化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5342-5353.DOI: 10.16085/j.issn.1000-6613.2021-2646
冷南江(), 马国光(), 张涛, 雷洋, 彭豪, 熊祚帅, 陈玉婷
收稿日期:
2021-12-27
修回日期:
2022-03-12
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
马国光
作者简介:
冷南江(1996—),男,硕士研究生,研究方向为天然气集输与处理工艺。E-mail:410870045@qq.com。
LENG Nanjiang(), MA Guoguang(), ZHANG Tao, LEI Yang, PENG Hao, XIONG Zuoshuai, CHEN Yuting
Received:
2021-12-27
Revised:
2022-03-12
Online:
2022-10-20
Published:
2022-10-21
Contact:
MA Guoguang
摘要:
在使用单一甲基二乙醇胺(MDEA)溶液脱除天然气中H2S的过程中,随着有机硫含量不断地增加,常常造成出料气中H2S和总硫含量均不能满足国家二类天然气质量要求。在改变关键参数后,脱硫效果仍然不能改善。因此,本文针对高含量的有机硫,开展了MDEA+DIPA、MDEA+DEA、环丁砜+MDEA、环丁砜+DIPA 4组高效脱硫剂的复配研究,通过对比H2S及有机硫在溶液中的吸收分压,筛选出了吸收效果较优的脱硫剂组合为:环丁砜+MDEA。随后再利用BBD响应面分析法,以环丁砜、MDEA、H2O的不同配比为变量,以H2S和总硫脱除率最高为目标函数进行寻优,经过混料实验与复合优化,最终得出最优脱硫剂配比为:23.3%环丁砜+54.6%MDEA+22.1%H2O。最优配比脱硫剂经现场装置使用后的效果表明,H2S脱除率达到99.964%,总硫脱除率达到99.833%,出料气中H2S含量为14.4mg/m3,总硫含量为78.5mg/m3,满足二类气标准。
中图分类号:
冷南江, 马国光, 张涛, 雷洋, 彭豪, 熊祚帅, 陈玉婷. 高含有机硫天然气的净化研究与探索[J]. 化工进展, 2022, 41(10): 5342-5353.
LENG Nanjiang, MA Guoguang, ZHANG Tao, LEI Yang, PENG Hao, XIONG Zuoshuai, CHEN Yuting. Research and exploration on purification of natural gas with high organic sulfur content[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5342-5353.
组分 | 摩尔分数/% | 组分 | 摩尔分数/% | 组分 | 含量/mg·m-3 |
---|---|---|---|---|---|
CH4 | 44.079 | C6+ | 2.579 | COS | 18.16 |
C2H6 | 9.666 | O2 | 0.100 | CH3SH | 576.43 |
C3H8 | 8.166 | He | 0.020 | C2H5SH | 89.68 |
i-C4H10 | 1.709 | H2 | 0.100 | CS2 | 12.69 |
n-C4H10 | 5.507 | CO2 | 6.157 | ||
i-C5H12 | 2.479 | N2 | 13.394 | ||
n-C5H12 | 3.328 | H2S | 2.669 |
表1 进料气组成(干基)
组分 | 摩尔分数/% | 组分 | 摩尔分数/% | 组分 | 含量/mg·m-3 |
---|---|---|---|---|---|
CH4 | 44.079 | C6+ | 2.579 | COS | 18.16 |
C2H6 | 9.666 | O2 | 0.100 | CH3SH | 576.43 |
C3H8 | 8.166 | He | 0.020 | C2H5SH | 89.68 |
i-C4H10 | 1.709 | H2 | 0.100 | CS2 | 12.69 |
n-C4H10 | 5.507 | CO2 | 6.157 | ||
i-C5H12 | 2.479 | N2 | 13.394 | ||
n-C5H12 | 3.328 | H2S | 2.669 |
项目 | 装置设计参数 | 实际运行参数 |
---|---|---|
进料气量/104m3·d-1 | 40 | 22 |
进料气H2S含量/mg·m-3 | 20000 | 40000 |
进料气有机硫含量/mg·m-3 | 100 | 700 |
出料气H2S含量/mg·m-3 | ≤20 | 37 |
出料气有机硫含量/mg·m-3 | ≤100 | 84 |
脱硫负荷/t·d-1 | 8.05 | 10.5 |
进料气温度/℃ | 53 | 50 |
进料气压力/MPa | 2.5 | 2.5 |
脱硫剂配比(MDEA质量分数)/% | 40 | 40 |
MDEA溶液循环量/m3·h-1 | 26 | 22~24 |
表2 脱硫装置设计与实际运行参数
项目 | 装置设计参数 | 实际运行参数 |
---|---|---|
进料气量/104m3·d-1 | 40 | 22 |
进料气H2S含量/mg·m-3 | 20000 | 40000 |
进料气有机硫含量/mg·m-3 | 100 | 700 |
出料气H2S含量/mg·m-3 | ≤20 | 37 |
出料气有机硫含量/mg·m-3 | ≤100 | 84 |
脱硫负荷/t·d-1 | 8.05 | 10.5 |
进料气温度/℃ | 53 | 50 |
进料气压力/MPa | 2.5 | 2.5 |
脱硫剂配比(MDEA质量分数)/% | 40 | 40 |
MDEA溶液循环量/m3·h-1 | 26 | 22~24 |
单元 | 设备 | 参数 | 模拟 数据 | 实测 数据 | 误差 /% |
---|---|---|---|---|---|
脱硫单元 | MDEA吸收塔 | 顶部压力/MPa | 2.53 | 2.53 | 0 |
顶部温度/℃ | 50.46 | 50 | 0.90 | ||
底部压力/MPa | 2.72 | 2.72 | 0 | ||
底部温度/℃ | 52.05 | 52 | 0.96 | ||
净化气分离器 | 压力/MPa | 2.53 | 2.53 | 0 | |
温度/℃ | 47.46 | 48 | 1.13 | ||
硫化氢含量/mg·m-3 | 36.76 | 36 | 2.11 | ||
总硫含量/mg·m-3 | 126.46 | 123 | 3.10 | ||
再生单元 | MDEA再生塔 | 顶部压力/kPa | 80 | 80 | 0 |
顶部温度/℃ | 92.55 | 92 | 0.60 | ||
底部压力/kPa | 120 | 120 | 0 | ||
底部温度/℃ | 112.8 | 113 | 0.18 | ||
胺液循环量/m3·h-1 | 30 | 30 | 0 | ||
塔底重沸器 | 压力/kPa | 120 | 120 | 0 | |
温度/℃ | 112.8 | 113 | 0.18 |
表3 模拟参数与实际参数对比
单元 | 设备 | 参数 | 模拟 数据 | 实测 数据 | 误差 /% |
---|---|---|---|---|---|
脱硫单元 | MDEA吸收塔 | 顶部压力/MPa | 2.53 | 2.53 | 0 |
顶部温度/℃ | 50.46 | 50 | 0.90 | ||
底部压力/MPa | 2.72 | 2.72 | 0 | ||
底部温度/℃ | 52.05 | 52 | 0.96 | ||
净化气分离器 | 压力/MPa | 2.53 | 2.53 | 0 | |
温度/℃ | 47.46 | 48 | 1.13 | ||
硫化氢含量/mg·m-3 | 36.76 | 36 | 2.11 | ||
总硫含量/mg·m-3 | 126.46 | 123 | 3.10 | ||
再生单元 | MDEA再生塔 | 顶部压力/kPa | 80 | 80 | 0 |
顶部温度/℃ | 92.55 | 92 | 0.60 | ||
底部压力/kPa | 120 | 120 | 0 | ||
底部温度/℃ | 112.8 | 113 | 0.18 | ||
胺液循环量/m3·h-1 | 30 | 30 | 0 | ||
塔底重沸器 | 压力/kPa | 120 | 120 | 0 | |
温度/℃ | 112.8 | 113 | 0.18 |
序号 | 组合 | 配比 |
---|---|---|
1 | MDEA+DIPA | 15%MDEA+40%DIPA+45%H2O |
2 | MDEA+DEA | 35%MDEA+20%DEA+45%H2O |
3 | 环丁砜+MDEA | 30%环丁砜+50%MDEA+20%H2O |
4 | 环丁砜+DIPA | 30%环丁砜+50%DIPA+20%H2O |
表4 溶解吸收效果较好的脱硫剂溶液配比
序号 | 组合 | 配比 |
---|---|---|
1 | MDEA+DIPA | 15%MDEA+40%DIPA+45%H2O |
2 | MDEA+DEA | 35%MDEA+20%DEA+45%H2O |
3 | 环丁砜+MDEA | 30%环丁砜+50%MDEA+20%H2O |
4 | 环丁砜+DIPA | 30%环丁砜+50%DIPA+20%H2O |
序号 | 设计矩阵 | 实验结果 | |||
---|---|---|---|---|---|
X1 | X2 | X3 | Y1/% | Y2/% | |
1 | 0.22 | 0.55 | 0.23 | 99.9722 | 99.6524 |
2 | 0.27 | 0.55 | 0.18 | 99.5680 | 99.5610 |
3 | 0.237 | 0.547 | 0.217 | 99.9502 | 99.8670 |
4 | 0.24 | 0.52 | 0.24 | 99.9320 | 99.8210 |
5 | 0.27 | 0.525 | 0.205 | 99.8174 | 99.6560 |
6 | 0.248 | 0.528 | 0.224 | 99.9230 | 99.8320 |
7 | 0.245 | 0.55 | 0.205 | 99.9561 | 99.8270 |
8 | 0.259 | 0.539 | 0.202 | 99.8508 | 99.6700 |
9 | 0.22 | 0.55 | 0.23 | 99.9702 | 99.8326 |
10 | 0.234 | 0.536 | 0.229 | 99.9445 | 99.8448 |
11 | 0.257 | 0.514 | 0.229 | 99.8564 | 99.7131 |
12 | 0.27 | 0.525 | 0.205 | 99.8744 | 99.6230 |
13 | 0.24 | 0.52 | 0.24 | 99.9628 | 99.8680 |
14 | 0.27 | 0.5 | 0.23 | 99.9114 | 99.1331 |
15 | 0.27 | 0.5 | 0.23 | 99.9065 | 99.1800 |
16 | 0.27 | 0.55 | 0.18 | 99.6480 | 99.6304 |
表5 混料优化的响应面实验设计与结果
序号 | 设计矩阵 | 实验结果 | |||
---|---|---|---|---|---|
X1 | X2 | X3 | Y1/% | Y2/% | |
1 | 0.22 | 0.55 | 0.23 | 99.9722 | 99.6524 |
2 | 0.27 | 0.55 | 0.18 | 99.5680 | 99.5610 |
3 | 0.237 | 0.547 | 0.217 | 99.9502 | 99.8670 |
4 | 0.24 | 0.52 | 0.24 | 99.9320 | 99.8210 |
5 | 0.27 | 0.525 | 0.205 | 99.8174 | 99.6560 |
6 | 0.248 | 0.528 | 0.224 | 99.9230 | 99.8320 |
7 | 0.245 | 0.55 | 0.205 | 99.9561 | 99.8270 |
8 | 0.259 | 0.539 | 0.202 | 99.8508 | 99.6700 |
9 | 0.22 | 0.55 | 0.23 | 99.9702 | 99.8326 |
10 | 0.234 | 0.536 | 0.229 | 99.9445 | 99.8448 |
11 | 0.257 | 0.514 | 0.229 | 99.8564 | 99.7131 |
12 | 0.27 | 0.525 | 0.205 | 99.8744 | 99.6230 |
13 | 0.24 | 0.52 | 0.24 | 99.9628 | 99.8680 |
14 | 0.27 | 0.5 | 0.23 | 99.9114 | 99.1331 |
15 | 0.27 | 0.5 | 0.23 | 99.9065 | 99.1800 |
16 | 0.27 | 0.55 | 0.18 | 99.6480 | 99.6304 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 1.96×10-1 | 6 | 3.20×10-2 | 33.24 | <0.0001 | 显著 |
线性混合 | 1.50×10-1 | 2 | 7.50×10-2 | 77.25 | <0.0001 | 显著 |
X1X2 | 2.47×10-3 | 1 | 2.47×10-3 | 2.56 | 0.1443 | 不显著 |
X1X3 | 2.50×10-2 | 1 | 2.50×10-2 | 26.16 | 0.0006 | 显著 |
X2X3 | 1.20×10-2 | 1 | 1.20×10-2 | 12.24 | 0.0067 | 显著 |
X1X2X3 | 6.45×10-3 | 1 | 6.45×10-3 | 6.69 | 0.0294 | 显著 |
失拟项 | 3.37×10-3 | 4 | 8.42×10-4 | 0.79 | 0.5772 | 不显著 |
残差 | 8.68×10-3 | 9 | 9.65×10-4 | — | — | — |
总和 | 2.04×10-1 | 15 | — | — | — | — |
表6 H2S脱除率ANOVA(方差)模型
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著水平 |
---|---|---|---|---|---|---|
模型 | 1.96×10-1 | 6 | 3.20×10-2 | 33.24 | <0.0001 | 显著 |
线性混合 | 1.50×10-1 | 2 | 7.50×10-2 | 77.25 | <0.0001 | 显著 |
X1X2 | 2.47×10-3 | 1 | 2.47×10-3 | 2.56 | 0.1443 | 不显著 |
X1X3 | 2.50×10-2 | 1 | 2.50×10-2 | 26.16 | 0.0006 | 显著 |
X2X3 | 1.20×10-2 | 1 | 1.20×10-2 | 12.24 | 0.0067 | 显著 |
X1X2X3 | 6.45×10-3 | 1 | 6.45×10-3 | 6.69 | 0.0294 | 显著 |
失拟项 | 3.37×10-3 | 4 | 8.42×10-4 | 0.79 | 0.5772 | 不显著 |
残差 | 8.68×10-3 | 9 | 9.65×10-4 | — | — | — |
总和 | 2.04×10-1 | 15 | — | — | — | — |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著水平 |
---|---|---|---|---|---|---|
合计 | 8.43×10-5 | 15 | — | — | — | — |
模型 | 7.97×10-5 | 5 | 1.42×10-5 | 30.3 | < 0.0001 | 显著 |
线性混合 | 3.88×10-5 | 2 | 1.94×10-5 | 41.5 | < 0.0001 | 显著 |
X1X2 | 3.11×10-5 | 1 | 3.11×10-5 | 66.5 | < 0.0001 | 显著 |
X1X3 | 1.89×10-6 | 1 | 1.89×10-6 | 4.04 | 0.0722 | 不显著 |
X2X3 | 7.86×10-6 | 1 | 7.86×10-6 | 16.8 | 0.0021 | 显著 |
失拟项 | 2.53×10-6 | 5 | 5.06×10-7 | 1.18 | 0.4292 | 不显著 |
残差 | 4.67×10-6 | 10 | 4.67×10-7 | — | — | — |
表7 总硫脱除率ANOVA(方差)分析
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著水平 |
---|---|---|---|---|---|---|
合计 | 8.43×10-5 | 15 | — | — | — | — |
模型 | 7.97×10-5 | 5 | 1.42×10-5 | 30.3 | < 0.0001 | 显著 |
线性混合 | 3.88×10-5 | 2 | 1.94×10-5 | 41.5 | < 0.0001 | 显著 |
X1X2 | 3.11×10-5 | 1 | 3.11×10-5 | 66.5 | < 0.0001 | 显著 |
X1X3 | 1.89×10-6 | 1 | 1.89×10-6 | 4.04 | 0.0722 | 不显著 |
X2X3 | 7.86×10-6 | 1 | 7.86×10-6 | 16.8 | 0.0021 | 显著 |
失拟项 | 2.53×10-6 | 5 | 5.06×10-7 | 1.18 | 0.4292 | 不显著 |
残差 | 4.67×10-6 | 10 | 4.67×10-7 | — | — | — |
名称 | 目标 | 最小限制 | 最大限制 | 重要系数 |
---|---|---|---|---|
环丁砜占比 | 范围值 | 0.22 | 0.27 | 1 |
MDEA占比 | 范围值 | 0.5 | 0.55 | 1 |
H2O占比 | 范围值 | 0.18 | 0.24 | 1 |
H2S脱除率 | 最大化 | 99.568% | 99.9722% | 5 |
总硫脱除率 | 最大化 | 99.1331% | 99.868% | 5 |
表8 复合优化目标
名称 | 目标 | 最小限制 | 最大限制 | 重要系数 |
---|---|---|---|---|
环丁砜占比 | 范围值 | 0.22 | 0.27 | 1 |
MDEA占比 | 范围值 | 0.5 | 0.55 | 1 |
H2O占比 | 范围值 | 0.18 | 0.24 | 1 |
H2S脱除率 | 最大化 | 99.568% | 99.9722% | 5 |
总硫脱除率 | 最大化 | 99.1331% | 99.868% | 5 |
项目 | 原配方 | 优化后 |
---|---|---|
脱硫剂配方 | MDEA∶H2O=40∶60 | 环丁砜∶MDEA∶H2O=23.3∶54.6∶22.1 |
出料气H2S含量/mg·m-3 | 37 | 14.4 |
出料气总硫含量/mg·m-3 | 121 | 78.5 |
H2S脱除率/% | 99.91 | 99.964 |
总硫脱除率/% | 99.74 | 99.833 |
表9 优化前后的相关指标对比
项目 | 原配方 | 优化后 |
---|---|---|
脱硫剂配方 | MDEA∶H2O=40∶60 | 环丁砜∶MDEA∶H2O=23.3∶54.6∶22.1 |
出料气H2S含量/mg·m-3 | 37 | 14.4 |
出料气总硫含量/mg·m-3 | 121 | 78.5 |
H2S脱除率/% | 99.91 | 99.964 |
总硫脱除率/% | 99.74 | 99.833 |
1 | 汤晟, 孙永尧. 塔河油田某天然气处理装置优化升级改造及效果评价[J]. 石油与天然气化工, 2021, 50(4): 33-38. |
TANG Sheng, SUN Yongyao. Optimization upgrade and effect evaluation of a natural gas treatment unit in Tahe oilfield[J]. Chemical engineering of oil & gas, 2021, 50(4): 33-38. | |
2 | 陈昌介, 何金龙, 温崇荣. 高含硫天然气净化技术现状及研究方向[J]. 天然气工业, 2013, 33(1): 112-115. |
CHEN Changjie, HE Jinlong, WEN Chongrong. A state of the art of high-sulfur natural gas sweetening technology and its research direction[J]. Natural Gas Industry, 2013, 33(1): 112-115. | |
3 | 黄维和, 唐蒙, 常宏岗, 等. 天然气: [S]. 北京: 中国标准出版社, 2018. |
HUANG Weihe, TANG Meng, CHANG Honggang, et al. Natural gas: [S]. Beijing: Standards Press of China, 2018. | |
4 | 赵凌霜, 王闯. 基于HYSYS软件的MDEA溶液进料参数研究[J]. 石油化工建设, 2021, 43(S1): 112-115. |
ZHAO Lingshuang, WANG Chuang. Research on feeding parameters of MDEA solution based on HYSYS software[J]. Petroleum and Chemical Construction, 2021, 43(S1): 112-115. | |
5 | 杨超越, 刘可, 李林峰, 等. 天然气净化装置影响有机硫脱除的因素研究[J]. 石油与天然气化工, 2021, 50(2): 9-16. |
YANG Chaoyue, LIU Ke, LI Linfeng, et al. Research on the factors affecting organic sulfur removal of natural gas purification unit[J]. Chemical Engineering of Oil & Gas, 2021, 50(2): 9-16. | |
6 | 马孟平, 吕岳琴, 万书华, 等. 深度脱除高含硫天然气中有机硫的Sulfinol-X脱硫工艺[J]. 天然气工业, 2021, 41(10): 127-132. |
MA Mengping, Yueqin LYU, WAN Shuhua, et al. Sulfinol-X desulfurization process for deep removal of organic sulfur from high-sulfur natural gas[J]. Natural Gas Industry, 2021, 41(10): 127-132. | |
7 | 唐建峰, 李晶, 陈杰, 等. TEA+DETA混合胺液脱除天然气中H2S性能优选[J]. 石油学报, 2015, 36(8): 1004-1011. |
TANG Jianfeng, LIjing, CHEN Jie, et al. Optimization on the performance of H2S removal from natural gas by TEA+DETA mixed amine solution[J]. Acta Petrolei Sinica, 2015, 36(8): 1004-1011. | |
8 | 李晶. 天然气选择性脱硫胺液配方筛选实验研究[D]. 青岛: 中国石油大学(华东), 2016. |
LI Jing. Experimental study on screening formula of amine solution in natural gas selective desulfurization[D]. Qingdao: China University of Petroleum(East China), 2016. | |
9 | 姚丽蓉, 赵德银, 崔伟, 等. 基于响应面分析法的天然气脱氮工艺优化[J]. 天然气化工(C1化学与化工), 2020, 45(6): 75-81. |
YAO Lirong, ZHAO Deyin, CUI Wei, et al. Optimization of nitrogen rejection process based on response surface analysis[J]. Natural Gas Chemical Industry, 2020, 45(6): 75-81. | |
10 | 石晓青, 朱炜玄, 叶昊天, 等. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2021: 1-14. |
SHI Xiaoqing, ZHU Weixuan, YE Haotian, et al. Pretreatment process simulation and multi-objective optimization of C5 by reactive dividing wall column[J]. CIESC Journal, 2021: 1-14. | |
11 | 余小翠, 刘高峰. 响应面分析法在中药提取和制备工艺中的应用[J]. 中药材, 2010, 33(10): 1651-1655. |
YU Xiaocui, LIU Gaofeng. Application of response surface methodology in extraction and preparation of traditional Chinese medicine[J]. Journal of Chinese Medicinal Materials, 2010, 33(10): 1651-1655. | |
12 | 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45. |
LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory, 2015, 34(8): 41-45. | |
13 | 梁平, 卢海东, 张哲, 等. 长庆油田某天然气净化厂实现GB 17820—2018达标工艺方案研究[J]. 石油与天然气化工, 2020, 49(1): 1-7. |
LIANG Ping, LU Haidong, ZHANG Zhe, et al. Process scheme study on the realization of GB 17820—2018 standardization in a natural gas purification plant of Changqing Oilfield[J]. Chemical Engineering of Oil & Gas, 2020, 49(1): 1-7. | |
14 | 马国光, 曹连进, 钟荣强, 等. 塔二联轻烃站脱硫系统参数调整分析[J]. 石油与天然气化工, 2015, 44(1): 21-24. |
MA Guoguang, CAO Lianjin, ZHONG Rongqiang, et al. Parameters adjustment analysis of desulfurization system of Tahe 2# light hydrocarbon station[J]. Chemical Engineering of Oil & Gas, 2015, 44(1): 21-24. | |
15 | 高明, 苏昊, 冯志远, 等. Aspen HYSYS酸性气流体包的应用及有机硫计算分析[J]. 石油与天然气化工, 2021, 50(4): 39-46. |
GAO Ming, SU Hao, FENG Zhiyuan, et al. Application of acid gas fluid packages in Aspen HYSYS and analysis and calculation of organic sulfur[J]. Chemical engineering of oil & gas, 2021, 50(4): 39-46. | |
16 | 韩鹏飞, 蒋洪, 韩勇. 活化MDEA半贫液工艺脱碳模拟与研究[J]. 石油化工应用, 2017, 36(1): 139-144. |
HAN Pengfei, JIANG Hong, HAN Yong. Simulation and research of the activated MDEA method Semi-lean process based on HYSYS[J]. Petrochemical Industry Application, 2017, 36(1): 139-144. | |
17 | 商剑峰, 邱敏, 姬忠礼. 高含硫天然气脱酸气装置提效降耗优化[J]. 天然气工业, 2019, 39(2): 102-110. |
SHANG Jianfeng, QIU Min, JI Zhongli. Efficiency improvement, consumption reduction and optimization of high-sulfur natural gas sweetening units[J]. Natural Gas Industry, 2019, 39(2): 102-110. | |
18 | 付东, 华雪莹, 徐怡斐, 等. 醇胺水溶液粘度的实验和理论研究[J]. 化学学报, 2011, 69(7): 772-776. |
FU Dong, HUA Xueying, XU Yifei, et al. Experimental and theoretical study on the viscosity of aqueous solution of alkanol amines[J]. Acta Chimica Sinica, 2011, 69(7): 772-776. | |
19 | 罗威. 天然气脱硫脱碳净化工艺技术研究[D]. 大庆: 东北石油大学, 2013. |
LUO wei. Study on desulphurization and decarbonization of natural gas purification technology[D]. Daqing: Northeast Petroleum University, 2013. | |
20 | 谭更彬, 王志泉, 吴钟旺. 天然气脱除硫化氢的研究[J]. 应用化工, 2020, 49(12): 3108-3110. |
TAN Gengbin, WANG Zhiquan, WU Zhongwang. Study on removal of hydrogen sulfide from natural gas[J]. Applied Chemical Industry, 2020, 49(12): 3108-3110. | |
21 | 王金玉, 王治红, 黄志宇. 高含硫天然气净化工艺技术进展[J]. 石油化工应用, 2008, 27(6): 4-8. |
WANG Jinyu, WANG Zhihong, HUANG Zhiyu. High sour natural gas purifying technology processing[J]. Petrochemical Industry Application, 2008, 27(6): 4-8. | |
22 | 毛松柏, 周志斌, 朱道平, 等. 选择性脱除克劳斯硫回收装置尾气中硫化物的研究[J]. 能源化工, 2017, 38(3): 30-34. |
MAO Songbai, ZHOU Zhibin, ZHU Daoping. Study on selective removal of sulfur compounds from Claus unit tail gas[J]. Energy Chemical Industry, 2017, 38(3): 30-34. | |
23 | 唐建峰, 张春, 郭清, 等. 海上浮式液化天然气脱酸气技术[J]. 化工进展, 2011, 30(10): 2178-2185. |
TANG Jianfeng, ZHANG Chun, GUO Qing, et al. Offshore floating LNG acid gas removal process technology[J]. Chemical Industry and Engineering Progress, 2011, 30(10): 2178-2185. | |
24 | 常军, 张利波, 彭金辉, 等. 微波强化焙烧氧化锌烟尘提铟工艺优化研究[J]. 有色金属(冶炼部分), 2018(3): 39-44. |
CHANG jun, ZHANG Libo, PENG Jinhui, et al. Optimization extraction of indium by microwave enhanced roasting process from zinc oxide dust[J]. Nonferrous Metals(Extractive Metallurgy), 2018(3): 39-44. | |
25 | 王元丰, 余弘, 谭思思, 等. 棉织物泡沫染色工艺的筛选和优化[J]. 纺织学报, 2014, 35(3): 68-74. |
WANG Yuanfeng, YU Hong, TAN Sisi, et al. Selecting and optimizing of parameters of foam dyeing process of cotton fabrics[J]. Journal of Textile Research, 2014, 35(3): 68-74. |
[1] | 闫青, 张云峰, 赵敏伟, 宋宁, 高辉, 周静. LNG接收站大跨距补偿平台的可行性分析[J]. 化工进展, 2023, 42(S1): 158-165. |
[2] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[3] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[4] | 于姗, 段元刚, 张怡欣, 唐春, 付梦瑶, 黄靖元, 周莹. 分步法分解硫化氢制氢和硫黄催化剂研究进展[J]. 化工进展, 2023, 42(7): 3780-3790. |
[5] | 龚陈俊, 梅道锋. 钨修饰对镍载氧体的沼气化学链重整制氢性能影响[J]. 化工进展, 2023, 42(4): 2130-2141. |
[6] | 袁礼, 王学谦, 李翔, 王郎郎, 马懿星, 宁平, 熊亦然. 催化脱除钢铁副产煤气中COS和H2S的研究进展[J]. 化工进展, 2023, 42(10): 5147-5161. |
[7] | 张潇, 王占一, 吴峙颖, 刘玉婷, 刘子龙, 刘欣佳, 张遂安. 压裂支撑剂的覆膜改性技术[J]. 化工进展, 2023, 42(1): 386-400. |
[8] | 张辛亥, 赵思琛, 朱辉, 王凯, 张首石. 活性碳纤维负载型脱硫剂在矿井气体环境条件下的应用[J]. 化工进展, 2022, 41(S1): 415-423. |
[9] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
[10] | 贾文龙, 孙溢彬, 汤丁, 陈家文, 雷思罗, 李长俊. 基于支持向量机的输气管道泄漏压降信号智能识别方法[J]. 化工进展, 2022, 41(9): 4713-4722. |
[11] | 王玉娟, 唐建峰, 花亦怀, 陈静, 桑伟, 刘云飞. 不同开车工况对天然气脱碳装置响应特性影响[J]. 化工进展, 2022, 41(4): 1770-1780. |
[12] | 马小娟, 王彧斐, 冯霄. 天然气水合物开采平台能量系统优化[J]. 化工进展, 2022, 41(3): 1667-1676. |
[13] | 陈伟锋, 尚娟, 邢百汇, 魏皓天, 顾超华, 花争立. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
[14] | 张学民, 张山岭, 李鹏宇, 黄婷婷, 尹绍奇, 李金平, 王英梅. 多孔介质中CO2-CH4水合物置换的影响因素及强化机理研究进展[J]. 化工进展, 2022, 41(10): 5259-5271. |
[15] | 徐波, 文静, 刘润昌, 李烨楠, 徐炳科, 江丽. 天然气开采企业生态环境保护监督要点探讨[J]. 化工进展, 2021, 40(S2): 456-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |