化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5441-5455.DOI: 10.16085/j.issn.1000-6613.2021-2586
收稿日期:
2021-12-20
修回日期:
2022-04-12
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
薛文东
作者简介:
胡华坤(1997—),男,硕士研究生,研究方向为新能源材料。E-mail:S20200312@xs.ustb.edu.cn。
基金资助:
HU Huakun(), XUE Wendong(), JIANG Peng, LI Yong
Received:
2021-12-20
Revised:
2022-04-12
Online:
2022-10-20
Published:
2022-10-21
Contact:
XUE Wendong
摘要:
锂离子电池具有高能量密度和良好的循环性能,是目前最为理想的动力电源储能体系。然而,由于大容量和高功率锂离子电池技术尚未成熟,存在安全隐患,导致其商业化应用受到了很大程度的限制。锂离子电池的安全问题主要有机械力破坏、异常充电、气体积聚和热失控等,本文分析了上述危险因素产生的原因以及抑制的方法。在这些增强电池安全性的方法中,使用安全添加剂是最为经济有效的手段,但要在电解液中找到一种对电池具有高安全性能且不牺牲其他性能的实用添加剂并不容易,未来同时具备多功能的添加剂将会是对电池性能提升最有希望的研究方向。本文分析了成膜添加剂、阻燃添加剂和防过充添加剂的作用机理,并对相关领域的发展方向进行了展望。
中图分类号:
胡华坤, 薛文东, 蒋朋, 李勇. 锂离子电池安全添加剂的研究进展[J]. 化工进展, 2022, 41(10): 5441-5455.
HU Huakun, XUE Wendong, JIANG Peng, LI Yong. Research progress of safety additives for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5441-5455.
成膜添加剂 | 特点 |
---|---|
VC、FEC | 具有良好成膜性;提高库仑效率和充电容量保持率 |
腈类 | 较高的介电常数和较低的黏度;结合其他成膜添加剂等联合使用 |
锂盐类 | 热稳定性好,膜阻抗低 |
表1 成膜添加剂的种类及其特点
成膜添加剂 | 特点 |
---|---|
VC、FEC | 具有良好成膜性;提高库仑效率和充电容量保持率 |
腈类 | 较高的介电常数和较低的黏度;结合其他成膜添加剂等联合使用 |
锂盐类 | 热稳定性好,膜阻抗低 |
阻燃添加剂 | 特点 |
---|---|
含磷类阻燃剂 | 阻燃效果好;提高电池的阻抗稳定性 |
卤代类阻燃剂 | 阻燃效果好;有利于稳定SEI膜的形成 |
氮磷复合类阻燃剂 | 优异的阻燃性能和电化学性能;显著降低电池的自加热速率;增强电池的过充电耐受性 |
表2 阻燃添加剂的种类及其特点
阻燃添加剂 | 特点 |
---|---|
含磷类阻燃剂 | 阻燃效果好;提高电池的阻抗稳定性 |
卤代类阻燃剂 | 阻燃效果好;有利于稳定SEI膜的形成 |
氮磷复合类阻燃剂 | 优异的阻燃性能和电化学性能;显著降低电池的自加热速率;增强电池的过充电耐受性 |
防过充添加剂 | 特点 |
---|---|
茂金属族化合物 | 过充电后产生不同的放电行为增加了电池的放电容量 |
芳香族化合物 | 减轻分子间寄生反应,还可以减轻由于适度的电子供给效应而导致的自由基阳离子的电子缺乏 |
甲苯、二甲苯、联苯、环己基苯等 | 发生电聚合,在电极和隔膜之间形成一层聚合物膜避免电压升高 |
表3 放过充类添加剂的种类及其特点
防过充添加剂 | 特点 |
---|---|
茂金属族化合物 | 过充电后产生不同的放电行为增加了电池的放电容量 |
芳香族化合物 | 减轻分子间寄生反应,还可以减轻由于适度的电子供给效应而导致的自由基阳离子的电子缺乏 |
甲苯、二甲苯、联苯、环己基苯等 | 发生电聚合,在电极和隔膜之间形成一层聚合物膜避免电压升高 |
1 | KULOVA T L, FATEEV V N, SEREGINA E A, et al. A brief review of post-lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15: 7242-7259. |
2 | LIANG X, YUN J F, WANG Y, et al. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries[J]. Nanoscale, 2019, 11(41): 19140-19157. |
3 | GALOS J, PATTARAKUNNAN K, BEST A S, et al. Energy storage structural composites with integrated lithium-ion batteries: a review[J]. Advanced Materials Technologies, 2021, 6(8): 2001059. |
4 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
5 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
6 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
7 | YUAN M Q, LIU K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 58-70. |
8 | MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9(4): 353-358. |
9 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
10 | YONG T Q, WANG J L, MAI Y J, et al. Organosilicon compounds containing nitrile and oligo(ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 29-32. |
11 | SPOTNITZ R M, WEAVER J, YEDUVAKA G, et al. Simulation of abuse tolerance of lithium-ion battery packs[J]. Journal of Power Sources, 2007, 163(2): 1080-1086. |
12 | TORABI F, ESFAHANIAN V. Study of thermal-runaway in batteries ( Ⅰ ): Theoretical study and formulation[J]. Journal of the Electrochemical Society, 2011, 158(8): A850. |
13 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
14 | FENG X N, ZHENG S Q, REN D S, et al. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158: 4684-4689. |
15 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
16 | ZHANG Q S, LIU T T, WANG Q. Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery[J]. Journal of Energy Storage, 2021, 42: 103063. |
17 | LIU S Q, MA T Y, WEI Z, et al. Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge[J]. Journal of Energy Chemistry, 2021, 52: 20-27. |
18 | WANG W H, HE T F, HE S, et al. Modeling of thermal runaway propagation of NMC battery packs after fast charging operation[J]. Process Safety and Environmental Protection, 2021, 154: 104-117. |
19 | WEN Z P, PENG Y Y, CONG J L, et al. A stable artificial protective layer for high capacity dendrite-free lithium metal anode[J]. Nano Research, 2019, 12(10): 2535-2542. |
20 | 陈玉红, 唐致远, 卢星河, 等. 锂离子电池爆炸机理研究[J]. 化学进展, 2006, 18(6): 823-831. |
CHEN Y H, TANG Z Y, LU X H, et al. Research of explosion mechanism of lithium-ion battery[J]. Progress in Chemistry, 2006, 18(6): 823-831. | |
21 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. |
22 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649. |
23 | QI C, ZHU Y L, GAO F, et al. Mathematical model for thermal behavior of lithium ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer, 2018, 124: 552-563. |
24 | LI B, PAREKH M H, POL V G, et al. Operando monitoring of electrode temperatures during overcharge-caused thermal runaway[J]. Energy Technology, 2021, 9(11): 2100497. |
25 | FENG L, JIANG L H, LIU J L, et al. Dynamic overcharge investigations of lithium ion batteries with different state of health[J]. Journal of Power Sources, 2021, 507: 230262. |
26 | PING P, WANG Q S, HUANG P F, et al. Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method[J]. Applied Energy, 2014, 129: 261-273. |
27 | ZHU J E, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 153-168. |
28 | WANG W W, LI Y D, LIN C, et al. State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse[J]. Applied Energy, 2019, 251: 113365. |
29 | LI H G, ZHOU D, DU C L, et al. Parametric study on the safety behavior of mechanically induced short circuit for lithium-ion pouch batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 020904. |
30 | LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2020, 24: 85-112. |
31 | LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. |
32 | LI Y D, WANG W W, LIN C, et al. Safety modeling and protection for lithium-ion batteries based on artificial neural networks method under mechanical abuse[J]. Science China Technological Sciences, 2021, 64(11): 2373-2388. |
33 | LI Y D, WANG W W, LIN C, et al. A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression[J]. Energy, 2021, 215: 119050. |
34 | ZHAO X, REN H, LUO L. Gas bubbles in electrochemical gas evolution reactions[J]. Langmuir, 2019, 35(16): 5392-5408. |
35 | CHA C, YU J X, ZHANG J X. Comparative experimental study of gas evolution and gas consumption reactions in sealed Ni-Cd and Ni-MH cells[J]. Journal of Power Sources, 2004, 129(2): 347-357. |
36 | STRAUSS F, TEO J H, SCHIELE A, et al. Gas evolution in lithium-ion batteries: solid versus liquid electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20462-20468. |
37 | METZGER M, STREHLE B, SOLCHENBACH S, et al. Origin of H2 Evolution in LIBs: H2O reduction vs. electrolyte oxidation[J]. Journal of the Electrochemical Society, 2016, 163(5): A798-A809. |
38 | ROWDEN B, GARCIA-ARAEZ N. A review of gas evolution in lithium ion batteries[J]. Energy Reports, 2020, 6: 10-18. |
39 | TENG X, ZHAN C, BAI Y, et al. In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22751-22755. |
40 | SUN F, MARKÖTTER H, MANKE I, et al. Three-dimensional visualization of gas evolution and channel formation inside a lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7156-7164. |
41 | KIM Y. Encapsulation of LiNi0.5Co0.2Mn0.3O2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(17): 6400-6405. |
42 | KIM Y. Investigation of the gas evolution in lithium ion batteries: effect of free lithium compounds in cathode materials[J]. Journal of Solid State Electrochemistry, 2013, 17(7): 1961-1965. |
43 | FELL C R, SUN L Y, HALLAC P B, et al. Investigation of the gas generation in lithium titanate anode based lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(9): A1916-A1920. |
44 | WANG F M, CHENG H M, WU H C, et al. Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries[J]. Electrochimica Acta, 2009, 54(12): 3344-3351. |
45 | HAN Y K, MOON Y, LEE K, et al. Computational screening of lactam molecules as solid electrolyte interphase forming additives in lithium-ion batteries[J]. Current Applied Physics, 2014, 14(6): 897-900. |
46 | JANKOWSKI P, WIECZOREK W, JOHANSSON P. SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches[J]. Journal of Molecular Modeling, 2017, 23(1): 6. |
47 | DENG B W, SUN D M, WAN Q, et al. Review of electrolyte additives for ternary cathode lithium-ion battery[J]. Acta Chimica Sinica, 2018, 76(4): 259. |
48 | MICHAN A L, PARIMALAM B S, LESKES M, et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016, 28(22): 8149-8159. |
49 | BURNS J C, PETIBON R, NELSON K J, et al. Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance[J]. Journal of the Electrochemical Society, 2013, 160(10): A1668-A1674. |
50 | JUNG H M, PARK S H, JEON J, et al. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate[J]. Journal of Materials Chemistry A, 2013, 1(38): 11975. |
51 | LEE Y, KIM S O, MUN J, et al. Influence of salt, solvents, and additives on the thermal stability of delithiated cathodes in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 807: 174-180. |
52 | SCHRODER K, ALVARADO J, YERSAK T A, et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chemistry of Materials, 2015, 27(16): 5531-5542. |
53 | PROFATILOVA I A, STOCK C, SCHMITZ A, et al. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate[J]. Journal of Power Sources, 2013, 222: 140-149. |
54 | TAN T, LEE P K, YU D Y W. Improving thermal stability of Si-based anodes for lithium-ion batteries by controlling bulk and surface layer compositions[J]. Journal of the Electrochemical Society, 2021, 168(10): 100527. |
55 | HUANG S Q, CHEONG L Z, WANG D Y, et al. Thermal stability of solid electrolyte interphase of lithium-ion batteries[J]. Applied Surface Science, 2018, 454: 61-67. |
56 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
57 | SANTNER H J, MÖLLER K C, IVANČO J, et al. Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups[J]. Journal of Power Sources, 2003, 119/120/121: 368-372. |
58 | KIM Y S, LEE H, SONG H K. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8913-8920. |
59 | POHL B, GRÜNEBAUM M, DREWS M, et al. Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries[J]. Electrochimica Acta, 2015, 180: 795-800. |
60 | YANG Y P, HUANG A C, TANG Y, et al. Thermal stability analysis of lithium-ion battery electrolytes based on lithium bis(trifluoromethanesulfonyl)imide-lithium difluoro(oxalato)borate dual-salt[J]. Polymers, 2021, 13(5): 707. |
61 | SHAROVA V, MORETTI A, DIEMANT T, et al. Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries[J]. Journal of Power Sources, 2018, 375: 43-52. |
62 | WANG L, HE X M. Nonflammable pseudoconcentrated electrolytes for batteries[J]. Current Opinion in Electrochemistry, 2021, 30: 100783. |
63 | 李贺, 孔令丽, 张莹莹, 等. 锂离子电池电解液阻燃添加剂的研究进展[J]. 电源技术, 2009, 33(9): 819-821. |
LI He, KONG Lingli, ZHANG Yingying, et al. Research progress of flame retardant additives in electrolytes for Li-ion batteries[J]. Chinese Journal of Power Sources, 2009, 33(9): 819-821. | |
64 | 李军, 唐盛贺, 黄际伟, 等. 高安全性锂离子电池电解质研究进展[J]. 化工新型材料, 2012, 40(10): 6-8. |
LI Jun, TANG Shenghe, HUANG Jiwei, et al. Research progress in highly safe electrolyte systems for li-ion battery[J]. New Chemical Materials, 2012, 40(10): 6-8. | |
65 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. |
66 | HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988. |
67 | WANG J H, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3(1): 22-29. |
68 | YAO X L, XIE S, CHEN C H, et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries[J]. Journal of Power Sources, 2005, 144(1): 170-175. |
69 | NAKAGAWA H, OCHIDA M, DOMI Y, et al. Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester[J]. Journal of Power Sources, 2012, 212: 148-153. |
70 | SHIM E G, NAM T H, KIM J G, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive[J]. Journal of Power Sources, 2007, 172(2): 919-924. |
71 | DUNN R P, KAFLE J, KRAUSE F C, et al. Electrochemical analysis of Li-ion cells containing triphenyl phosphate[J]. Journal of the Electrochemical Society, 2012, 159(12): A2100-A2108. |
72 | CIOSEK HÖGSTRÖM K, LUNDGREN H, WILKEN S, et al. Impact of the flame retardant additive triphenyl phosphate (TPP) on the performance of graphite/LiFePO4 cells in high power applications[J]. Journal of Power Sources, 2014, 256: 430-439. |
73 | GAO D, XU J B, LIN M, et al. Ethylene ethyl phosphate as a multifunctional electrolyte additive for lithium-ion batteries[J]. RSC Advances, 2015, 5(23): 17566-17571. |
74 | XIANG H F, XU H Y, WANG Z Z, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173(1): 562-564. |
75 | YUAN Y X, WU F, CHEN G H, et al. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2019, 37: 197-203. |
76 | DAGGER T, RAD B R, SCHAPPACHER F M, et al. Comparative performance evaluation of flame retardant additives for lithium ion batteries ( Ⅰ ): safety, chemical and electrochemical stabilities[J]. Energy Technology, 2018, 6(10): 2011-2022. |
77 | DAGGER T, NIEHOFF P, LÜRENBAUM C, et al. Comparative performance evaluation of flame retardant additives for lithium ion batteries (Ⅱ): full cell cycling and postmortem analyses[J]. Energy Technology, 2018, 6(10): 2023-2035. |
78 | ZENG Z Q, JIANG X Y, WU B B, et al. Bis(2,2,2-trifluoroethyl) methylphosphonate: an novel flame-retardant additive for safe lithium-ion battery[J]. Electrochimica Acta, 2014, 129: 300-304. |
79 | CHEN Z Q, CHAO Y F, LI W H, et al. Abuse-tolerant electrolytes for lithium-ion batteries[J]. Advanced Science, 2021, 8(11): e2003694. |
80 | HU J L, JIN Z X, ZHONG H, et al. A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries[J]. Journal of Power Sources, 2012, 197: 297-300. |
81 | DAGGER T, MEIER V, HILDEBRAND S, et al. Safety performance of 5 A·h lithium ion battery cells containing the flame retardant electrolyte additive (phenoxy) pentafluorocyclotriphosphazene[J]. Energy Technology, 2018, 6(10): 2001-2010. |
82 | DAGGER T, GRÜTZKE M, REICHERT M, et al. Investigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate[J]. Journal of Power Sources, 2017, 372: 276-285. |
83 | RECTENWALD M F, GAFFEN J R, RHEINGOLD A L, et al. Phosphoryl-rich flame-retardant ions (FRIONs): towards safer lithium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 53(16): 4173-4176. |
84 | NARAYANAN S R, SURAMPUDI S, ATTIA A I, et al. Analysis of redox additive-based overcharge protection for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1991, 138(8): 2224-2229. |
85 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. |
86 | ATES M N, ALLEN C J, MUKERJEE S, et al. Electronic effects of substituents on redox shuttles for overcharge protection of Li-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(7): A1057-A1064. |
87 | GÉLINAS B, BIBIENNE T, DOLLÉ M, et al. Electrochemistry and transport properties of electrolytes modified with ferrocene redox-active ionic liquid additives[J]. Canadian Journal of Chemistry, 2020, 98(9): 554-563. |
88 | CHEN Z H, AMINE K. Capacity fade of Li1+ x Mn2– x O4-based lithium-ion cells[J]. Journal of the Electrochemical Society, 2006, 153(2): A316. |
89 | ZHANG J J, SHKROB I A, ASSARY R S, et al. An extremely durable redox shuttle additive for overcharge protection of lithium-ion batteries[J]. Materials Today Energy, 2019, 13: 308-311. |
90 | ZHANG L, ZHANG Z C, WU H M, et al. Novel redox shuttle additive for high-voltage cathode materials[J]. Energy & Environmental Science, 2011, 4(8): 2858. |
91 | ERGUN S L, ELLIOTT C F, KAUR A P, et al. Overcharge performance of 3,7-disubstituted N-ethylphenothiazine derivatives in lithium-ion batteries[J]. Chemical Communications, 2014, 50(40): 5339-5341. |
92 | KAUR A P, ERGUN S, ELLIOTT C F,et al. 3,7-Bis(trifluoromethyl)-N-ethylphenothiazine: a redox shuttle with extensive overcharge protection in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18190-18193. |
93 | KAUR A P, CASSELMAN M D, ELLIOTT C F, et al. Overcharge protection of lithium-ion batteries above 4V with a perfluorinated phenothiazine derivative[J]. Journal of Materials Chemistry A, 2016, 4(15): 5410-5414. |
94 | 熊琳强, 张英杰, 董鹏, 等. 锂离子电池电解液防过充添加剂研究进展[J]. 化工进展, 2011, 30(6): 1198-1204. |
XIONG Linqiang, ZHANG Yingjie, DONG Peng, et al. Development of overcharge protection additives for lithium ion secondary battery[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1198-1204. | |
95 | 夏兰, 李素丽, 艾新平, 等. 锂离子电池的安全性技术[J]. 化学进展, 2011, 23(S1): 328-335. |
XIA Lan, LI Suli, AI Xinping, et al. Safety enhancing methods for Li-ion batteries[J]. Progress in Chemistry, 2011, 23(S1): 328-335. | |
96 | ZHANG Q Y, QIU C C, FU Y B, et al. Xylene as a new polymerizable additive for overcharge protection of lithium ion batteries[J]. Chinese Journal of Chemistry, 2009, 27(8): 1459-1463. |
97 | LEE H, LEE J H, AHN S, et al. Co-use of cyclohexyl benzene and biphenyl for overcharge protection of lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(6): A307. |
98 | 曾彪, 刘素琴, 黄可龙, 等. 功能添加剂对锂离子电池的防过充电化学行为研究[J]. 化学学报, 2009, 67(24): 2815-2821. |
ZENG Biao, LIU Suqin, HUANG Kelong, et al. Electrochemical behavior of function additive for overcharge protection of Li-ion batteries[J]. Acta Chimica Sinica, 2009, 67(24): 2815-2821. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[3] | 郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229. |
[4] | 乔旭, 张竹修. 化工本征安全技术发展路径的思考与探索[J]. 化工进展, 2023, 42(7): 3319-3324. |
[5] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[6] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[7] | 汪嘉欣, 潘勇, 熊欣怡, 万晓月, 王建超. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
[8] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[9] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[10] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[11] | 闫兴清, 戴行涛, 喻健良, 李岳, 韩冰, 胡军. 高压氢气泄漏射流研究进展[J]. 化工进展, 2023, 42(3): 1118-1128. |
[12] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[13] | 张艺璇, 胡伟, 刘梦瑶, 鞠敬鸽, 赵义侠, 康卫民. 聚合物电解质在锌离子电池中的研究进展[J]. 化工进展, 2023, 42(3): 1397-1410. |
[14] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[15] | 马文杰, 姚卫棠. 共价有机框架(COFs)在锂离子电池中的应用[J]. 化工进展, 2023, 42(10): 5339-5352. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |