化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 402-410.DOI: 10.16085/j.issn.1000-6613.2021-0493
付成林1,2(), 伍永钢1,2(
), 胡谦1,2, 程玉虎1,2
收稿日期:
2021-03-11
修回日期:
2021-06-01
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
伍永钢
作者简介:
付成林(1995—),男,硕士研究生,研究方向为微生物电解池。E-mail:基金资助:
FU Chenglin1,2(), WU Yonggang1,2(
), HU Qian1,2, CHENG Yuhu1,2
Received:
2021-03-11
Revised:
2021-06-01
Online:
2021-11-12
Published:
2021-11-12
Contact:
WU Yonggang
摘要:
构建了以碳毡(A-MEC)和碳刷(B-MEC)为电极材料的微生物电解池(microbial electrolysis cell, MEC)处理实际垃圾渗滤液,研究不同外加电压条件下反应器的运行特性。结果表明,外加电压对MEC系统污染物去除率有显著影响且呈正相关性,外加电压升高到1.2V时,A-MEC和B-MEC对垃圾渗滤液中COD的最大去除率分别为48.23%±0.22%和70.21%±1.12%,
中图分类号:
付成林, 伍永钢, 胡谦, 程玉虎. 负载两种不同电极材料MEC处理实际垃圾渗滤液的运行特性[J]. 化工进展, 2021, 40(S2): 402-410.
FU Chenglin, WU Yonggang, HU Qian, CHENG Yuhu. Operation characteristics of MEC load with two different electrode materials for actual landfill leachate treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 402-410.
组分 | 范围 |
---|---|
化学需氧量/mg·L-1 | 858±45 |
氨氮/mg·L-1 | 270±13 |
总氮/mg·L-1 | 278±15 |
pH | 7.01±0.21 |
电导率/ms·cm-1 | 4.81±0.57 |
色度 | 653±28 |
浊度/NTU | 150.8±12.3 |
表1 本实验所用垃圾渗滤液化学指标
组分 | 范围 |
---|---|
化学需氧量/mg·L-1 | 858±45 |
氨氮/mg·L-1 | 270±13 |
总氮/mg·L-1 | 278±15 |
pH | 7.01±0.21 |
电导率/ms·cm-1 | 4.81±0.57 |
色度 | 653±28 |
浊度/NTU | 150.8±12.3 |
样品 | E254 | E365/ E 250 | E253/ E203 |
---|---|---|---|
进水 | 4.4883 | 0.4492 | 1.1127 |
A-MEC | 3.5236 | 0.5305 | 1.0045 |
B-MEC | 2.3662 | 0.4246 | 0.7979 |
表2 进水与出水特征波长的比较
样品 | E254 | E365/ E 250 | E253/ E203 |
---|---|---|---|
进水 | 4.4883 | 0.4492 | 1.1127 |
A-MEC | 3.5236 | 0.5305 | 1.0045 |
B-MEC | 2.3662 | 0.4246 | 0.7979 |
1 | 熊建英,郑正. 垃圾填埋场渗滤液溶解性有机质特性及其去除技术综述[J]. 环境化学, 2015, 34(1): 44-53. |
XIONG Jianying, ZHENG Zheng. Characteristics of the dissolved organic matter in landfill leachate and their removal technology: a review [J]. Environmental Chemistry, 2015, 34(1): 44-53. | |
2 | RENOU S, GIVANDAN J G, POULAIN S, et al. Landfill leachate treatment: review and opportunity[J]. Journal of Hazardous Materials, 2008, 150(3): 468-493. |
3 | 王志科,张兴,赵峥,等. 垃圾渗滤液处理方法研究进展[J]. 绿色科技, 2020(2): 113-116. |
WANG Zhike, ZHANG Xing, ZHAO Zheng, et al. Research progress of landfill leachate treatment[J]. Journal of Green Science and Technology, 2020(2): 113-116. | |
4 | LOGAN B E, CALL D, CHENG S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23): 8630-8640. |
5 | QIN B, LUO H, LIU G, et al. Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresource Technology, 2012, 121: 458-461. |
6 | WAGNER R C, REGAN J M, OH S, et al. Hydrogen and methane production from swine wastewater using microbial electrolysis cells[J]. Water Research, 2009, 43(5): 1480-1488. |
7 | SHEN R, ZHAO L, LU J, et al. Treatment of recalcitrant wastewater and hydrogen production via microbial electrolysis cells[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(5): 179-189. |
8 | MAHMOUD M, PARAMESWARAN P, TORRES C I, et al. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell[J]. Bioresource Technology, 2014, 151: 151-158. |
9 | RANI G, NABI Z, RAJESH BANU J, et al. Batch fed single chambered microbial electrolysis cell for the treatment of landfill leachate[J]. Renewable Energy, 2020, 153: 168-174. |
10 | MANSOORIAN H J, MAHVI A, NABIZADEH R, et al. Evaluating the performance of coupled MFC-MEC with graphite felt/MWCNTs polyscale electrode in landfill leachate treatment, and bioelectricity and biogas production[J]. Journal of Environmental Health Science and Engineering, 2020, 18(2): 1067-1082. |
11 | MAHMOUD M, TORRES C I, RITTMANN B E. Changes in glucose fermentation pathways as a response to the free ammonia concentration in microbial electrolysis cells[J]. Environmental Science & Technology, 2017, 51(22): 13461-13470. |
12 | 夏函青,伍永钢,付成林,等. 人工湿地-微生物电解池耦合系统的脱氮特性[J]. 化工进展, 2020, 39(11): 4677-4684. |
XIA Hanqing, WU Yonggang, FU Chenglin, et al. Nitrogen removal characteristics of the coupling system of constructed wetland and microbial electrolysis cell[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4677-4684 | |
13 | 王为,骆海萍,刘广立,等. 利用微生物电解池处理牛奶废水过程中产电菌落与产氢性能之间的关系[J]. 微生物学通报, 2013, 40(11): 2075-2082. |
WANG Wei, LUO Haiping, LIU Guangli, et al. Exoelectrogens community analysis and hydrogen production in the microbial electrolysis cell using dairy wastewater[J]. Microbiology China, 2013, 40(11): 2075-2082. | |
14 | 王晓洁,曾艺芳,张鹏帅,等. 外加电压对微生物电解池性能影响研究[J]. 海峡科学, 2017(10): 3-5. |
WANG Xiaojie, ZENG Yifang, ZHANG Pengshuai, et al. Study on the influence of applied voltage on the performance of microorganism electrolytic cell[J]. Straits Science, 2017(10): 3-5. | |
15 | 于瑞娟. BES处理尿液的影响因素及能源回收资源化研究[D].西安:陕西科技大学, 2019. |
YU Ruijuan. Study on the influencing factors and the resource of energy recovery of the urine treated by BES[D]. Xi’an: Shaanxi University of Science and Technology, 2019. | |
16 | LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14): 5488-5493. |
17 | FENG Q, XU L, LIU C, et al. Treatment of shale gas fracturing wastewater using microbial fuel cells: mixture of aging landfill leachate and traditional aerobic sludge as catholyte[J]. Journal of Cleaner Production, 2020, 269: 121776. |
18 | KARGI F, CATALKAYA E C. Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8252-8260. |
19 | LI X M, CHENG K Y, SELVAM A, et al. Bioelectricity production from acidic food waste leachate using microbial fuel cells: effect of microbial inocula[J]. Process Biochemistry, 2013, 48(2): 283-288. |
20 | HUI H, WANG H, MO Y, et al. A three-stage fixed-bed electrochemical reactor for biologically treated landfill leachate treatment[J]. Chemical Engineering Journal, 2019, 376: 121026. |
21 | 王凡. 采用ANAMMOX工艺系统处理中晚期垃圾渗滤液试验研究[D]. 苏州: 苏州科技大学, 2018. |
WANG Fan. Study on the ANAMMOX process system for the treatment of middle-late landfill leachate[D]. Suzhou:Suzhou University of Science and Technology, 2018. | |
22 | 孙翼虎,孙铁刚,李小明,等. 混凝+芬顿法对中晚期垃圾渗滤液色度去除[J]. 环境工程学报, 2013, 7(6): 2116-2120. |
SUN Yihu, SUN Tiegang, LI Xiaoming, et al. Color removal in aged landfill leachate by process of coagulation-flocculation and Fenton[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2116-2120. | |
23 | KANG K, SHIN H S, PARK H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36(16): 4023-4032. |
24 | 贾陈忠,刘松,张彩香,等. 光催化氧化降解垃圾渗滤液中溶解性有机物[J]. 环境工程学报, 2013, 7(2): 451-456. |
JIA Chenzhong, LIU Song, ZHANG Caixiang, et al. Degradation of dissolved organic matter in landfill leachate during photocatalytic treatment process[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 451-456. | |
25 | CLEMENT B, THOMAS O. Application of ultra-violet spectrophotometry and gel permeation chromatography to the characterization of landfill leachates[J]. Environmental Technology, 1995, 16(4): 367-377. |
26 | SHAO Z, HE P, ZHANG D, et al. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste[J]. Journal of Hazardous Materials, 2009, 164(2-3): 1191-1197. |
27 | KORSHIN G V, LI C, BENJAMIN M M. Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory[J]. Water Research, 1997, 31(7): 1787-1795. |
28 | LYGEROS J, KOUTROUMPAS K, DIMOPOULOS S, et al. Stochastic hybrid modeling of DNA replication across a complete genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12295-12300. |
29 | BAEK G, SAIKALY P E, LOGAN B E. Addition of a carbon fiber brush improves anaerobic digestion compared to external voltage application[J]. Water Research, 2021, 188: 116575. |
30 | PUIG S, SERRA M, COMA M, et al. Microbial fuel cell application in landfill leachate treatment[J]. Journal of Hazardous Materials, 2011, 185(2/3): 763-767. |
31 | 曹琳,雍晓雨,周俊,等. 以沼液为原料的微生物燃料电池产电降解特性[J]. 化工学报, 2014, 65(5): 1900-1905. |
CAO Lin, YONG Xiaoyu, ZHOU Jun, et al. Electrical and degradation characteristics of microbial fuel cell using biogas slurry as substrate[J]. CIESC Journal, 2014, 65(5): 1900-1905. | |
32 | 高岩,周北海,孙晨,等. 闲置厌氧氨氧化微生物的启动及微生物分析[J]. 环境保护科学, 2017, 43(5): 43-50. |
GAO Yan, ZHOU Beihai, SUN Chen, et al. Nitrogen removal performance of anammox biomass during the restarting after a long-term abandoning and microbial community analysis[J]. Environmental Protection Science, 2017, 43(5):43-50 | |
33 | LI C, PAN G, WANG X, et al. The effects of non-metallic organic tanning agents on the microbial community structure in wastewater[J]. Journal of Cleaner Production, 2021, 279: 123553. |
34 | 蔡丽云,黄泽彬,须子唯,等. 处理垃圾渗滤液的SBR中微生物种群与污泥比阻[J]. 环境科学, 2018, 39(2): 880-888. |
CAI Liyun, HUANG Zemin, XU Ziwei, et al. Microbial communities and sludge specific resistance in two SBR s treating leachate[J]. Environmental Science, 2018, 39(2): 880-888. | |
35 | PEREZ M C, ALVAREZ-HORNOS F J, ENGESER K H, et al. Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam[J]. New Biotechnology, 2016, 33(2): 263-272. |
36 | SAHEB ALAM S, PERSSON F, WILEN B M, et al. Response to starvation and microbial community composition in microbial fuel cells enriched on different electron donors[J]. Microbial Biotechnology, 2019, 12(5): 962-975. |
37 | SHANG L, ZHANG Z, YU Y, et al. Performance of CSTR-EGSB-SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis[J]. Environmental Science and Pollution Research, 2017, 24(16): 14387-14395. |
38 | PHAM T H, BOON N, AELTERMAN P, et al. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer[J]. Applied Microbiology and Biotechnology, 2008, 77(5): 1119-1129. |
[1] | 徐沛, 贾璇, 王勇, 亓雪娇, 赵玉娇, 李鸣晓. 流场对MEC生物阴极CO2还原性能与产物的影响[J]. 化工进展, 2022, 41(7): 3816-3823. |
[2] | 郑小梅, 林茹晶, 周文静, 徐泠, 张洪宁, 张昕颖, 谢丽. 微生物电解池辅助CO2甲烷化阴极材料的研究进展[J]. 化工进展, 2022, 41(5): 2476-2486. |
[3] | 温嘉玮, 杨晨林, 成建凤, 黄国勇, 郭学益. 尖晶石型三元高电压正极材料的合成及其性能[J]. 化工进展, 2022, 41(11): 5968-5976. |
[4] | 刘鹏程, 许思传. PEMFC电堆动态工况响应性能试验[J]. 化工进展, 2021, 40(6): 3172-3180. |
[5] | 徐世昌, 崔兰英, 解利昕, 宿立波. 蒸发气相吸收耦合方法处理垃圾渗滤液[J]. 化工进展, 2021, 40(5): 2852-2858. |
[6] | 赵煜, 李佳, 杨冬花, 王改, 张杰, 王玉雪. MoS2/Y分子筛微生物电解池阴极材料制备及其电化学性能[J]. 化工进展, 2021, 40(5): 2695-2702. |
[7] | 夏函青, 伍永钢, 付成林, 胡谦. 人工湿地-微生物电解池耦合系统的脱氮特性[J]. 化工进展, 2020, 39(11): 4677-4684. |
[8] | 孙和临,邵琼丽,李建昌,郑金柱,许坤德,龙宪钢. 温度对MEC阳极膜形成及胞外聚合物的影响[J]. 化工进展, 2019, 38(08): 3809-3815. |
[9] | 夏珺, 蔡一地, 张俊丰, 黄妍. 高温烟气蒸发垃圾渗滤液膜浓缩液的挥发性有机物[J]. 化工进展, 2019, 38(05): 2845-2490. |
[10] | 薛雯丹, 王博, 李凤祥, 周启星, 高冠道, 李亚宁. 磺胺甲(口恶)唑对微生物电解池阳极微生物群落结构影响[J]. 化工进展, 2018, 37(07): 2790-2797. |
[11] | 王博, 高冠道, 李凤祥, 周启星, 宋晓静, 翟欢欢, 李亚宁. 微生物电解池应用研究进展[J]. 化工进展, 2017, 36(03): 1084-1092. |
[12] | 李道豫, 邱志远, 李学武, 冯文昕, 周培. 铝在高压直流输电系统中高电压高温下的腐蚀行为研究[J]. 化工进展, 2016, 35(S2): 92-98. |
[13] | 马缓,齐暑华,张帆,史金玲. 复合填料/聚丙烯酸酯导电压敏胶的制备与性能[J]. 化工进展, 2014, 33(07): 1791-1795. |
[14] | 吴云1,2,董玉1,张贤明1,陈国需2. 短程蒸馏条件对废润滑油再生馏分色度的影响[J]. 化工进展, 2014, 33(05): 1312-1316. |
[15] | 吴婷婷,朱葛夫,邹 然,刘 琳,黄 栩,刘超翔. 发酵制氢废液的微生物电解池产氢[J]. 化工进展, 2013, 32(06): 1435-1438. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 704
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |