化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5820-5829.DOI: 10.16085/j.issn.1000-6613.2022-0126
赵文霞1,2(), 赵玉1,2, 柴子茹1,2, 张硕1,2, 王世欣1,2, 焦志杰1,2
收稿日期:
2022-01-20
修回日期:
2022-04-19
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
赵文霞
作者简介:
赵文霞(1973—),女,博士,教授,研究方向为环境污染控制理论及技术。E-mail:kd2010zwx@163.com。
基金资助:
ZHAO Wenxia1,2(), ZHAO Yu1,2, CHAI Ziru1,2, ZHANG Shuo1,2, WANG Shixin1,2, JIAO Zhijie1,2
Received:
2022-01-20
Revised:
2022-04-19
Online:
2022-11-25
Published:
2022-11-28
Contact:
ZHAO Wenxia
摘要:
在石英平板介质阻挡放电(DBD)反应器中,采用氮气(N2)低温等离子体改性制备介孔TiO2光催化剂(M-TiO2)。借助XRD、TEM、BET、UV-vis DRS和XPS等手段对M-TiO2进行表征分析。结果表明,N2等离子体与煅烧相结合的处理方式下制得的M-TiO2较单纯煅烧处理方式具有更优的可见光催化性能。当CTAB/Ti摩尔比为1/3时,三种M-TiO2中M-TiO2(CTP+C)的比表面积最高(238.2m2/g),禁带宽度最窄(2.51eV),OV/O最大(35.7%);可见光持续照射240min时,M-TiO2(CTP+C)对甲基橙(MO)的光降解率最高,达90%以上,且循环稳定性良好。N2低温等离子体改性过程可有效改善M-TiO2晶粒的分散性,促进Ti4+向Ti3+的转化,其可见光催化活性的提高主要归因于氧空位、间隙碳和间隙氮三者的共同作用。活性物种捕获实验和莫特-肖特基曲线测试结果表明,可见光下降解甲基橙的过程中起主要作用的是O2▪-和h+。在此基础上,给出了M-TiO2(CTP+C)可见光催化的机理模型。
中图分类号:
赵文霞, 赵玉, 柴子茹, 张硕, 王世欣, 焦志杰. N2等离子体改性介孔TiO2的可见光催化性能及机理[J]. 化工进展, 2022, 41(11): 5820-5829.
ZHAO Wenxia, ZHAO Yu, CHAI Ziru, ZHANG Shuo, WANG Shixin, JIAO Zhijie. Visible-light catalytic performance and mechanism of mesoporous TiO2 modified by N2 plasma[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5820-5829.
光催化剂 | BET比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
M-TiO2(C) | 226.7 | 0.356 | 4.8 |
M-TiO2(C+CTP) | 233.8 | 0.346 | 5.0 |
M-TiO2(CTP+C) | 238.2 | 0.392 | 5.7 |
表1 BET比表面积及孔结构参数
光催化剂 | BET比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
M-TiO2(C) | 226.7 | 0.356 | 4.8 |
M-TiO2(C+CTP) | 233.8 | 0.346 | 5.0 |
M-TiO2(CTP+C) | 238.2 | 0.392 | 5.7 |
样品 | 相对含量/% | 原子含量/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Ti3+/Ti | OV/O | C—O—Ti/C | Ti—O—N/N | N2*/N | Ti | O | C | N | |
M-TiO2(C) | 0 | 23.5 | 8.5 | 76.5 | 23.5 | 23.5 | 58.1 | 17.1 | 1.3 |
M-TiO2(C+CTP) | 9.3 | 30.7 | 9.3 | 74.8 | 25.2 | 23.2 | 57.1 | 18.4 | 1.3 |
M-TiO2(CTP+C) | 12.4 | 35.7 | 13.6 | 74.3 | 25.7 | 23.3 | 55.6 | 19.6 | 1.5 |
表2 XPS分析结果
样品 | 相对含量/% | 原子含量/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Ti3+/Ti | OV/O | C—O—Ti/C | Ti—O—N/N | N2*/N | Ti | O | C | N | |
M-TiO2(C) | 0 | 23.5 | 8.5 | 76.5 | 23.5 | 23.5 | 58.1 | 17.1 | 1.3 |
M-TiO2(C+CTP) | 9.3 | 30.7 | 9.3 | 74.8 | 25.2 | 23.2 | 57.1 | 18.4 | 1.3 |
M-TiO2(CTP+C) | 12.4 | 35.7 | 13.6 | 74.3 | 25.7 | 23.3 | 55.6 | 19.6 | 1.5 |
光催化剂 | R2 | kapp/min |
---|---|---|
M-TiO2(C) | 0.99364 | 0.00929 |
M-TiO2(C+CTP) | 0.99762 | 0.01211 |
M-TiO2(CTP+C) | 0.99632 | 0.01275 |
表3 可见光降解甲基橙的线性回归系数及表观速率常数
光催化剂 | R2 | kapp/min |
---|---|---|
M-TiO2(C) | 0.99364 | 0.00929 |
M-TiO2(C+CTP) | 0.99762 | 0.01211 |
M-TiO2(CTP+C) | 0.99632 | 0.01275 |
1 | 李宁, 张伟, 李贵贤, 等. TiO2光催化剂的研究进展[J]. 精细化工, 2021, 38(11): 2181-2188, 2258. |
LI Ning, ZHANG Wei, LI Guixian, et al. Research progress of TiO2 photocatalysts[J]. Fine Chemicals, 2021, 38(11): 2181-2188, 2258. | |
2 | 刘静, 高正阳, 王杰, 等. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(S1): 42-47. |
LIU Jing, GAO Zhengyang, WANG Jie, et al. Research progress of co-doped TiO2 photocatalys[J]. Materials Reports, 2021, 35(S1): 42-47. | |
3 | SCHNEIDER Jenny, MATSUOKA Masaya, Masato Takeuchi, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. |
4 | 杜意恩, 牛宪军, 李万喜, 等. 高活性晶面锐钛矿型TiO2纳米材料的溶剂热法制备及其光催化性能[J]. 无机化学学报, 2021, 37(10): 1753-1763. |
DU Yi’en, NIU Xianjun, LI Wanxi, et al. Solvothermal synthesis of high‑reactive faceted anatase TiO2 nanomaterials with improved photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(10): 1753-1763. | |
5 | ATITAR Faycal M, ISMAIL Adel A, AL-SAYARI S A, et al. Mesoporous TiO2 nanocrystals as efficient photocatalysts: impact of calcination temperature and phase transformation on photocatalytic performance[J]. Chemical Engineering Journal, 2015, 264: 417-424. |
6 | LI Xiao, LIU Pengwei, MAO Yu, et al. Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 164: 352-359. |
7 | LIU Di, YONG Guangbi, Controllable fabrication of hollow TiO 2 spheres as sustained release drug carrier[J]. Advanced Powder Technology, 2019, 30(10): 2169-2177. |
8 | 张艳青, 纪庆鹏, 黄悦, 等. 模板法制备介孔TiO2及其在模拟太阳光下光催化还原Cr(Ⅵ)性能的研究[J]. 化工新型材料, 2022, 50(2): 176-180, 186. |
ZHANG Yanqing, JI Qingpeng, HUANG Yue, et al. Preparation of mesoporous TiO2 by template method and its photocatalytic reduction Cr(Ⅵ) properties under simulated sunlight[J]. New Chemical Materials, 2022, 50(2): 176-180, 186. | |
9 | LIU Chen, LI Youji, XU Peng, et al. Preparation and improved photocatalytic activity of ordered mesoporous TiO2 by evaporation induced self-assembly technique using liquid crystal as template[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 1072-1078. |
10 | SHI Yifeng, WAN Ying, ZHAO Dongyuan. Ordered mesoporous non-oxide materials[J]. Chemical Society Reviews, 2011, 40(7): 3854-3878. |
11 | ERLANDY Toe dwinanto, KURNIAWAN Winarto, MARIQUIT Eden G, et al. Synthesis of N-doped mesoporous TiO2 by facile one-step solvothermal process for visible light photocatalytic degradation of organic pollutant[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5125-5134. |
12 | LI Yulin, HAN Xiaojin, HOU Yaqin, et al. In situ preparation of mesoporous Fe/TiO2 catalyst using Pluronic F127-assisted sol-gel process for mid-temperature NH3 selective catalytic reduction[J]. Chinese Journal of Catalysis, 2017, 38(11): 1831-1841. |
13 | CAO Zhenhao, LI Wenting, PANG Juanjuan, et al. Mesoporous TiO2 with tunable mixed phase (anatase/rutile) and morphology by using polyethyleneimine modified F127 block copolymers as templates for enhanced photocatalytic performance[J]. Science of Advanced Materials, 2019, 11(2): 166-177. |
14 | PASINI Sarah mozzaquatro, Alexsandra VALÉRIO, GUELLI ULSON DE SOUZA Selene M A, et al. Plasma-modified TiO2 polyetherimide nanocomposite fibers for photocatalytic degradation of organic compounds[J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103213. |
15 | LIU Xinghui, HUA Ruinian, NIU Jinhai, et al. N2 plasma treatment TiO2 nanosheets for enhanced visible light-driven photocatalysis[J]. Journal of Alloys and Compounds, 2021, 881: 160509. |
16 | 陈梦晗, 竺新波, 蔡宇翔, 等. 低温等离子体改性Mn-CeO x 催化剂强化甲硫醚催化氧化性能的机理[J]. 高电压技术, 2019, 45(2): 630-636. |
CHEN Menghan, ZHU Xinbo, CAI Yuxiang, et al. Mechanism of catalytic oxidation enhancement of dimethyl dulfides over the Mn-CeO x catalyst modified by nonthermal plasma[J]. High Voltage Engineering, 2019, 45(2): 630-636. | |
17 | ISLAM Syed Z, REED Allen, KIM Doo young, et al. N2/Ar plasma induced doping of ordered mesoporous TiO2 thin films for visible light active photocatalysis[J]. Microporous and Mesoporous Materials, 2016, 220: 120-128. |
18 | HU Biao, LIANG Chuanhui, YANG Feng, et al. TiO2 powder modified by plasma afterglow: a correlation between active species, microstructure, and optical properties[J]. Materials Letters, 2020, 268: 127577. |
19 | 李政楷, 陈雷, 王美琪, 等. 大气压氩气/空气针-环式介质阻挡放电发射光谱诊断[J]. 光谱学与光谱分析, 2021, 41(10): 3307-3310. |
LI Zhengkai, CHEN Lei, WANG Meiqi, et al. Diagnosis of atmospheric pressure argon/air needle-ring dielectric barrier discharge emission spectrum[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3307-3310. | |
20 | JIN Xianghui, TANG Tao, TAO Xumei, et al. A novel dual-ligand Fe-based MOFs synthesized with dielectric barrier discharge (DBD) plasma as efficient photocatalysts[J]. Journal of Molecular Liquids, 2021, 340: 117290. |
21 | ZHAO Wenxia, LIU Shuai, ZHANG Shuo, et al. Preparation and visible-light photocatalytic activity of N-doped TiO2 by plasma-assisted sol-gel method[J]. Catalysis Today, 2019, 337: 37-43. |
22 | 赵文霞, 王蕊, 张硕, 等. 氮气低温等离子体辅助制备N-TiO2及其光催化活性[J]. 精细化工, 2020, 37(4): 752-757, 764. |
ZHAO Wenxia, WANG Rui, ZHANG Shuo, et al. Preparation of N-TiO2 assisted by low-temperature N2 plasma and its photocatalytic activity[J]. Fine Chemicals, 2020, 37(4): 752-757, 764. | |
23 | YUAN Zhongyong, REN Tiezhen, VANTOMME Aurélien, et al. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials[J]. Chemistry of Materials, 2004, 16(24):5096-5106. |
24 | 龙彩燕, 刘成超, 赵燕熹, 等. 高比表面积介孔TiO2的制备及负载钴基催化剂费-托合成反应性能研究[J]. 分子科学学报, 2020, 36(03): 205-211. |
LONG Caiyan, LIU Chengchao, ZHAO Yanxi, et al. Preparation of mesoporous TiO2 with high surface area and study on the performance of Fischer-Tropsch synthesis of supported cobalt catalyst[J]. Journal of Molecular Science, 2020, 36(03): 205-211. | |
25 | 李翠霞, 孙会珍, 金海泽, 等. 3D多级孔rGO/TiO2复合材料的构筑及其光催化性能研究[J]. 无机材料学报, 2021, 36(10): 1039-1046. |
LI Cuixia, SUN Huizhen, JIN Haize, et al. Construction and photocatalytic performance of 3D hierarchical pore rGO/TiO2 composites[J]. Journal of Inorganic Materials, 2021, 36(10): 1039-1046. | |
26 | ZHANG Xiaotong, ZHOU Guowei, XU Jing, et al. Synthesis and photocatalytic activity of co-doped mesoporous TiO2 on Brij98/CTAB composite surfactant template[J]. Journal of Solid State Chemistry, 2010, 183(6): 1394-1399. |
27 | KHOJASTEH Farzaneh, MERSAGH Mansour rezaee, HASHEMIPOUR Hassan. The influences of Ni, Ag-doped TiO2 and SnO2, Ag-doped SnO2/TiO2 nanocomposites on recombination reduction in dye synthesized solar cells[J]. Journal of Alloys and Compounds, 2022, 890: 161709. |
28 | YIN Jinpeng, GAO Wenyuan, YAN Shuang, et al. Facile synthesis of CTAB-SM-TiO2 nanophotocatalyst and its superior photocatalytic performance[J]. Materials Science in Semiconductor Processing, 2018, 74: 284-291. |
29 | 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究[J]. 物理学报, 2010, 59(04): 2721-2727. |
XU Ling, TANG Chaoqun, QIAN Jun. The first-principles study of absorption spectrum of C-doped anatase TiO2 [J]. Acta Physica Sinica, 2010, 59(04): 2721-2727. | |
30 | LI Wei, WU Zhangxiong, WANG Jinxiu, et al. A perspective on mesoporous TiO2 materials[J]. Chemistry of Materials, 2014, 26(1): 287-298. |
31 | ZHANG Bo, PENG Xiangfeng, WANG Zhao. Noble metal-free TiO2-coated carbon nitride layers for enhanced visible light-driven photocatalysis[J]. Nanomaterials, 2020, 10(4): 805. |
32 | KALANTARI Kaveh, KALBASI Mansour, SOHRABI Morteza, et al. Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light[J]. Ceramics International, 2016, 42(13):14834-14842. |
33 | CHOI Wonyong, TERMIN Andreas, HOFFMANN Michael R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics[J]. The Journal of Physical Chemistry, 1994, 98(51): 13669-13679. |
34 | XU Xing, LAI Lei, ZENG Tao, et al. In situ formation of pyridine-type carbonitrides-modified disorder-engineered C-TiO2 used for enhanced visible-light-driven photocatalytic hydrogen evolution[J]. The Journal of Physical Chemistry C. Nanomaterials and Interfaces, 2018, 122: 18870-18879. |
35 | PANDI Kavitha, PREEYANGHAA Mani, VINESH Vasudevan, et al.Complete photocatalytic degradation of tetracycline by carbon doped TiO2 supported with stable metal nitrate hydroxide[J]. Environmental Research, 2021, 207: 112188. |
36 | LIU Shixin, LIU Jinglin, LI Xiaosong, et al. Gliding arc plasma synthesis of visible-light active C-doped titania photocatalysts[J]. Plasma Processes and Polymers, 2014, 12(5): 422-430. |
37 | XU Chengkun, KILLMEYER Richard, GRAY Mcmahan L, et al. Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination[J]. Applied Catalysis B: Environmental, 2006, 64(3/4): 312-317. |
38 | SU Xiaohui, HE Qingqing, YANG Yuane, et al. Free-standing nitrogen-doped TiO2 nanorod arrays with enhanced capacitive capability for supercapacitors[J]. Diamond and Related Materials, 2021, 114: 108168. |
39 | KOLI Valmiki B, MAVENGERE Shielah, KIM Jung-sik. An efficient one-pot N doped TiO2-SiO2 synthesis and its application for photocatalytic concrete[J]. Applied Surface Science, 2019, 491: 60-66. |
40 | ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. |
41 | IRIE Hiroshi, WATANABE Yuka, HASHIMOTO Kazuhito. Nitrogen-concentration dependence on photocatalytic activity of TiO2- x N x powders[J]. Journal of Physical Chemistry B, 2003, 107(23): 5483-5486. |
42 | ZHAO Yuxuan, NIE Lingzhi, YANG Hongli, et al. Tailored fabrication of TiO2/In2O3 hybrid mesoporous nanofibers towards enhanced photocatalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127455. |
43 | SAHA Subhadeep, Gobinda DAS, THOTE Jayshri, et al. Photocatalytic metal-organic framework from CdS quantum dot incubated luminescent metallohydrogel[J]. Journal of the American Chemical Society, 2014, 136(42): 14845-14851. |
44 | HU Qingsong, CHEN Yong, LI Ming, et al. Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123625. |
45 | CHEN Xiangyan, PENG Xin, JIANG Longbo, et al. Photocatalytic removal of antibiotics by MOF-derived Ti3+- and oxygen vacancy-doped anatase/rutile TiO2 distributed in a carbon matrix[J]. Chemical Engineering Journal, 2022, 427: 130945. |
46 | XING Mingyang, FANG Wenzhang, NASIR Muhammad, et al. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis[J]. Journal of Catalysis, 2013, 297(1): 236-243. |
47 | YAO Yunjin, QIN Jiacheng, CHEN Hao, et al. One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants[J]. Journal of Hazardous Materials, 2015, 291: 28-37. |
[1] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[13] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[14] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[15] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 483
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |