化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6573-6585.DOI: 10.16085/j.issn.1000-6613.2022-0314
收稿日期:
2022-03-02
修回日期:
2022-03-15
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
贾文龙
作者简介:
贾文龙(1986—),男,教授,博士生导师,研究方向为油气地面工程。E-mail:jiawenlong08@126.com。
基金资助:
JIA Wenlong(), SONG Shuoshuo, LI Changjun, WU Xia, YANG Fan, ZHANG Yuanrui
Received:
2022-03-02
Revised:
2022-03-15
Online:
2022-12-20
Published:
2022-12-29
Contact:
JIA Wenlong
摘要:
含油污泥是一种含有大量有机物、絮状体的复杂多相稳定乳化胶体体系,主要来源于油气开采和集输过程。污泥中的含油量一般为10%~30%(体积分数),利用超临界二氧化碳(supercritical CO2,scCO2)提取和回收其中的油基成分可实现污泥的无害化处理,并产生可观的经济效益。本文综述了scCO2萃取原理及工业化应用情况,分析了萃取条件及携带剂对萃取率的影响,重点论述了scCO2萃取含油污泥的相平衡热力学及动力学机制研究进展。指出应坚持实验与理论相结合的手段,着重开展以下三方面的研究:①针对含油污泥组成复杂、极性组分含量高的特点,结合scCO2与含油污泥多组分复杂体系相平衡实验,建立scCO2萃取含油污泥的相平衡模型,阐明scCO2萃取含油污泥的相平衡特征及影响因素;②考虑不同分子间的键结合能与非键结合能,从scCO2萃取油基的微观效应出发,探究油基与污泥基质间的吸附、解吸及扩散规律,定性描述、定量揭示scCO2萃取油的动力学特征与作用机制;③考虑萃取工艺的经济性,以萃取率最高为目标函数,建立萃取条件优化模型,为scCO2萃取含油污泥工艺的设计、优化及工业化应用提供理论与技术支撑。
中图分类号:
贾文龙, 宋硕硕, 李长俊, 吴瑕, 杨帆, 张员瑞. 超临界CO2萃取含油污泥研究现状与进展[J]. 化工进展, 2022, 41(12): 6573-6585.
JIA Wenlong, SONG Shuoshuo, LI Changjun, WU Xia, YANG Fan, ZHANG Yuanrui. Progress of oily sludge extraction by supercritical CO2[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6573-6585.
性质 | 气体 (p=1.013×105Pa,T=15~30℃) | 超临界流体 | 液体 (p=1.013×105Pa,T=15~30℃) | |
---|---|---|---|---|
p=pc,T=Tc | p=4pc,T=Tc | |||
密度/kg·m-3 | 0.6~2 | 200~500 | 400~900 | 600~1600 |
黏度/10-5Pa·s | 1~3 | 1~3 | 3~9 | 20~300 |
扩散系数/10-4m2·s-1 | 0.1~0.4 | 0.7×10-3 | 0.2×10-3 | (0.2~2)×10-5 |
表1 超临界流体与其他流体物理性质比较
性质 | 气体 (p=1.013×105Pa,T=15~30℃) | 超临界流体 | 液体 (p=1.013×105Pa,T=15~30℃) | |
---|---|---|---|---|
p=pc,T=Tc | p=4pc,T=Tc | |||
密度/kg·m-3 | 0.6~2 | 200~500 | 400~900 | 600~1600 |
黏度/10-5Pa·s | 1~3 | 1~3 | 3~9 | 20~300 |
扩散系数/10-4m2·s-1 | 0.1~0.4 | 0.7×10-3 | 0.2×10-3 | (0.2~2)×10-5 |
应用行业 | 应用方式 |
---|---|
石油天然气[ | 石油残渣的脱沥青,从残渣油及抽出油中除去重金属,原油的三次回收,各组分的连续分馏,废润滑油的再生,油砂及页岩油的萃取,提高采收率 |
化工[ | 脱附再生,石墨烯制备,诱导结晶 |
环保[ | 土壤修复,重金属去除,环境污染物回收 |
食品[ | 微量成分的去除,有效成分的萃取、分离和精制,生物物质的液化,低含油量快餐食品的制取 |
香料[ | 天然香料的提取,合成香料的分离精制 |
医药[ | 维生素、草药、吗啡、阿托品等的提取、浓缩和精制 |
煤炭[ | 煤液化油的脱灰,煤液化油的萃取,煤的液化 |
表2 scCO2萃取技术应用总结
应用行业 | 应用方式 |
---|---|
石油天然气[ | 石油残渣的脱沥青,从残渣油及抽出油中除去重金属,原油的三次回收,各组分的连续分馏,废润滑油的再生,油砂及页岩油的萃取,提高采收率 |
化工[ | 脱附再生,石墨烯制备,诱导结晶 |
环保[ | 土壤修复,重金属去除,环境污染物回收 |
食品[ | 微量成分的去除,有效成分的萃取、分离和精制,生物物质的液化,低含油量快餐食品的制取 |
香料[ | 天然香料的提取,合成香料的分离精制 |
医药[ | 维生素、草药、吗啡、阿托品等的提取、浓缩和精制 |
煤炭[ | 煤液化油的脱灰,煤液化油的萃取,煤的液化 |
生产厂家 | 设备规格 | 工业化案例 |
---|---|---|
贵州某公司 | 1~3500L | 新疆某生物科技有限公司3500L×3;河北某生物科技有限公司3000L×3;广州某药业公司3000L×3;河南某食品厂600L×3等,印度OZONE公司400L×3,突尼斯AGRI-LAND公司700L×3等 |
广州某公司 | 1~1000L | 四川某白酒集团1000L×2;石家庄某化纤厂500L×2;内蒙古某食品公司500L×2等 |
温州某公司 | 1~500L | 青海某生物制药厂400L×3;重庆某制药有限公司;四川某制药有限责任公司;出口泰国 |
表3 国内主要大型scCO2萃取工业设备总结[12]
生产厂家 | 设备规格 | 工业化案例 |
---|---|---|
贵州某公司 | 1~3500L | 新疆某生物科技有限公司3500L×3;河北某生物科技有限公司3000L×3;广州某药业公司3000L×3;河南某食品厂600L×3等,印度OZONE公司400L×3,突尼斯AGRI-LAND公司700L×3等 |
广州某公司 | 1~1000L | 四川某白酒集团1000L×2;石家庄某化纤厂500L×2;内蒙古某食品公司500L×2等 |
温州某公司 | 1~500L | 青海某生物制药厂400L×3;重庆某制药有限公司;四川某制药有限责任公司;出口泰国 |
处理技术 | 处理费用/USD·m-3 |
---|---|
超临界流体技术 | 122~154 |
生物修复 | 245~474 |
原位热解吸附 | 100~380 |
焚烧 | >360 |
液相萃取 | 250~1169 |
表4 不同土壤修复技术处理多氯联苯的费用对比[25]
处理技术 | 处理费用/USD·m-3 |
---|---|
超临界流体技术 | 122~154 |
生物修复 | 245~474 |
原位热解吸附 | 100~380 |
焚烧 | >360 |
液相萃取 | 250~1169 |
含油污泥来源 | 含油率/% | 萃取温度/℃ | 萃取压力/MPa | 萃取时间/min | 萃取率/% |
---|---|---|---|---|---|
某油井钻屑[ | 14.94 | 35 | 30.0 | 90 | 99.60 |
南海油基钻屑[ | 25.00 | 45 | 14.0 | 60 | 55.46 |
废弃油基钻屑[ | 13.76 | 50 | 25.0 | 100 | 99.25 |
Athabasca油砂[ | 10.70 | 31 | 24.1 | 90 | 42.30 |
Alberta油基钻屑[ | 8.00 | 40 | 14.5 | 90 | 90.00 |
胜利油田孤六联合站落地泥[ | 12~20 | 55 | 20.0 | 2400 | 33.15 |
涪陵国家页岩气开发示范区某井油基钻屑[ | 18.24 | 55 | 21.0 | 2400 | 99.65 |
南海某平台海上现场离心机分离后含油钻屑[ | 18.12 | 60 | 25.0 | 80 | 99.29 |
表5 不同类型含油污泥最佳萃取条件
含油污泥来源 | 含油率/% | 萃取温度/℃ | 萃取压力/MPa | 萃取时间/min | 萃取率/% |
---|---|---|---|---|---|
某油井钻屑[ | 14.94 | 35 | 30.0 | 90 | 99.60 |
南海油基钻屑[ | 25.00 | 45 | 14.0 | 60 | 55.46 |
废弃油基钻屑[ | 13.76 | 50 | 25.0 | 100 | 99.25 |
Athabasca油砂[ | 10.70 | 31 | 24.1 | 90 | 42.30 |
Alberta油基钻屑[ | 8.00 | 40 | 14.5 | 90 | 90.00 |
胜利油田孤六联合站落地泥[ | 12~20 | 55 | 20.0 | 2400 | 33.15 |
涪陵国家页岩气开发示范区某井油基钻屑[ | 18.24 | 55 | 21.0 | 2400 | 99.65 |
南海某平台海上现场离心机分离后含油钻屑[ | 18.12 | 60 | 25.0 | 80 | 99.29 |
状态方程 | 方程基本形式 | 方程组成 |
---|---|---|
SRK EOS | 斥力项+引力项 | |
PR EOS | 斥力项+引力项 | |
CPA EOS | 斥力项+引力项+缔合项 |
表6 考虑缔合项的CPA EOS与传统状态方程的对比
状态方程 | 方程基本形式 | 方程组成 |
---|---|---|
SRK EOS | 斥力项+引力项 | |
PR EOS | 斥力项+引力项 | |
CPA EOS | 斥力项+引力项+缔合项 |
状态方程 | 物质 | 缔合结构 | Ε/bar·L·mol-1 | β |
---|---|---|---|---|
CPA-SRK | CO2 | 2B | 78.12 | 0.0568 |
3B | 51.68 | 0.0411 | ||
4C | 39.23 | 0.0297 | ||
H2O | 4C | 166.55 | 0.0692 | |
CPA-PR | CO2 | 4C | 48.11 | 0.0457 |
H2O | 4C | 181.13 | 0.1062 |
表7 不同状态方程CO2/H2O物质缔合参数[52]
状态方程 | 物质 | 缔合结构 | Ε/bar·L·mol-1 | β |
---|---|---|---|---|
CPA-SRK | CO2 | 2B | 78.12 | 0.0568 |
3B | 51.68 | 0.0411 | ||
4C | 39.23 | 0.0297 | ||
H2O | 4C | 166.55 | 0.0692 | |
CPA-PR | CO2 | 4C | 48.11 | 0.0457 |
H2O | 4C | 181.13 | 0.1062 |
1 | LI Jiantao, LIN Fawei, LI Kai, et al. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis[J]. Journal of Hazardous Materials, 2021, 406: 124706. |
2 | 李文英, 李阳, 马艳飞, 等. 含油污泥资源化处理方法进展[J]. 化工进展, 2020, 39(10): 4191-4199. |
LI Wenying, LI Yang, MA Yanfei, et al. Progress of resource treatment methods for oily sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4191-4199. | |
3 | 吴保玉, 李志航, 金祥哲. 超临界CO2萃取法处理含油钻屑实验研究[J]. 钻采工艺, 2019, 42(4): 13-15, 39. |
WU Baoyu, LI Zhihang, JIN Xiangzhe. Experimental study on supercritical CO2 extraction method for oil-containing cuttings disposal[J]. Drilling & Production Technology, 2019, 42(4): 13-15, 39. | |
4 | RUDYK S, SPIROV P, HUSSAIN S. Effect of co-solvents on SC-CO2 extraction of crude oil by consistency test[J]. The Journal of Supercritical Fluids, 2014, 91: 15-23. |
5 | RUDYK S, SPIROV P. Upgrading and extraction of bitumen from Nigerian tar sand by supercritical carbon dioxide[J]. Applied Energy, 2014, 113: 1397-1404. |
6 | AHMADKELAYEH S, HAWBOLDT K. Extraction of lipids and astaxanthin from crustacean by-products: a review on supercritical CO2 extraction[J]. Trends in Food Science & Technology, 2020, 103: 94-108. |
7 | SAHENA F, ZAIDUL I S M, JINAP S, et al. Application of supercritical CO2 in lipid extraction: a review[J]. Journal of Food Engineering, 2009, 95(2): 240-253. |
8 | VALLE J M D, DE LA FUENTE J C. Supercritical CO2 extraction of oilseeds: review of kinetic and equilibrium models[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(2): 131-160. |
9 | 冯超, 王瑜, 孔令镕, 等. 超临界CO2萃取修复污染土壤的发展与展望[J]. 现代化工, 2020, 40(5): 23-27, 31. |
FENG Chao, WANG Yu, KONG Lingrong, et al. Advances on supercritical CO2 extraction for remediation of contaminated soil[J]. Modern Chemical Industry, 2020, 40(5): 23-27, 31. | |
10 | 欧阳勋, 陈家玮, 张小岗. 超临界CO2流体萃取土壤中污染物的应用研究进展[J]. 地质通报, 2010, 29(11): 1655-1661. |
OUYANG Xun, CHEN Jiawei, ZHANG Xiaogang. Advance in supercritical CO2 fluid extraction of contaminants from soil[J]. Geological Bulletin of China, 2010, 29(11): 1655-1661. | |
11 | 朱盟翔. 超临界二氧化碳萃取固相物中石油类的实验研究与数值模拟[D]. 成都: 西南石油大学, 2017. |
ZHU Mengxiang. Experimental research and numerical simulation of supercritical carbon dioxide extraction of petroleum in solid phase[D]. Chengdu: Southwest Petroleum University, 2017. | |
12 | 张立, 黄立平. 国内超临界CO2萃取技术工业化现状及存在问题研究[C]//第十二届全国超临界流体技术学术及应用研讨会暨第五届海峡两岸超临界流体技术研讨会论文摘要集. 北京, 2018: 44. |
ZHANG Li, HUANG Liping. Research on industrialization status and existing problems of domestic supercritical CO2 extraction technology[C]//Abstracts of the 12th National Symposium on Supercritical Fluid Technology and Application and the 5th Symposium on Cross-Strait Supercritical Fluid Technology. Beijing, 2018: 44. | |
13 | LA H, GUIGARD S E. Extraction of hydrocarbons from Athabasca oil sand slurry using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015, 100: 146-154. |
14 | SYED F I, MUTHER T, DAHAGHI A K, et al. CO2 EOR performance evaluation in an unconventional reservoir through mechanistic constrained proxy modeling[J]. Fuel, 2022, 310: 122390. |
15 | 王军良, 杨丽丽, 林春绵, 等. 超临界二氧化碳化学反应研究进展[J]. 化工进展, 2021, 40(8): 4127-4134. |
WANG Junliang, YANG Lili, LIN Chunmian, et al. Research progress of supercritical carbon dioxide in chemical reactions[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4127-4134. | |
16 | 孙宪航, 朱忠泉, 黄维秋, 等. 超临界CO2法再生油气回收用活性炭机理研究进展[J].化工进展, 2020, 39(S2): 346-351. |
SUN Xianhang, ZHU Zhongquan, HUANG Weiqiu, et al. Research progress on the regeneration mechanism of activated carbon for oil vapor recovery under supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 346-351. | |
17 | CHAÑI-PAUCAR L O, JOHNER J C F, ZABOT G L, et al. Technical and economic evaluation of supercritical CO2 extraction of oil from sucupira branca seeds[J]. The Journal of Supercritical Fluids, 2022, 181: 105494. |
18 | CARVALHO V S, DIAS A L B, RODRIGUES K P, et al. Supercritical fluid adsorption of natural extracts: technical, practical, and theoretical aspects[J]. Journal of CO2 Utilization, 2022, 56: 101865. |
19 | LUCAS A M, BENTO A F M L, VARGAS R M F, et al. Use of supercritical CO2 to obtain Baccharis uncinella extracts with antioxidant and antitumor activity[J]. Journal of CO2 Utilization, 2021, 49: 101563. |
20 | GUO Hongguang, ZHANG Yujie, ZHANG Yiwen, et al. Feasibility study of enhanced biogenic coalbed methane production by supercritical CO2 extraction[J]. Energy, 2021, 214: 118935. |
21 | Jr F M ORR, THBER J J. Use of carbon dioxide in enhanced oil recovery[J]. Science, 1984, 224(4649): 563-569. |
22 | 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2): 209-216. |
QIN Jishun, HAN Haishui, LIU Xiaolei. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration and Development, 2015, 42(2): 209-216. | |
23 | RUFFINO B, ZANETTI M C, GENON G. Supercritical fluid extraction of a light PAH contaminated sand[J]. Soil and Sediment Contamination, 2009, 18(3): 328-344 |
24 | ZHOU W, ANITESCU G, RICE P A, et al. Supercritical fluid extraction-oxidation technology to remediate PCB-contaminated soils/sediments: an economic analysis[J]. Environmental Progress, 2004, 23(3): 222-231. |
25 | ANITESCU G, TAVLARIDES L L. Supercritical extraction of contaminants from soils and sediments[J]. Journal of Supercritical Fluids, 2006, 38(2): 167-180. |
26 | KAYATHI A, CHAKRABARTI P P, BONFIM-ROCHA L, et al. Extraction of γ-oryzanol from defatted rice bran using supercritical carbon dioxide (SC-CO2): process optimisation of extract yield, scale-up and economic analysis[J]. Process Safety and Environmental Protection, 2021, 148: 179-188. |
27 | CHAÑI-PAUCAR L O, OSORIO-TOBÓN J F, JOHNER J C F, et al. A comparative and economic study of the extraction of oil from Baru (Dipteryx alata) seeds by supercritical CO2 with and without mechanical pressing[J]. Heliyon, 2021, 7(1): e05971. |
28 | 王玉珍, 王树众, 李艳辉, 等. 超临界CO2萃取油泥砂中柴油的可行性及经济性分析[J]. 西安交通大学学报, 2015, 49(5): 128-133. |
WANG Yuzhen, WANG Shuzhong, LI Yanhui, et al. Feasibility and economic analysis of diesel oil extraction from oiled-sand by supercritical CO2 process[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 128-133. | |
29 | MA Bo, WANG Ruihe, NI Hongjian, et al. Experimental study on harmless disposal of waste oil based mud using supercritical carbon dioxide extraction[J]. Fuel, 2019, 252(1): 722-729. |
30 | 梁丽丽. 超临界CO2萃取含油污泥技术研究[D]. 青岛: 中国石油大学(华东), 2011. |
LIANG Lili. Study on supercritical CO2 extraction of oily sludge[D]. Qingdao: China University of petroleum (East China), 2011. | |
31 | RICE W K, SINGH L. Dynamic supercritical fluid extraction system: US04898673A[P]. 1990-02-06. |
32 | 贾文龙, 宋硕硕, 李长俊, 等. 一种采用超临界二氧化碳连续萃取含油固体废物中油基成分的两级撬装分离装置: CN110559684B[P]. 2021-11-02. |
JIA Wenlong, SONG Shuoshuo, LI Changjun, et al. Two-stage skid-mounted separation device using supercritical carbon dioxide to continuously extract oil-based components in oil-containing solid waste: CN110559684B[P]. 2021-11-02. | |
33 | AZZAM A, AL-MARZOUQI A H, ZEKRI A Y. Remediation of soil contaminated with crude oil using supercritical CO2 [C]//3rd Iternational Multi-conderence on Enhineering and Technological Innovation, 2010: 40-45. |
34 | CASTELO-GRANDE T, AUGUSTO P A, ESTÉVEZ A M, et al. Application of ultrasound-assisted supercritical extraction to soil remediation[J]. Chemical Engineering & Technology, 2017, 40(4): 691-698. |
35 | LAITINEN A, MICHAUX A, AALTONEN O. Soil cleaning by carbon dioxide extraction: a review[J]. Environmental Technology, 1994, 15(8): 715-727. |
36 | 李俊涛. 超临界CO2处理油田含油污泥实验研究[D]. 东营: 中国石油大学(华东), 2018. |
LI Juntao. Experimental study on supercritical CO2 extraction of oily sludge in the oilfield[D]. Dongying: China University of Petroleum (East China), 2018. | |
37 | RUDYK S, SPIROV P, JIMOH I, et al. The bitumen upgrading of Nigerian oil sand by supercritical carbon dioxide modified with alcohols[J]. Energy & Fuels, 2014, 28(7): 4714-4724. |
38 | 位华, 何焕杰, 张弌. 响应面法优化超临界CO2流体处理油基钻屑工艺[J]. 环境工程学报, 2017, 11(11): 6050-6055. |
WEI Hua, HE Huanjie, ZHANG Yi. Optimization of oil based drilling cuttings treatment process by supercritical CO2 fluid using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6050-6055. | |
39 | 李赵, 杜国勇, 朱盟翔, 等. 超临界CO2萃取废弃油基钻屑的实验研究[J]. 石油与天然气化工, 2016, 45(3): 93-96. |
LI Zhao, DU Guoyong, ZHU Mengxiang, et al. Experimental study on waste oil-based drilling cuttings by utilizing supercritical carbon dioxide extraction technology[J]. Chemical Engineering of Oil & Gas, 2016, 45(3): 93-96. | |
40 | 杜国勇, 朱盟翔, 李赵, 等. 超临界CO2萃取含油钻屑的数值模拟与响应面分析[J]. 天然气化工(C1化学与化工), 2017, 42(3): 103-110. |
DU Guoyong, ZHU Mengxiang, LI Zhao, et al. Simulation and response surface analysis of supercritical CO2 extraction of oily sludge[J]. Natural Gas Chemical Industry, 2017, 42(3): 103-110. | |
41 | 张杰, 张羽臣, 邢希金, 等. 海上含油钻屑超临界CO2萃取除油研究[J]. 石油机械, 2019, 47(11): 52-58. |
ZHANG Jie, ZHANG Yuchen, XING Xijin, et al. Study on oily cutting de-Oiling by supercritical CO2 extraction in offshore field[J]. China Petroleum Machinery, 2019, 47(11): 52-58. | |
42 | 王思凡, 胡东锋, 李前春. 超临界CO2萃取法处理油基钻屑工艺实验[J]. 石油钻采工艺, 2019, 41(5): 597-602. |
WANG Sifan, HU Dongfeng, LI Qianchun. Experimental study on the oil-based drilling cuttings treatment technology based on supercritical CO2 extraction method[J]. Oil Drilling & Production Technology, 2019, 41(5): 597-602. | |
43 | 马搏. 超临界二氧化碳处理油基钻井液废弃物的实验研究[D]. 青岛: 中国石油大学(华东), 2017. |
MA Bo. Experimental study on treatment of oil based drilling mud wastes with supercritical carbon dioxide[D]. Qingdao: China University of Petroleum (East China), 2017. | |
44 | JONES C R. Treatment of oily drill cuttings slurries using supercritical carbon dioxide[D]. Edmonton: University of Alberta, 2010. |
45 | 胡金花, 闫俊, 李红, 等. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019, 40(8): 80-84. |
HU Jinhua, YAN Jun, LI Hong, et al. Measurement and model fitting for solubility of Disperse Red 11 in supercritical CO2 [J]. Journal of Textile Research, 2019, 40(8): 80-84. | |
46 | 于海, 陈可可, 滕桂平, 等. 预测超临界CO2中甘油三酯溶解度的新模型研究[J]. 化学工程, 2018, 46(12): 37-41. |
YU Hai, CHEN Keke, TENG Guiping, et al. Study on prediction for solubility of triglycerides in supercritical CO2 using a new model[J]. Chemical Engineering (China), 2018, 46(12): 37-41. | |
47 | 杜博文, 陈康, 丁鑫, 等. 超临界二氧化碳与二苯醚相平衡研究[J]. 化工进展, 2019, 38(4): 1662-1670. |
DU Bowen, CHEN Kang, DING Xin, et al. Phase equilibrium for binary system of diphenyl ether-supercritical carbon dioxide[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1662-1670. | |
48 | 孙小辉, 孙宝江, 王志远, 等. 酸性天然气与水体系内超临界-气-液-水合物多相平衡模型[J]. 石油学报, 2021, 42(9): 1212-1223. |
SUN Xiaohui, SUN Baojiang, WANG Zhiyuan, et al. Supercritical-gas-liquid-hydrate multiphase equilibrium model in the sour natural gas and water system[J]. Acta Petrolei Sinica, 2021, 42(9): 1212-1223. | |
49 | LI Xiaoli, HAN Haishui, YANG Daoyong, et al. Phase behavior of C3H8-CO2-heavy oil systems in the presence of aqueous phase under reservoir conditions[J]. Fuel, 2017, 209(1): 358-370. |
50 | TSIVINTZELIS I, KONTOGEORGIS G M, MICHELSEN M L, et al. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part Ⅱ: binary mixtures with CO2 [J]. Fluid Phase Equilibria, 2011, 306(1): 38-56. |
51 | 吴瑕, 贾文龙, 李长俊, 等. 基于CPA状态方程计算天然气-甲醇-水气液相平衡[J]. 化学工程, 2018, 46(6): 37-41. |
WU Xia, JIA Wenlong, LI Changjun, et al. Phase equilibrium of natural gas/methanol/water mixtures by use of CPA EoS[J]. Chemical Engineering (China), 2018, 46(6): 37-41. | |
52 | RAVEENDRAN P, WALLEN S L. Cooperative C-H...O hydrogen bonding in CO2-Lewis base complexes: implications for solvation in supercritical CO2 [J]. Journal of the American Chemical Society, 2002, 124(42): 12590-12599. |
53 | JIA Wenlong, OKUNO R. Modeling of asphaltene and water associations in petroleum reservoir fluids using cubic-plus-association EOS[J]. AIChE Journal, 2018, 64(9): 3429-3442. |
54 | JIA Wenlong, OKUNO R. Modeling of the interaction between asphaltene and water for multiphase reservoir fluids by use of cubic-plus-association equation of state[C]//San Antonio: SPE Annual Technical Conference and Exhibition, 2017. |
55 | 杨帆, 贾文龙, 孙欧阳, 等. CSM模型与CPA状态方程预测高压水合物生成条件[J]. 化学工程, 2019, 47(7): 30-34. |
YANG Fan, JIA Wenlong, SUN Ouyang, et al. Predictions on high pressure gas hydrate formation conditions using CSM model and CPA equation of state[J]. Chemical Engineering (China), 2019, 47(7): 30-34. | |
56 | JIA Wenlong, SONG Shuoshuo, LI Changjun, et al. Predictions on CH4 recovery factors using the CO2 replacement method to develop natural gas hydrate resources[J]. Journal of CO2 Utilization, 2020, 41: 101238. |
57 | 吴瑕, 牛淑昊, 贾文龙, 等. 基于CPA状态方程预测烷烃-水体系相平衡[J]. 化学工程, 2018, 46(9): 43-47. |
WU Xia, NIU Shuhao, JIA Wenlong, et al. Prediction of multiphase equilibrium of n-alkene/water binaries by using CPA EOS[J]. Chemical Engineering (China), 2018, 46(9): 43-47. | |
58 | TAKBIRI-BORUJENI A, KAZEMI M, LIU Siyan, et al. Molecular simulation of enhanced oil recovery in shale[J]. Energy Procedia, 2019, 158: 6067-6072. |
59 | ZHOU Wenning, WANG Haobo, ZHANG Zhe, et al. Molecular simulation of CO2/CH4/H2O competitive adsorption and diffusion in brown coal[J]. RSC Advances, 2019, 9(6): 3004-3011. |
60 | 李洪毅. 超临界二氧化碳萃取深层稠油组分的分子动力学模拟[J]. 科学技术与工程, 2021, 21(29): 12543-12550. |
LI Hongyi. Molecular dynamics simulation for supercritical carbon dioxide extraction of heavy oil components in deep reservoir[J]. Science Technology and Engineering, 2021, 21(29): 12543-12550. | |
61 | 张军, 房体明, 王业飞, 等. 烷烃油滴在超临界二氧化碳中溶解的分子动力学模拟[J]. 中国石油大学学报(自然科学版), 2015, 39(2): 124-129. |
ZHANG Jun, FANG Timing, WANG Yefei, et al. Molecular dynamics simulation of dissolution of n-alkanes droplets in supercritical carbon dioxide[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 124-129. | |
62 | 李秉繁, 刘刚, 陈雷. 基于分子动力学模拟的CH4溶解对原油分子间作用的影响机制研究[J]. 化工学报, 2021, 72(3): 1253-1263. |
LI Bingfan, LIU Gang, CHEN Lei. Study on the influence mechanism of CH4 dissolution on the intermolecular interaction between crude oil molecules based on molecular dynamics simulation[J]. CIESC Journal, 2021, 72(3): 1253-1263. | |
63 | LIU Bing, SHI Junqin, WANG Muhan, et al. Reduction in interfacial tension of water-oil interface by supercritical CO2 in enhanced oil recovery processes studied with molecular dynamics simulation[J]. The Journal of Supercritical Fluids, 2016, 111: 171-178. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[4] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[7] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[8] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[9] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[10] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[11] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[12] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[13] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[14] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[15] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |