化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6615-6626.DOI: 10.16085/j.issn.1000-6613.2022-0247
翟重渊1(), 赵丹荻1, 何亚鹏1,2(), 黄惠1,2,3, 陈步明1,2,3, 郭忠诚1,2,3
收稿日期:
2022-02-16
修回日期:
2022-04-11
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
何亚鹏
作者简介:
翟重源(2001—),男,硕士研究生,研究方向为环境电化学。E-mail:2536316492@qq.com。
基金资助:
ZHAI Chongyuan1(), ZHAO Dandi1, HE Yapeng1,2(), HUANG Hui1,2,3, CHEN Buming1,2,3, GUO Zhongcheng1,2,3
Received:
2022-02-16
Revised:
2022-04-11
Online:
2022-12-20
Published:
2022-12-29
Contact:
HE Yapeng
摘要:
抗生素类药物是目前水环境中出现的一类新兴有机污染物,具有难自然降解、环境刺激性、生物毒性及耐药性等特点,高效去除抗生素类污染物是近年来环境工作者重点探讨的内容。掺硼金刚石(boron-doped diamond,BDD)电极由于自身优异的物理和化学性质,被认作为目前电催化氧化水中有机污染物最为理想高效的阳极材料,但关于BDD阳极在新兴抗生素类污染物的研究情况尚未进行及时的总结。本文首先论述了BDD阳极在电催化氧化有机污染物的降解过程和基于强氧化性物种的电催化氧化机理,进而分析了BDD阳极在电催化降解水中新兴抗生素类污染物的研究进展,探讨了影响抗生素类污染物电催化降解过程的关键影响因素,总结了BDD阳极材料的开发情况,同时,总结了以BDD阳极电催化氧化为基础发展而来的其他水处理联合方法,最后,进一步展望了BDD阳极在未来电催化降解抗生素类污染物存在的问题及未来的重点发展方向。
中图分类号:
翟重渊, 赵丹荻, 何亚鹏, 黄惠, 陈步明, 郭忠诚. 掺硼金刚石阳极电催化降解新兴抗生素类污染物研究进展[J]. 化工进展, 2022, 41(12): 6615-6626.
ZHAI Chongyuan, ZHAO Dandi, HE Yapeng, HUANG Hui, CHEN Buming, GUO Zhongcheng. Recent development on boron-doped diamond anodes in electrochemical degradation of emerging antibiotic pollutants[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6615-6626.
分类 | 主体结构 | 代表性物质 |
---|---|---|
氨基糖苷类 | 氨基糖与氨基环醇连接 | 链霉素、庆大霉素、链霉素 |
β-内酰胺类 | β-内酰胺环 | 青霉素、头孢菌素、硫霉素类 |
糖肽类 | 高度修饰的七肽骨架 | 万古霉素、去甲万古霉素、 替考拉宁 |
四环素类 | 并四苯 | 四环素、金霉素、土霉素 |
大环内酯类 | 14~16碳内酯环 | 红霉素、阿奇霉素、罗红霉素 |
磺胺类 | 磺胺 | 磺胺甲𫫇唑、磺胺嘧啶 |
喹诺酮类 | 4-喹诺酮 | 诺氟沙星、环丙沙星、氧氟沙星 |
硝基咪唑类 | 硝基咪唑环 | 甲硝唑、罗硝唑、奥硝唑 |
表1 抗生素的分类与代表性物质[4]
分类 | 主体结构 | 代表性物质 |
---|---|---|
氨基糖苷类 | 氨基糖与氨基环醇连接 | 链霉素、庆大霉素、链霉素 |
β-内酰胺类 | β-内酰胺环 | 青霉素、头孢菌素、硫霉素类 |
糖肽类 | 高度修饰的七肽骨架 | 万古霉素、去甲万古霉素、 替考拉宁 |
四环素类 | 并四苯 | 四环素、金霉素、土霉素 |
大环内酯类 | 14~16碳内酯环 | 红霉素、阿奇霉素、罗红霉素 |
磺胺类 | 磺胺 | 磺胺甲𫫇唑、磺胺嘧啶 |
喹诺酮类 | 4-喹诺酮 | 诺氟沙星、环丙沙星、氧氟沙星 |
硝基咪唑类 | 硝基咪唑环 | 甲硝唑、罗硝唑、奥硝唑 |
1 | JEPSON Paul D, LAW Robin J. Persistent pollutants, persistent threats[J]. Science, 2016, 352(6292): 1388-1389. |
2 | 程佳鑫, 李荣兴, 杨海涛, 等. 三维电催化氧化处理难生化降解有机废水研究进展[J]. 环境化学, 2022, 41(1): 288-304. |
CHENG Jiaxin, LI Rongxing, YANG Haitao, et al. Review of three-dimensional electrodes for bio-refractory organic wastewater treatment[J]. Environmental Chemistry, 2022, 41(1): 288-304. | |
3 | TRAPIDO M, EPOLD I, BOLOBAJEV J, et al. Emerging micropollutants in water/wastewater: growing demand on removal technologies[J]. Environmental Science and Pollution Research International, 2014, 21(21): 12217-12222. |
4 | 卢鹏, 胡雪利, 张桂枝, 等. 光催化技术在降解微污染物抗生素中的应用研究[J]. 应用化工, 2020, 49(9): 2358-2363. |
LU Peng, HU Xueli, ZHANG Guizhi, et al. Application of photocatalytic technology in degradation of micro-pollutant antibiotics[J]. Applied Chemical Industry, 2020, 49(9): 2358-2363. | |
5 | YANG Shengnan, LIU Yanbiao, SHEN Chensi, et al. Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter: mechanism, impacting factors and pathways[J]. Chemosphere, 2020, 244: 125525. |
6 | LI Na, ZHOU Long, JIN Xiaoying, et al. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework[J]. Journal of Hazardous Materials, 2019, 366: 563-572. |
7 | 石秋俊, 刘安迪, 唐柏彬, 等. Ni掺杂Sb-SnO2瓷环粒子电极电催化氧化磺胺嘧啶[J]. 环境科学, 2020, 41(4): 1725-1733. |
SHI Qiujun, LIU Andi, TANG Bobin, et al. Electrocatalytic oxidation of sulfadiazine with Ni-doped Sb-SnO2 ceramic ring particle electrode[J]. Environmental Science, 2020, 41(4): 1725-1733. | |
8 | 吴文瞳, 张玲玲, 李子富, 等. 高级氧化技术降解抗生素及去除耐药性的研究进展[J]. 化工进展, 2021, 40(8): 4551-4561. |
WU Wentong, ZHANG Lingling, LI Zifu, et al. Research progress of advanced oxidation technology in degradation of antibiotics and removal of antibiotic resistance[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4551-4561. | |
9 | 姜记威, 张诗轩, 曾文炉, 等. 生物炭基材料在抗生素废水处理中的研究进展[J]. 化工进展, 2021, 40(S2): 389-401. |
JIANG Jiwei, ZHANG Shixuan, ZENG Wenlu, et al. Research progress on biochar-based materials for the treatment of antibiotic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 389-401. | |
10 | 张钤, 崔敏华, 陈蕾, 等. 生物电化学技术降解疏水性新兴污染物的研究进展[J]. 化工进展, 2021, 40(12): 6846-6858. |
ZHANG Qian, CUI Minhua, CHEN Lei, et al. A critical review of bioelectrochemical system in the degradation of hydrophobic emerging contaminants[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6846-6858. | |
11 | 孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756. |
SUN Yi, YU Liliang, HUANG Haobin, et al. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5): 1743-1756. | |
12 | CHAPLIN Brian P. The prospect of electrochemical technologies advancing worldwide water treatment[J]. Accounts of Chemical Research, 2019, 52(3): 596-604. |
13 | 王超, 姚淑美, 彭叶平, 等. 高级氧化法处理抗生素废水研究进展[J]. 化工环保, 2018, 38(2): 135-140. |
WANG Chao, YAO Shumei, PENG Yeping, et al. Research progresses on treatment of antibiotics wastewater by advanced oxidation process[J]. Environmental Protection of Chemical Industry, 2018, 38(2): 135-140. | |
14 | MOREIRA F C, BOAVENTURA R A, BRILLAS E, et al. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261. |
15 | 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132. |
ZHAO Yuanyuan, WANG Dejun, ZHAO Chaocheng. Progress in electrode materials for refractory wastewater treatment by electro-catalytic oxidation[J]. Materials Reports, 2019, 33(7): 1125-1132. | |
16 | GU Hongbo, XIE Wenhao, DU Ai, et al. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater[J]. Catalysis Reviews, 2021: 1-51. |
17 | HE Yapeng, ZHAO Dandi, LIN Haibo, et al. Design of diamond anodes in electrochemical degradation of organic pollutants[J]. Current Opinion in Electrochemistry, 2022, 32: 100878. |
18 | Carolina ESPINOZA L, Christian CANDIA-ONFRAY, VIDAL Jorge, et al. Influence of the chemical nature of boron-doped diamond anodes on wastewater treatments[J]. Current Opinion in Solid State and Materials Science, 2021, 25(6): 100963. |
19 | NIDHEESH P V, DIVYAPRIYA G, OTURAN Nihal, et al. Environmental applications of boron-doped diamond electrodes: 1. applications in water and wastewater treatment[J]. ChemElectroChem, 2019, 6(8): 2124-2142. |
20 | YANG Nianjun, YU Siyu, MACPHERSON Julie V, et al. Conductive diamond: synthesis, properties, and electrochemical applications[J]. Chemical Society Reviews, 2019, 48(1): 157-204. |
21 | PANIZZA Marco, CERISOLA Giacomo. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569. |
22 | HE Yapeng, LIN Haibo, GUO Zhongcheng, et al. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants[J]. Separation and Purification Technology, 2019, 212: 802-821. |
23 | SILVA Salatiel W, NAVARRO Emma M O, RODRIGUES Marco A S, et al. Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin[J]. Journal of Electroanalytical Chemistry, 2019, 832: 112-120. |
24 | HAIDAR Mariam, DIRANY Ahmad, Ignasi SIRÉS, et al. Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode[J]. Chemosphere, 2013, 91(9): 1304-1309. |
25 | DIVYAPRIYA G, NIDHEESH P V. Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications[J]. Current Opinion in Solid State and Materials Science, 2021, 25(3): 100921. |
26 | DE FREITAS ARAÚJO Karla Caroline, SILVA Djalma Ribeiro DA, DOS SANTOS Elisama Vieira, et al. Investigation of persulfate production on BDD anode by understanding the impact of water concentration[J]. Journal of Electroanalytical Chemistry, 2020, 860: 113927. |
27 | SHIN Yong Uk, YOO Ha Young, Yong Yoon AHN, et al. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: multiple pathways for sulfate radical generation[J]. Applied Catalysis B: Environmental, 2019, 254: 156-165. |
28 | YAO Jie, ZHANG Yan, DONG Zekun. Enhanced degradation of contaminants of emerging concern by electrochemically activated peroxymonosulfate: performance, mechanism, and influencing factors[J]. Chemical Engineering Journal, 2021, 415: 128938. |
29 | MATZEK Laura W, TIPTON Matthew J, FARMER Abigail T, et al. Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement[J]. Environmental Science & Technology, 2018, 52(10): 5875-5883. |
30 | LAN Yandi, COETSIER Clémence, CAUSSERAND Christel, et al. On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode[J]. Electrochimica Acta, 2017, 231: 309-318. |
31 | SANTOS Géssica O S, EGUILUZ Katlin I B, SALAZAR-BANDA Giancarlo R, et al. Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes[J]. Journal of Electroanalytical Chemistry, 2020, 857: 113756. |
32 | CARRILLO-ABAD J, MORA-GÓMEZ J, GARCÍA-GABALDÓN M, et al. Comparison between an electrochemical reactor with and without membrane for the nor oxidation using novel ceramic electrodes[J]. Journal of Environmental Management, 2020, 268: 110710. |
33 | AMMAR Hafedh Belhadj, BRAHIM Mabrouk Ben, Ridha ABDELHÉDI, et al. Green electrochemical process for metronidazole degradation at BDD anode in aqueous solutions via direct and indirect oxidation[J]. Separation and Purification Technology, 2016, 157: 9-16. |
34 | 孙智宇, 张峰, 崔建国. Cl-、NH4 +、CO3 2-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响[J]. 环境化学, 2020, 39(10): 2878-2886. |
SUN Zhiyu, ZHANG Feng, CUI Jianguo. The effect of Cl-, NH4 +, CO3 2- ions and natural organic matter on persulfate preparation by boron-doped diamond electrode electrolysis[J]. Environmental Chemistry, 2020, 39(10): 2878-2886. | |
35 | RADJENOVIC Jelena, PETROVIC Mira. Removal of sulfamethoxazole by electrochemically activated sulfate: implications of chloride addition[J]. Journal of Hazardous Materials, 2017, 333: 242-249. |
36 | COLEDAM Douglas A C, PUPO Marília M S, SILVA Bianca F, et al. Electrochemical mineralization of cephalexin using a conductive diamond anode: a mechanistic and toxicity investigation[J]. Chemosphere, 2017, 168: 638-647. |
37 | CARNEIRO Jussara F, AQUINO José M, SILVA Adilson J, et al. The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: kinetics and follow-up of oxidation intermediates and antimicrobial activity[J]. Chemosphere, 2018, 206: 674-681. |
38 | CARNEIRO Jussara F, AQUINO José M, SILVA Bianca F, et al. Comparing the electrochemical degradation of the fluoroquinolone antibiotics norfloxacin and ciprofloxacin using distinct electrolytes and a BDD anode: evolution of main oxidation byproducts and toxicity[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104433. |
39 | YANG Wanlin, TAN Jilin, CHEN Yinhao, et al. Relationship between substrate type and BDD electrode structure, performance and antibiotic tetracycline mineralization[J]. Journal of Alloys and Compounds, 2022, 890: 161760. |
40 | GONZAGA Isabelle M D, MORATALLA Angela, EGUILUZ Katlin I B, et al. Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes[J]. Science of the Total Environment, 2020, 736: 139536. |
41 | WACHTER N, AQUINO J M, DENADAI M, et al. Electrochemical degradation of the antibiotic ciprofloxacin in a flow reactor using distinct BDD anodes: reaction kinetics, identification and toxicity of the degradation products[J]. Chemosphere, 2019, 234: 461-470. |
42 | SANTOS A J, FORTUNATO G V, KRONKA M S, et al. Electrochemical oxidation of ciprofloxacin in different aqueous matrices using synthesized boron-doped micro and nano-diamond anodes[J]. Environmental Research, 2022, 204(Pt A): 112027. |
43 | SILVA S W, NAVARRO E M, RODRIGUES M A, et al. The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin[J]. Chemosphere, 2018, 210: 615-623. |
44 | HE Yapeng, LIN Haibo, WANG Xue, et al. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation[J]. Chemical Communications, 2016, 52(51): 8026-8029. |
45 | Jacek RYL, CIESLIK Mateusz, ZIELINSKI Artur, et al. High-temperature oxidation of heavy boron-doped diamond electrodes: microstructural and electrochemical performance modification[J]. Materials, 2020, 13(4): 964. |
46 | LI Xiaojie, LI Hongji, LI Mingji, et al. Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants[J]. Carbon, 2018, 129: 543-551. |
47 | JIAN Ze, HEIDE Maximilian, YANG Nianjun, et al. Diamond fibers for efficient electrocatalytic degradation of environmental pollutants[J]. Carbon, 2021, 175: 36-42. |
48 | PARK S W, YUN E T, SHIN H J, et al. Three-dimensional construction of electrode materials using TiC nanoarray substrates for highly efficient electrogeneration of sulfate radicals and molecular hydrogen in a single electrolysis cell[J]. Journal of Materials Chemistry A, 2021, 9(19): 11705-11717. |
49 | MIAO Dongtian, LIU Ting, YU Yanglei, et al. Study on degradation performance and stability of high temperature etching boron-doped diamond electrode[J]. Applied Surface Science, 2020, 514: 146091. |
50 | MIAO Dongtian, LI Zhishen, CHEN Yinhao, et al. Preparation of macro-porous 3D boron-doped diamond electrode with surface micro structure regulation to enhance electrochemical degradation performance[J]. Chemical Engineering Journal, 2022, 429: 132366. |
51 | KÖRBAHTI Bahadır K, Selin TAŞYÜREK. Electrochemical oxidation of sulfadiazine antibiotic using boron-doped diamond anode: application of response surface methodology for process optimization[J]. Desalination and Water Treatment, 2016, 57(6): 2522-2533. |
52 | COLEDAM D A, AQUINO J M, SILVA B F, et al. Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products[J]. Electrochimica Acta, 2016, 213: 856-864. |
53 | BRINZILA C I, MONTEIRO N, PACHECO M J, et al. Degradation of tetracycline at a boron-doped diamond anode: influence of initial pH, applied current intensity and electrolyte[J]. Environmental Science and Pollution Research, 2014, 21(14): 8457-8465. |
54 | KÖRBAHTI B K, ALACA S. Electrochemical degradation of tetracycline antibiotic with boron-doped diamond electrodes and effect of parameters on removal of reaction intermediates[J]. Desalination and Water Treatment, 2021, 236: 285-299. |
55 | HE Yapeng, DONG Yujie, HUANG Weimin, et al. Investigation of boron-doped diamond on porous Ti for electrochemical oxidation of acetaminophen pharmaceutical drug[J]. Journal of Electroanalytical Chemistry, 2015, 759: 167-173. |
56 | 曲有鹏, 吕江维, 冯玉杰, 等. 硼掺杂金刚石薄膜电极降解青霉素G钠废水机制[J]. 哈尔滨工业大学学报, 2020, 52(6): 119-125. |
QU Youpeng, Jiangwei LYU, FENG Yujie, et al. Degradation mechanism of penicillin G sodium wastewater at boron-doped diamond electrodes[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 119-125. | |
57 | KÖRBAHTI B K, TAŞYÜREK S. Electrochemical oxidation of ampicillin antibiotic at boron-doped diamond electrodes and process optimization using response surface methodology[J]. Environmental Science and Pollution Research International, 2015, 22(5): 3265-3278. |
58 | DOMÍNGUEZ J R, GONZÁLEZ T, PALO P, et al. Electrochemical advanced oxidation of carbamazepine on boron-doped diamond anodes. influence of operating variables[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8353-8359. |
59 | GONZÁLEZ T, DOMÍNGUEZ J R, PALO P, et al. Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution[J]. Desalination, 2011, 280(1/2/3): 197-202. |
60 | PERIYASAMY S, LIN X, GANIYU S O, et al. Insight into BDD electrochemical oxidation of florfenicol in water: kinetics, reaction mechanism, and toxicity[J]. Chemosphere, 2022, 288(Pt 1): 132433. |
61 | LI Guangchao, ZHOU Shiqing, SHI Zhou, et al. Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: Mechanisms, kinetics and pathways[J]. Environmental Science and Pollution Research International, 2019, 26(17): 17740-17750. |
62 | MONTAÑÉS M T, GARCÍA-GABALDÓN M, Ll ROCA-PÉREZ, et al. Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109923. |
63 | YANG Kui, FENG Xingwei, LIN Hui, et al. Insight into the rapid elimination of low-concentration antibiotics from natural waters using tandem multilevel reactive electrochemical membranes: role of direct electron transfer and hydroxyl radical oxidation[J]. Journal of Hazardous Materials, 2022, 423: 127239. |
64 | MARTÍNEZ-HUITLE C A, RODRIGO M A, SIRÉS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. |
65 | RYAN D R, MAHER E K, HEFFRON J, et al. Electrocoagulation-electrooxidation for mitigating trace organic compounds in model drinking water sources[J]. Chemosphere, 2021, 273: 129377. |
66 | CUERDA-CORREA E M, ALEXANDRE-FRANCO M F, FERNÁNDEZ-GONZÁLEZ C. Advanced oxidation processes for the removal of antibiotics from water. an overview[J]. Water, 2019, 12(1): 102. |
67 | 曲有鹏, 吕江维, 董跃, 等. 电催化-生物电化学耦合系统处理青霉素废水的机制[J]. 环境科学, 2021, 42(5): 2378-2384. |
QU Youpeng, Jiangwei LYU, DONG Yue, et al. Mechanisms of penicillin wastewater treatment by coupled electrocatalytic and bioelectrochemical systems[J]. Environmental Science, 2021, 42(5): 2378-2384. | |
68 | SONG Yang, XIAO Mengyao, LI Ziyang, et al. Degradation of antibiotics, organic matters and ammonia during secondary wastewater treatment using boron-doped diamond electro-oxidation combined with ceramic ultrafiltration[J]. Chemosphere, 2022, 286(Pt 2): 131680. |
69 | DU Xing, MO Zhuoyu, LI Ziyang, et al. Boron-doped diamond (BDD) electro-oxidation coupled with nanofiltration for secondary wastewater treatment: antibiotics degradation and biofouling[J]. Environment International, 2021, 146: 106291. |
70 | CUPRYS Agnieszka, THOMSON Paisley, OUARDA Yassine, et al. Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation[J]. Journal of Hazardous Materials, 2020, 389: 121890. |
71 | PATIDAR R, SRIVASTAVA V C. Mechanistic insight into ultrasound-induced enhancement of electrochemical oxidation of ofloxacin: multi-response optimization and cost analysis[J]. Chemosphere, 2020, 257: 127121. |
72 | SILVA Fernando, SAEZ Cristina, LANZA Marcos, et al. The role of mediated oxidation on the electro-irradiated treatment of amoxicillin and ampicillin polluted wastewater[J]. Catalysts, 2018, 9(1): 9. |
73 | ENNOURI Rawdha, LAVECCHIA Roberto, ZUORRO Antonio, et al. Degradation of chloramphenicol in water by oxidation on a boron-doped diamond electrode under UV irradiation[J]. Journal of Water Process Engineering, 2021, 41: 101995. |
74 | LEON-CONDES C, BARRERA-DÍAZ C, BARRIOS J, et al. A coupled ozonation–electrooxidation treatment for removal of bisphenol A, nonylphenol and triclosan from wastewater sludge[J]. International Journal of Environmental Science and Technology, 2017, 14(4): 707-716. |
75 | LIU Xiaocheng, ZHOU Yaoyu, ZHANG Jiachao, et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps[J]. Chemical Engineering Journal, 2018, 347: 379-397. |
76 | OTURAN M A. Outstanding performances of the BDD film anode in electro-Fenton process: applications and comparative performance[J]. Current Opinion in Solid State and Materials Science, 2021, 25(3): 100925. |
77 | VIDAL Jorge, Cesar HUILIÑIR, SANTANDER Rocío, et al. Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water[J]. Environmental Science and Pollution Research International, 2019, 26(5): 4404-4414. |
78 | MURILLO-SIERRA J C, SIRÉS I, BRILLAS E, et al. Advanced oxidation of real sulfamethoxazole + trimethoprim formulations using different anodes and electrolytes[J]. Chemosphere, 2018, 192: 225-233. |
79 | OTURAN Nihal, BO Jiang, TRELLU Clément, et al. Comparative performance of ten electrodes in electro-Fenton process for removal of organic pollutants from water[J]. ChemElectroChem, 2021, 8(17): 3294-3303. |
80 | GANZENKO Oleksandra, TRELLU Clément, OTURAN Nihal, et al. Electro-Fenton treatment of a complex pharmaceutical mixture: mineralization efficiency and biodegradability enhancement[J]. Chemosphere, 2020, 253: 126659. |
81 | ANTONIN V S, AQUINO J M, SILVA B F, et al. Comparative study on the degradation of cephalexin by four electrochemical advanced oxidation processes: evolution of oxidation intermediates and antimicrobial activity[J]. Chemical Engineering Journal, 2019, 372: 1104-1112. |
82 | MOREIRA F C, SOLER J, ALPENDURADA M F, et al. Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes[J]. Water Research, 2016, 105: 251-263. |
[1] | 付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
[2] | 伊学农, 李京梅, 高玉琼. 紫外-高铁酸盐体系氧化降解水中的萘普生[J]. 化工进展, 2022, 41(8): 4562-4570. |
[3] | 吕莹, 胡学武, 陈素素, 刘兴宇, 陈勃伟, 张明江. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262. |
[4] | 周永泉, 张艾, 刘亚男, 王铮. 等离子体射流耦合活性碳纤维去除水中糖皮质激素[J]. 化工进展, 2022, 41(4): 2209-2215. |
[5] | 王吉坤, 李阳, 陈贵锋, 刘敏, 寇丽红, 王琦, 何毅聪. 臭氧催化氧化降解煤化工高盐废水有机物的机理[J]. 化工进展, 2022, 41(1): 493-502. |
[6] | 罗艳红, 岳秀萍, 姜悦如, 赵博玮, 高艳娟, 段燕青. 高级氧化技术降解吲哚的研究进展[J]. 化工进展, 2021, 40(2): 1025-1034. |
[7] | 陈思, 胡腾飞, 于永波, 王冰鑫, 洪俊明, 张倩. 硫掺杂石墨烯电催化降解有机染料甲基橙[J]. 化工进展, 2021, 40(1): 550-558. |
[8] | 杨硕, 余薇薇, 杨伦, 杜邦昊, 谢明原, 赵晨菊, 万巧玲, 潘伟亮. 纳米零价铁降解水中17β-雌二醇的作用机制[J]. 化工进展, 2020, 39(9): 3826-3834. |
[9] | 赵媛媛,刘文静,董培,张亮,杨政伟,赵朝成. 聚苯胺中间层改性Ti/PbO2电极的制备及其降解性能[J]. 化工进展, 2019, 38(12): 5478-5486. |
[10] | 王冰鑫,于永波,黄湾,洪俊明,张倩. 硫掺杂石墨烯电催化降解偶氮染料RBK5[J]. 化工进展, 2019, 38(12): 5471-5477. |
[11] | 崔喜, 刘冰灵, 赫崇衡, 田恒水. 脂肪族聚醚型聚氨酯弹性体热降解机理及热稳定性[J]. 化工进展, 2016, 35(11): 3585-3589. |
[12] | 李明, 潘珍, 梁雪梅, 赵艳娇, 邱野, 孟勇, 尹笃林. 氨氮与2-氨基吡啶在三维电催化氧化降解中的竞争[J]. 化工进展, 2015, 34(1): 273-277. |
[13] | 李明1,梁雪梅1,潘珍1,殷杰1,孟勇1,2,尹笃林2. 多孔陶瓷粒子电极电催化氧化降解2-氨基吡啶[J]. 化工进展, 2014, 33(01): 219-223. |
[14] | 朱 虹,芶 立. 掺硼金刚石薄膜电极的氨基化改性及电化学行为[J]. 化工进展, 2011, 30(12): 2688-. |
[15] | 刘 潘1,3,郭晓宁2,南 昊2,刘 红2,李圣楠1. 炉渣制光催化剂催化降解罗丹明B的机理 [J]. 化工进展, 2010, 29(6): 1075-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |