 24-26, 71. | |
32 | 苏正夫, 刘宇晖. 钨渣中钨回收利用新工艺研究[J]. 稀有金属与硬质合金, 2014, 42(4): 11-13. |
SU Zhengfu, LIU Yuhui. Study on a new process of tungsten recovery from tungsten slag[J]. Rare Metals and Cemented Carbides, 2014, 42(4): 11-13. | |
33 | 杨少华, 王君, 谢宝如, 等. 低品位钨渣处理工艺[J]. 有色金属科学与工程, 2015, 6(6): 29-32. |
YANG Shaohua, WANG Jun, XIE Baoru, et al. Treatment process of low-grade tungsten slag[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 29-32. | |
34 | 杨利群. 苏打烧结法处理低品位钨矿及废钨渣的研究[J]. 中国钼业, 2008, 32(4): 25-27. |
YANG Liqun. Study of processing low-grade tungsten mineral and waste residue of tungsten by soda sintering[J]. China Molybdenum Industry, 2008, 32(4): 25-27. | |
35 | TALAN Deniz, HUANG Qingqing. A review of environmental aspect of rare earth element extraction processes and solution purification techniques[J]. Minerals Engineering, 2022, 179: 107430. |
36 | ZHANG Wenjie, FENG Dongxia, XIE Xian, et al. Solvent extraction and separation of light rare earths from chloride media using HDEHP-P350 system[J]. Journal of Rare Earths, 2022, 40(2): 328-337. |
37 | CHEN Ziying, LI Zhan, CHEN Jia, et al. Recent advances in selective separation technologies of rare earth elements: a review[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107104. |
38 | 龚丹丹, 李祖怡, 张勇, 等. 钨渣回收利用技术研究现状[J]. 稀有金属与硬质合金, 2021, 49(6): 1-8, 14. |
GONG Dandan, LI Zuyi, ZHANG Yong, et al. Research status of tungsten slag recycling technology[J]. Rare Metals and Cemented Carbides, 2021, 49(6): 1-8, 14. | |
39 | YUKSEKDAG Ayse, Borte KOSE-MUTLU, SIDDIQUI Azmat Fatima, et al. A holistic approach for the recovery of rare earth elements and scandium from secondary sources under a circular economy framework- A review[J]. Chemosphere, 2022, 293: 133620. |
40 | 丁冲, 王晓辉, 何超然, 等. 黑钨渣硫酸浸钪及浸出过程中草黄铁矾法抑制铁浸出[J]. 过程工程学报, 2014, 14(6): 907-914. |
DING Chong, WANG Xiaohui, HE Chaoran, et al. Sulfuric acid leaching of scandium from black tungsten ore slag and depression leaching of iron by carphosiderite method[J]. The Chinese Journal of Process Engineering, 2014, 14(6): 907-914. | |
41 | 梁焕龙, 罗东明, 刘晨, 等. 从钨渣中浸出氧化钪的试验研究[J]. 湿法冶金, 2015, 34(2): 114-116. |
LIANG Huanlong, LUO Dongming, LIU Chen, et al. Leaching of scandium oxide from tungsten slag[J]. Hydrometallurgy of China, 2015, 34(2): 114-116. | |
42 | ASRAMI Mahdieh Razi, TRAN Nam Nghiep, NIGAM Krishna Deo Prasad, et al. Solvent extraction of metals: role of ionic liquids and microfluidics[J]. Separation and Purification Technology, 2021, 262: 118289. |
43 | CHEN Qianlin, MA Xin, ZHANG Xin, et al. Extraction of rare earth ions from phosphate leach solution using emulsion liquid membrane in concentrated nitric acid medium[J]. Journal of Rare Earths, 2018, 36(11): 1190-1197. |
44 | NIE Huaping, WANG Yabing, WANG Yanliang, et al. Recovery of scandium from leaching solutions of tungsten residue using solvent extraction with Cyanex 572[J]. Hydrometallurgy, 2018, 175: 117-123. |
45 | ZHONG Xueming, FU Maosheng, QIN Yuancheng. Study on the decomposition of the tungsten residue using concentrated hydrochloric acid by reflux method[J]. Advanced Materials Research, 2014, 1033/1034: 395-398. |
46 | ZHANG Guifang, YAN Peng, YANG Qingrong. Experimental study on extraction of scandium from hydrochloride acid leaching liquid in TBP[J]. Advanced Materials Research, 2013, 807/808/809: 2440-2443. |
47 | 刘彩云, 符剑刚. 钨渣中钪的萃取回收实验研究[J]. 稀有金属与硬质合金, 2015, 43(5): 4-8, 11. |
LIU Caiyun, FU Jiangang. Experimental study on extraction and recovery of scandium from tungsten residue[J]. Rare Metals and Cemented Carbides, 2015, 43(5): 4-8, 11. | |
48 | 杨革. 从钨渣中提取高纯氧化钪[J]. 湖南有色金属, 2001, 17(1): 18-20. |
YANG Ge. Extraction of high-purity scandium oxide from tungsten slag[J]. Hunan Nonferrous Metals, 2001, 17(1): 18-20. | |
49 | ZOU Dan, DENG Yuefeng, CHEN Ji, et al. A review on solvent extraction of scandium[J]. Journal of Rare Earths, 2022, 40(10): 10. |
50 | YATSENKO S P, PYAGAI I N. Red mud pulp carbonization with scandium extraction during alumina production[J]. Theoretical Foundations of Chemical Engineering, 2010, 44(4): 563-568. |
51 | 张月英, 余守慧, 常增有, 等. 液膜技术提取钪的研究[J]. 上海金属(有色分册), 1990, 11(2): 9. |
ZHANG Yueying, YU Shouhui, CHANG Zengyou, et al. Study on extraction of scandium by liquid membrane process[J]. Shanghai Metals (Nonferrous Fascicule), 1990, 11(2): 9. | |
52 | WANG Weiwei, PRANOLO Yoko, CHENG Chu yong. Metallurgical processes for scandium recovery from various resources: a review[J]. Hydrometallurgy, 2011, 108(1/2): 100-108. |
53 | ZHOU Jie, NING Shunyan, MENG Jiejie, et al. Purification of scandium from concentrate generated from titanium pigments production waste[J]. Journal of Rare Earths, 2021, 39(2): 194-200. |
54 | 刘健聪, 熊道陵, 张建平, 等. 钨冶炼渣中铁、锰浸出工艺研究[J]. 有色金属科学与工程, 2018, 9(4): 14-20. |
LIU Jiancong, XIONG Daoling, ZHANG Jianping, et al. The leaching process of iron and manganese in tungsten smelting slag[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 14-20. | |
55 | 戴艳阳, 钟晖, 钟海云. 钨渣回收制备四氧化三锰新工艺[J]. 中国有色金属学报, 2012, 22(4): 1242-1247. |
DAI Yanyang, ZHONG Hui, ZHONG Haiyun. Novel process for preparation of mangano-manganic oxide from tungsten residue[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(4): 1242-1247. | |
56 | 张建平. 钨冶炼渣制备电池级硫酸锰的工艺研究[D]. 赣州: 江西理工大学, 2018. |
ZHANG Jianping. Resrearch on the extraction, preparation and technology of battery-grade manganese sulfate from tungsten smelting slag[D]. Ganzhou: Jiangxi University of Science and Technology, 2018. | |
57 | 谭晓恒. 黑钨渣磁化焙烧回收铁锰的技术研究[D]. 赣州: 江西理工大学, 2020. |
TAN Xiaoheng. Study on recovery of iron and manganese from black tungsten residue by magnetization roasting[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. | |
58 | LI Fangqin, WANG Peng, CHEN Wei, et al. Exploring recycling potential of rare, scarce, and scattered metals: present status and future directions[J]. Sustainable Production and Consumption, 2022, 30: 988-1000. |
59 | MIRJI K V, SHEELA, SAIBABA N. Technological challenges in extractive metallurgy and refining of Nb, Ta and preparation of their compounds & alloys[J]. Materials Today: Proceedings, 2016, 3(9): 3151-3161. |
60 | 杨秀丽, 王晓辉, 向仕彪, 等. 盐酸法富集钨渣中的钽和铌[J]. 中国有色金属学报, 2013, 23(3): 873-881. |
YANG Xiuli, WANG Xiaohui, XIANG Shibiao, et al. Enrichment of tantalum and niobium from tungsten residue by hydrochloric acid method[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 873-881. | |
61 | 汪加军, 王晓辉, 黄波, 等. 废钨渣中钽、铌、钨高效共提新工艺研究[J]. 有色金属科学与工程, 2013, 4(5): 91-96. |
WANG Jiajun, WANG Xiaohui, HUANG Bo, et al. New process of high efficient co-extraction of tantalum, niobium and tungsten from tungsten residue[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 91-96. | |
62 | 向仕彪, 黄波, 王晓辉, 等. 从废钨渣中酸法回收钽铌的研究[J]. 有色冶金设计与研究, 2012, 33(2): 5-7, 11. |
XIANG Shibiao, HUANG Bo, WANG Xiaohui, et al. Research on recovery of tantalum and niobium from tungsten residue by acid method[J]. Nonferrous Metals Engineering & Research, 2012, 33(2): 5-7, 11. | |
63 | 戴艳阳, 钟海云, 李荐, 等. 钨渣中有价金属综合回收工艺[J]. 中南工业大学学报(自然科学版), 2003, 34(1): 36-39. |
DAI Yanyang, ZHONG Haiyun, LI Jian, et al. Valuable metals' recovery from tungsten residue[J]. Journal of Central South University of Technology (Natural Science), 2003, 34(1): 36-39. | |
64 | DEBLONDE Gauthier J P, WEIGEL Valérie, BELLIER Quentin, et al. Selective recovery of niobium and tantalum from low-grade concentrates using a simple and fluoride-free process[J]. Separation and Purification Technology, 2016, 162: 180-187. |
65 | NETE M, PURCELL W, NEL J T. Non-fluoride dissolution of tantalum and niobium oxides and their separation using ion exchange[J]. Hydrometallurgy, 2017, 173: 192-198. |
66 | KABANGU M J, CROUSE P L. Separation of niobium and tantalum from Mozambican tantalite by ammonium bifluoride digestion and octanol solvent extraction[J]. Hydrometallurgy, 2012, 129/130: 151-155. |
67 | 靖青秀, 王云燕, 柴立元, 等. 硅藻土-钨渣基多孔陶粒对离子型稀土矿区土壤氨氮淋滤液的吸附[J]. 中国有色金属学报, 2018, 28(5): 1033-1042. |
JING Qingxiu, WANG Yunyan, CHAI Liyuan, et al. Adsorption behavior of ammonium in leachate from ionic rare earth mining area soil by diatomite and tungsten residue based porous ceramsite[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(5): 1033-1042. | |
68 | 包欢, 包惠明, 寿凯, 等. 掺钨矿渣砂浆的半柔性路面水稳性能研究[J]. 武汉理工大学学报, 2021, 43(9): 6-12. |
BAO Huan, BAO Huiming, SHOU Kai, et al. Study on water stability of semi flexible pavement mixed with tungsten slag mortar[J]. Journal of Wuhan University of Technology, 2021, 43(9): 6-12. | |
69 | 郭欢. 硅藻土—钨渣基多孔陶粒的制备与性能研究[D]. 赣州: 江西理工大学, 2017. |
GUO Huan. Study on preparation and properties of diatomite and tungsten slag based polypore ceramics[D]. Ganzhou: Jiangxi University of Science and Technology, 2017. | |
70 | 胡晖, 蔡岳洪. 钨渣在耐磨球生产中的应用研究[J]. 现代铸铁, 2003, 23(6): 1-4. |
HU Hui, CAI Yuehong. A study on application of tungstenic slag in production of wear resistant grinding balls[J]. Modern Cast Iron, 2003, 23(6): 1-4. | |
71 | 王承遇, 郝彦武, 陶瑛. 晶核剂含量对钨渣微晶玻璃性能的影响[J]. 玻璃, 1994, 21(5): 1-5, 20. |
WANG Chengyu, HAO Yanwu, TAO Ying. The influence of amourit of nucleating agent on properties of wolfram tailing glass-cerami[J]. Glass, 1994, 21(5): 1-5, 20. | |
72 | 夏文堂. 钨的二次资源及其开发前景[J]. 再生资源研究, 2006(1): 11-17. |
XIA Wentang. Secondary resources of tungsten and its development prospect[J]. Recyclable Resources and Circular Economy, 2006(1): 11-17. | |
73 | 靖青秀, 郭欢, 王魏. 硅藻土掺杂钨渣制备多孔陶粒及其性能研究[J]. 中国陶瓷, 2017, 53(4): 52-56. |
JING Qingxiu, GUO Huan, WANG Wei. Preparation and performance of porous ceramic from diatomite with waste tungsten residue[J]. China Ceramics, 2017, 53(4): 52-56. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[3] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[4] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[5] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[6] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[9] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[10] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[11] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[12] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[13] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[14] | 李卫华, 吴寅凯, 孙英杰, 尹俊权, 辛明学, 赵友杰. 垃圾焚烧飞灰重金属毒性浸出评价方法研究进展[J]. 化工进展, 2023, 42(5): 2666-2677. |
[15] | 胡亚飞, 冯自平, 田佳垚, 黄冲, 宋文吉. 燃料驱动无电热泵系统的节能模拟与运行经济性分析[J]. 化工进展, 2023, 42(3): 1217-1227. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |