1 |
刘全美, 常加富, 张兆玲, 等. 生活垃圾热解气化燃烧试验研究[J]. 化工管理, 2021(16): 96-98.
|
|
LIU Quanmei, CHANG Jiafu, ZHANG Zhaoling, et al. Experimental study on pyrolysis gasification and combustion of domestic wastes[J]. Chemical Enterprise Management, 2021(16): 96-98.
|
2 |
OUDA O K M, RAZA S A, NIZAMI A S, et al. Waste to energy potential: a case study of Saudi Arabia[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 328-340.
|
3 |
TOZLU A, ÖZAHI E, ABUŞOĞLU A. Waste to energy technologies for municipal solid waste management in Gaziantep[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 809-815.
|
4 |
MAKARICHI L, JUTIDAMRONGPHAN W, TECHATO K A. The evolution of waste-to-energy incineration: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 812-821.
|
5 |
郭浩. 城市生活垃圾处理技术现状及未来发展趋势[J]. 云南化工, 2020, 47(9): 21-22, 25.
|
|
GUO Hao. The Current situation and development trend of municipal living garbage treatment technology[J]. Yunnan Chemical Technology, 2020, 47(9): 21-22, 25.
|
6 |
蒋旭光, 龙凌, 赵晓利, 等. 固化材料在生活垃圾焚烧飞灰处置中的应用概况及前景[J]. 化工进展, 2019, 38(S1): 216-225.
|
|
JIANG Xuguang, LONG Ling, ZHAO Xiaoli, et al. Application of solidified materials in disposal of MSWI fly ash[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 216-225.
|
7 |
袁国安. 生活垃圾热解气化技术应用现状与展望[J]. 环境与可持续发展, 2019, 44(4): 66-69.
|
|
YUAN Guo’an. Present status and prospect of municipal solid waste pyrolysis and gasification technology[J]. Environment and Sustainable Development, 2019, 44(4): 66-69.
|
8 |
刘雪珂, 段盼巧, 党文达, 等. 生活垃圾焚烧中SO x 的生成及控制技术进展[J]. 广东化工, 2021, 48(22): 176-177.
|
|
LIU Xueke, DUAN Panqiao, DANG Wenda, et al. The generation and control technology progress of SO x for municipal solid waste incineration[J]. Guangdong Chemical Industry, 2021, 48(22): 176-177.
|
9 |
赵嘉博, 刘小军. 洁净煤技术的研究现状及进展[J]. 露天采矿技术, 2011, 26(1): 66-69.
|
|
ZHAO Jiabo, LIU Xiaojun. Present research status and development of clean coal technology[J]. Opencast Mining Technology, 2011, 26(1): 66-69.
|
10 |
邹洋, 夏凌风, 王运东, 等. 燃煤电厂烟气脱硫技术最新进展[J]. 化工进展, 2011, 30(S1): 702-708.
|
|
ZOU Yang, XIA Lingfeng, WANG Yundong, et al. Recent advances in flue gas desulphurization in coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 702-708.
|
11 |
张海霞, 李爱民, 杨继文. 垃圾焚烧发电技术在我国的应用前景及存在问题初探[J]. 化工进展, 2010, 29(S1): 91-95.
|
|
ZHANG Haixia, LI Aimin, YANG Jiwen. Application prospect and existing problems of waste incineration power generation technology in China [J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 91-95.
|
12 |
王学涛, 金保升, 仲兆平, 等. 城市生活垃圾焚烧底灰熔融处理实验研究[J]. 东南大学学报(自然科学版), 2005, 35(1): 111-115.
|
|
WANG Xuetao, JIN Baosheng, ZHONG Zhaoping, et al. Study on melting treatment of bottom ashes from municipal solid waste incinerator[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(1): 111-115.
|
13 |
章骅, 何品晶. 城市生活垃圾焚烧灰渣及其性质分析[J]. 上海环境科学, 2002(6): 356-360, 389.
|
|
ZHANG Hua, HE Pinjing. Municipal solid waste incineration ashes and their properties[J]. Shanghai Environmental Sciences, 2002(6): 356-360, 389.
|
14 |
HE D L, GONG H F, CHEN Y F, et al. Experimental and density functional theory study of the synergistic effect between steam and SO2 on CO2 capture of calcium-based sorbents[J]. Fuel, 2021, 295: 120634.
|
15 |
SONG Y J, WANG T, CHENG L, et al. Simultaneous removal of SO2 and NO by CO reduction over prevulcanized Fe2O3/AC catalysts[J]. The Canadian Journal of Chemical Engineering, 2019, 97(7): 2015-2020.
|
16 |
YI K X, LIU H, WANG J X, et al. The adsorption and transformation of SO2, H2S and NH3 by using sludge gasification ash: effects of Fenton oxidation and CaO pre-conditioning[J]. Chemical Engineering Journal, 2019, 360: 1498-1508.
|
17 |
WANG H M, LIU G C, VEKSHA A, et al. Effective H2S control during chemical looping combustion by iron ore modified with alkaline earth metal oxides[J]. Energy, 2021, 218: 119548.
|
18 |
DASHTESTANI F, NUSHEH M, SIRIWONGRUNGSON V, et al. Effect of H2S and NH3 in biomass gasification producer gas on CO2 capture performance of an innovative CaO and Fe2O3 based sorbent[J]. Fuel, 2021, 295: 120586.
|
19 |
黄波, 段静, 朱书全. 氧化铁和氧化钛对水煤浆燃烧固硫的促进作用[J]. 煤炭工程, 2005, 37(5): 74-76.
|
|
HUANG Bo, DUAN Jing, ZHU Shuquan. Accelerative function of ferric oxide and titanium oxide to sulfur catching from combustion of coal water mixture[J]. Coal Engineering, 2005, 37(5): 74-76.
|
20 |
董隽. 城市生活垃圾热解气化特性及全过程多目标评价方法研究[D]. 杭州: 浙江大学, 2016.
|
|
DONG Jun. Study on municipal solid waste pvrolvsis and gasification characteristics and life cycle multi-objective assessment methodology[D]. Hangzhou: Zhejiang University, 2016.
|
21 |
ZOU C, KANG Y, WANG W A, et al. Effects of Fe2O3-CaO interactions in metallurgical dust on its catalytic activity for the carbon-oxygen reaction[J]. Energy & Fuels, 2019, 33(11): 11830-11840.
|
22 |
MARTÍN-MARTÍN J A, GALLASTEGI-VILLA M, GONZÁLEZ-MARCOS M P, et al. Bimodal effect of water on V2O5/TiO2 catalysts with different vanadium species in the simultaneous NO reduction and 1,2-dichlorobenzene oxidation[J]. Chemical Engineering Journal, 2021, 417: 129013.
|
23 |
HANIF A, SUN M Z, WANG T Q, et al. Ambient NO2 adsorption removal by Mg-Al layered double hydroxides and derived mixed metal oxides[J]. Journal of Cleaner Production, 2021, 313: 127956.
|
24 |
HOSSEINI-ESHBALA F, SEDRPOUSHAN A, DEHDASHTI M N, et al. Needle ball-like nanostructured mixed Cu-Ni-Co oxides: synthesis, characterization and application to the selective oxidation of sulfides to sulfoxides[J]. Materials Science and Engineering: C, 2019, 103: 109814.
|
25 |
范文军. 糯米浆-石灰复合材料固化遗址土吸水与失水特性研究[D]. 兰州: 兰州大学, 2021.
|
|
FAN Wenjun. Study on water absorption and water loss characteristics of soil consolidated by sticky rice-lime composites for earthen site[D]. Lanzhou: Lanzhou University, 2021.
|
26 |
XIAN S X, FAN Y Q, ZHANG H X, et al. Effects of temperature and limestone on sulfur release behaviors during fluidized bed gasification[J]. Journal of the Energy Institute, 2020, 93(5): 2074-2083.
|