化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 88-100.DOI: 10.16085/j.issn.1000-6613.2021-0336
刘曾奇1(), 刘智琪1, 王逸伟2(), 刘爱贤2, 孙强1, 杨兰英1, 郭绪强2
收稿日期:
2021-02-19
修回日期:
2021-03-04
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
王逸伟
作者简介:
刘曾奇(1994—),男,博士研究生,研究方向为流体相平衡。E-mail:基金资助:
LIU Zengqi1(), LIU Zhiqi1, WANG Yiwei2(), LIU Aixian2, SUN Qiang1, YANG Lanying1, GUO Xuqiang2
Received:
2021-02-19
Revised:
2021-03-04
Online:
2021-10-25
Published:
2021-11-09
Contact:
WANG Yiwei
摘要:
水合物技术在气体分离、气体储存、海水淡化、蓄冷等领域有巨大的应用潜力。研究水合物的生长方式和形态特征在提高水合物储气量、降低水合物开采风险和防止水合物管道堵塞等方面有重要意义。本文从分子尺度的水合物晶格结构、毫米尺度的水合物晶体形态学和厘米尺度的水合物宏观生长形态学三个方面系统回顾了水合物形态学研究进展:总结了不同客体分子生成的不同类型水合物的不同晶格结构;从笼型水合物和半笼型水合物两个方面,阐述了过冷度、液相组成对水合物晶体形态学的影响;从金属表面传热、相界面传质、晶核加入以及促进剂的使用四个方面,介绍了水合物生长形态学的生长方式及其机理。本文总结了形态学研究对水合物技术工业化应用的积极作用并为水合物形态学研究的进一步发展提供参考。
中图分类号:
刘曾奇, 刘智琪, 王逸伟, 刘爱贤, 孙强, 杨兰英, 郭绪强. 水合物形态学研究进展[J]. 化工进展, 2021, 40(S1): 88-100.
LIU Zengqi, LIU Zhiqi, WANG Yiwei, LIU Aixian, SUN Qiang, YANG Lanying, GUO Xuqiang. Review on hydrate morphology[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 88-100.
62 | HU Yafei, CAI Jing, LI Xiaosen. System temperature properties in the process of the cyclopentane-methane binary hydrates formation[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1418-1427. |
63 | 白净, 李凌乾, 刘风莉, 等. 机械扰动强化气体水合物快速生成研究进展[J]. 化工进展, 2018, 37(1): 60-67. |
BAI Jing, LI Lingqian, LIU Fengli, et al. Progress of rapid formation of gas hydrate by mechanical disturbance[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 60-67. | |
64 | 李璐伶, 樊栓狮, 温永刚, 等. 水合物法分离CH4/CO2研究现状及展望[J]. 化工进展, 2018, 37(12): 4596-4605. |
LI Luling, FAN Shuanshi, WEN Yonggang, et al. Hydrate based gas separation technology for CH4/CO2 mixtures:a review[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4596-4605. | |
65 | 孙志高, 刘成刚, 黄海峰. 环戊烷水合物生长过程实验研究[J]. 制冷技术, 2012, 32(2): 23-25. |
SUN Zhigao, LIU Chenggang, HUANG Haifeng. Experimental study on the formation process of cyclopentane hydrate[J]. Chinese Journal of Refrigeration Technology, 2012, 32(2): 23-25. | |
66 | 石新杰, 马志伟, 聂东冰, 等. 铜管表面水合物晶体生长特性研究[J]. 低温与超导, 2011, 39(2): 47-52. |
SHI Xinjie, MA Zhiwei, NIE Dongbing, et al. Study of hydrate crystal growth on copper tube surface[J]. Cryogenics & Superconductivity, 2011, 39(2): 47-52. | |
67 | ZENG Xinyang, ZHONG Jinrong, SUN Yifei, et al. Investigating the partial structure of the hydrate film formed at the gas/water interface by Raman spectra[J]. Chemical Engineering Science, 2017, 160: 183-190. |
68 | NAGASHIMA Hironori D, OSHIMA Motoi, JIN Yusuke. Film-growth rates of methane hydrate on ice surfaces[J]. Journal of Crystal Growth, 2020, 537: 125595. |
69 | ZHAO Jiafei, LIANG Huiyong, YANG Lei, et al. Growth kinetics and gas diffusion in formation of gas hydrates from ice[J]. The Journal of Physical Chemistry C, 2020, 124(24): 12999-13007. |
1 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2008: 1-3. |
CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. Beijin: Chemical Industry Press, 2008: 1-3. | |
70 | SUN Qiang, DU Mei, LI Xingxun, et al. Study on ethane hydrate formation/dissociation in a sub-millimeter sized capillary[J]. Chemical Engineering Science, 2019, 206: 1-9. |
71 | BAEK Seungjun, Yunho AHN, ZHANG Junshe, et al. Enhanced methane hydrate formation with cyclopentane hydrate seeds[J]. Applied Energy, 2017, 202: 32-41. |
72 | ZANG Xiaoya, WAN Lihua, HE Yong, et al. CO2 removal from synthesized ternary gas mixtures used hydrate formation with sodium dodecyl sulfate(SDS) as additive[J]. Energy, 2020, 190: 116399. |
73 | LEE So Young, KIM Hyoung Chan, LEE Ju Dong. Morphology study of methane-propane clathrate hydrates on the bubble surface in the presence of SDS or PVCap[J]. Journal of Crystal Growth, 2014, 402: 249-259. |
74 | 李金平, 马涛, 王建森, 等. 表面活性剂对水合物生长过程的定量影响[J]. 工程热物理学报, 2010, 31(5): 793-796. |
LI Jinping, MA Tao, WANG Jiansen, et al. Quantitative influence of surfactant on the growth process of gas hydrate[J]. Journal of Engineering Thermophysics, 2010, 31(5): 793-796. | |
75 | CAI Jing, ZHANG Yu, XU Chun Gang, et al. Raman spectroscopic studies on carbon dioxide separation from fuel gas via clathrate hydrate in the presence of tetrahydrofuran[J]. Applied Energy, 2018, 214: 92-102. |
76 | LI Zheng, ZHONG Dong Liang, ZHENG Wei Yan, et al. Morphology and kinetic investigation of TBAB/TBPB semiclathrate hydrates formed with a CO2+CH4 gas mixture[J]. Journal of Crystal Growth, 2019, 511: 79-88. |
77 | AKIBA Hotaka, UENO Hiroki, OHMURA Ryo. Crystal growth of ionic semiclathrate hydrate formed at the interface between CO2 gas and tetra-n-butylammonium bromide aqueous solution[J]. Crystal Growth & Design, 2015, 15(8): 3963-3968. |
78 | LINGA Praveen, KUMAR Rajnish, LEE Ju Dong, et al. A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 630-637. |
79 | BHATTACHARJEE Gaurav, VELUSWAMY Hari Prakash, KUMAR Rajnish, et al. Seawater based mixed methane-THF hydrate formation at ambient temperature conditions[J]. Applied Energy, 2020, 271: 115158. |
80 | NESTEROV Anatoliy N, RESHETNIKOV Aleksey M. New combination of thermodynamic and kinetic promoters to enhance carbon dioxide hydrate formation under static conditions[J]. Chemical Engineering Journal, 2019, 378: 122165. |
2 | 代梦玲, 孙志高, 李娟, 等. 水合物储气促进技术研究进展[J]. 化工进展, 2020, 39(10): 3975-3986. |
DAI Mengling, SUN Zhigao, LI Juan, et al. Progress on promotion technology for gas storage in hydrates[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3975-3986. | |
3 | 高红丽, 谢应明, 张佳妮, 等. 储气用天然气水合物强化制备的研究进展[J]. 能源研究与信息, 2020, 36(2): 110-116. |
GAO Hongli, XIE Yingming, ZHANG Jiani, et al. Research progress in the enhanced preparation of natural gas hydrate for gas storage[J]. Energy Research and Information, 2020, 36(2): 110-116. | |
4 | BHATTACHARJEE Gaurav, PRAKASH VELUSWAMY Hari, KUMAR Rajnish, et al. Rapid methane storage via sⅡ hydrates at ambient temperature[J]. Applied Energy, 2020, 269: 115142. |
5 | WANG Yiwei, YANG Bin, LIU Zengqi, et al. The hydrate-based gas separation of hydrogen and ethylene from fluid catalytic cracking dry gas in presence of poly(sodium 4-styrenesulfonate)[J]. Fuel, 2020, 275: 117895. |
6 | 陈嘉雯, 谢应明, 杨义暄, 等. 用于蓄冷空调的替代型制冷剂水合物研究进展[J]. 建筑节能, 2020, 48(3): 9-14. |
CHEN Jiawen, XIE Yingming, YANG Yixuan, et al. Alternative refrigerant hydrate for cold storage air conditioners [J]. Building Energy Efficiency, 2020, 48(3): 9-14. | |
7 | 吕晓方, 左江伟, 路大勇, 等. 流动体系CO2水合物浆液表观黏度影响因素分析[J]. 天然气化工(C1化学与化工), 2020, 45(2): 38-44. |
LV Xiaofang, ZUO Jiangwei, LU Dayong, et al. Analysis of factors affecting apparent viscosity of CO2 hydrate slurry in flow systems[J]. Natural Gas Chemical Industry, 2020, 45(2): 38-44. | |
8 | 樊栓狮, 尤莎莉, 郎雪梅, 等. 笼型水合物膜分离和捕获二氧化碳研究进展[J]. 化工进展, 2020, 39(4): 1211-1218. |
FAN Shuanshi, YOU Shali, LANG Xuemei, et al. Separation and capture carbon dioxide by clathrate-hydrate membranes:a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1211-1218. | |
9 | 黄婷, 李长俊, 李清平, 等. 全透明高压反应釜甲烷水合物动力学实验[J]. 化工进展, 2020, 39(7): 2624-2631. |
HUANG Ting, LI Changjun, LI Qingping, et al. Experiment on methane hydrate kinetics in a high-pressure transparent autoclave[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2624-2631. | |
10 | 宋光春, 李玉星, 王武昌, 等. 油气管道水合物堵塞机理研究进展[J]. 化工进展, 2018, 37(7): 2473-2481. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Review of hydrate plugging mechanisms in oil and gas transport pipelines[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2473-2481. | |
11 | 徐政涛, 谢应明, 孙嘉颖, 等. 水合物法海水淡化技术研究进展及展望[J]. 热能动力工程, 2020, 35(7): 1-11. |
XU Zhengtao, XIE Yingming, SUN Jiaying, et al. Research progress and prospect of hydrate based desalination technology[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(7): 1-11. | |
12 | WANG Xiaolin, ZHANG Fengyuan, Wojciech LIPIŃSKI. Research progress and challenges in hydrate-based carbon dioxide capture applications[J]. Applied Energy, 2020, 269: 114928. |
13 | KOMATSU K, MACHIDA S, NORITAKE F, et al. Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate[J]. Nature Communications, 2020, 11(1): 464. |
14 | LEE Huen, LEE Jongwon, KIM Doyoun, et al. Tuning clathrate hydrates for hydrogen storage[J]. Nature, 2005, 434(7034): 743-746. |
15 | SUN Youhong, JIANG Shuhui, LI Shengli, et al. Growth kinetics of hydrate formation from water-hydrocarbon system[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2164-2179. |
16 | XU Nan, LIU Yu, CHENG Zucheng, et al. Morphology-based kinetic study of the formation of carbon dioxide hydrates with promoters[J]. Energy & Fuels, 2020, 34(6): 7307-7315. |
17 | DICHARRY C, DELROISSE H, TORRÉ J P, et al. Using microscopic observations of cyclopentane hydrate crystal morphology and growth patterns to estimate the antiagglomeration capacity of surfactants[J]. Energy & Fuels, 2020, 34(5): 5176-5187. |
18 | 丁麟, 史博会, 吕晓方, 等. 天然气水合物形成与生长影响因素综述[J]. 化工进展, 2016, 35(1): 57-64. |
DING Lin, SHI Bohui, Xiaofang LYU, et al. Review of influence factors of natural gas hydrate formation and growth[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 57-64. | |
19 | Yesol WOO, JEONG Jae Hak, LEE Jong Won, et al. Thermodynamic stability and formation kinetics of CHClF2 hydrates in the presence of NiCl2[J]. Chemical Engineering Science, 2019, 202: 529-536. |
20 | Eduardo ANDRES-GARCIA, DIKHTIARENKO Alla, FAUTH Francois, et al. Methane hydrates: nucleation in microporous materials[J]. Chemical Engineering Journal, 2019, 360: 569-576. |
21 | ZHOU Xuebing, LIANG Deqing. Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB·26H2O hydrates[J]. Chemical Engineering Journal, 2019, 378: 122128. |
22 | WANG Wuchang, WANG Xiaoyu, LI Yuxing, et al. Study on the characteristics of natural gas hydrate crystal structures during decomposition process[J]. Fuel, 2020, 271: 117537. |
23 | BAI Yujie, CAO Guangsheng, AN Hongxin, et al. Generation laws and distribution characteristics of carbon dioxide hydrate in a reaction kettle[J]. Experimental Thermal and Fluid Science, 2020, 116: 110125. |
24 | LEE Joonseop, KIM Kisub, SEO Yongwon. Thermodynamic, structural, and kinetic studies of cyclopentane+CO2 hydrates: applications for desalination and CO2 capture[J]. Chemical Engineering Journal, 2019, 375: 121974. |
25 | ZHONG Jinrong, SUN Yifei, LI Wenzhi, et al. Structural transition range of methane-ethane gas hydrates during decomposition below ice point[J]. Applied Energy, 2019, 250: 873-881. |
26 | DE MENEZES Davi Éber Sanches, Amadeu K SUM, DESMEDT Arnaud, et al. Coexistence of sI and sⅡ in methane-propane hydrate former systems at high pressures[J]. Chemical Engineering Science, 2019, 208: 115149. |
27 | RODRIGUEZ Carla T, LE Quang Du, FOCSA Cristian, et al. Influence of crystallization parameters on guest selectivity and structures in a CO2-based separation process using TBAB semi-clathrate hydrates[J]. Chemical Engineering Journal, 2020, 382: 122867. |
28 | MULLIN J W. Crystallization[M]. 4th ed. London: Butterworth-Heinemann, 2001: 7-10, 205-236. |
29 | XU Zhen, SUN Qiang, WANG Yiwei, et al. Experimental and modelling study on the effect of maltose as a green additive on methane hydrate[J]. The Journal of Chemical Thermodynamics, 2020, 144: 105980. |
30 | Shun OYA, AIFAA Muhammad, OHMURA Ryo. Formation, growth and sintering of CO2 hydrate crystals in liquid water with continuous CO2 supply: implication for subsurface CO2 sequestration[J]. International Journal of Greenhouse Gas Control, 2017, 63: 386-391. |
31 | AIFAA Muhammad, IMASATO Kazuki, OHMURA Ryo. Clathrate hydrate crystal growth in natural gas saturated water flow[J]. Crystal Growth & Design, 2015, 15(6): 2853-2858. |
32 | KODAMA Takehide, OHMURA Ryo. Crystal growth of clathrate hydrate in liquid water in contact with methane + ethane + propane gas mixture[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(12): 1982-1986. |
33 | MATSUURA Riku, HORII Shunsuke, ALAVI Saman, et al. Diversity in crystal growth dynamics and crystal morphology of structure-H hydrate[J]. Crystal Growth & Design, 2019, 19(11): 6398-6404. |
34 | KUMAR Asheesh, VELUSWAMY Hari Prakash, KUMAR Rajnish, et al. Direct use of seawater for rapid methane storage via clathrate (sⅡ) hydrates[J]. Applied Energy, 2019, 235: 21-30. |
35 | MUROMACHI S, UDACHIN K A, SHIN K, et al. Guest-induced symmetry lowering of an ionic clathrate material for carbon capture[J]. ChemCommun(Camb), 2014, 50(78): 11476-11479. |
36 | OYAMA Hiroyuki, SHIMADA Wataru, EBINUMA Takao, et al. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals[J]. Fluid Phase Equilibria, 2005, 234(1/2): 131-135. |
37 | SHIMADA Wataru, SHIRO Motoo, KONDO Hidemasa, et al. Tetra-n-butylammonium bromide-water(1/38)[J]. Acta Crystallographica Section C Crystal Structure Communications, 2005, 61(2): 65-66. |
38 | RODIONOVA Tatyana V, KOMAROV Vladislav Yu, VILLEVALD Galina V, et al. Calorimetric and structural studies of tetrabutylammonium bromide ionic clathrate hydrates[J]. The Journal of Physical Chemistry B, 2013, 117(36): 10677-10685. |
39 | ZHOU Xuebing, WAN LiHua, LONG Zhen, et al. Kinetic measurements on CO2 adsorption and release using TBAB·38H2O hydrates as adsorbents[J]. Energy & Fuels, 2019, 33(7): 6727-6733. |
40 | 契尔诺夫 A A. 现代晶体学 第三卷:晶体生长[M].吴自勤, 洪永炎, 高琛, 译.合肥: 中国科学技术大学出版社, 2019: 310-367. |
CHERNOV A A. Modern crystallography3: crystal growth[M]. WU Ziqin, HONG Yongyan, GAO Chen, trans. Hefei: University of Science and Technology of China Press, 2019: 310-367. | |
41 | WANG Wuchang, LIU Shuai, WANG Xiaoyu, et al. Experimental study on the formation and agglomeration of tetrahydrofuran hydrate under flowing condition[J]. International Journal of Refrigeration, 2020, 118: 504-513. |
42 | ZHANG Zhien, LIU Zhiming, PAN Zhen, et al. Effect of porous media and its distribution on methane hydrate formation in the presence of surfactant[J]. Applied Energy, 2020, 261: 114373. |
43 | 周麟晨, 孙志高, 李娟, 等. 水合物形成促进剂研究进展[J]. 化工进展, 2019, 38(9): 4131-4141. |
ZHOU Linchen, SUN Zhigao, LI Juan, et al. Progress of hydrate formation promoters[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4131-4141. | |
44 | 孟凡飞, 王海波, 廖昌建. 水合物法提纯沼气技术研究进展[J]. 化工进展, 2018, 37(1): 68-79. |
MENG Fanfei, WANG Haibo, LIAO Changjian. Research progress of hydrate separation technology for biogas purification[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 68-79. | |
45 | HAYAMA Hiroaki, MITARAI Makoto, MORI Hiroyuki, et al. Methane hydrate crystal growth at the gas/liquid interface in the presence of sodium dodecyl sulfate[J]. Procedia Engineering, 2016, 148: 339-345. |
46 | LEE Dongyoung, GO Woojin, SEO Yongwon. Experimental and computational investigation of methane hydrate inhibition in the presence of amino acids and ionic liquids[J]. Energy, 2019, 182: 632-640. |
47 | MOHAMMADI A, PAKZAD M, MOHAMMADI A H, et al. Kinetics of (TBAF+CO2) semi-clathrate hydrate formation in the presence and absence of SDS[J]. Petroleum Science, 2018, 15(2): 375-384. |
48 | Jeong Hoon SA, Amadeu K SUM. Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications[J]. Applied Energy, 2019, 251: 113352. |
49 | 王树立, 黄俊尧, 闫朔, 等. 基于化学亲和力模型的水合物生成动力学[J]. 化工进展, 2020, 39(3): 966-974. |
WANG Shuli, HUANG Junyao, YAN Shuo, et al. Hydrate formation kinetics based on chemical affinity model[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 966-974. | |
50 | XU Chungang, XIE Wenjun, CHEN Guoshu, et al. Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis[J]. Energy, 2020, 198: 117316. |
51 | SUN Zhigao, DAI Mengling, ZHU Minggui, et al. Improving THF hydrate formation in the presence of nonanoic acid[J]. Journal of Molecular Liquids, 2020, 299: 112188. |
52 | CHEN Bingbing, DONG Hongsheng, SUN Huiru, et al. Effect of a weak electric field on THF hydrate formation: Induction time and morphology[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107486. |
53 | OZAWA Kazuya, OHMURA Ryo. Crystal growth of clathrate hydrate with methane plus partially water soluble large-molecule guest compound[J]. Crystal Growth & Design, 2019, 19(3): 1689-1694. |
54 | MUROMACHI Sanehiro. Phase equilibrium data for semiclathrate hydrates formed with tetra-n-butylammonium (bromide or chloride) and tetra-n-butylphosphonium (bromide or chloride) under hydrogen + carbon dioxide pressure[J]. Fluid Phase Equilibria, 2020, 506: 112389. |
55 | ZHONG Dongliang, WANG Wenchun, ZOU Zhenlin, et al. Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation[J]. Applied Energy, 2018, 227: 686-693. |
56 | HASHIMOTO Hidenori, OZEKI Hiroyuki, YAMAMOTO Yoshitaka, et al. CO2 capture from flue gas based on tetra-n-butylammonium fluoride hydrates at near ambient temperature[J]. ACS Omega, 2020, 5(13): 7115-7123. |
57 | Yu An LIM, BABU Ponnivalavan, KUMAR Rajnish, et al. Morphology of carbon dioxide-hydrogen-cyclopentane hydrates with or without sodium dodecyl sulfate[J]. Crystal Growth & Design, 2013, 13(5): 2047-2059. |
58 | MATSUMOTO Koji, MURASE Masashi, EHARA Kohei, et al. Investigation on adhesion force of TBAB hydrate to cooling copper surface[J]. International Journal of Refrigeration, 2017, 78: 121-127. |
59 | WANG Xiaolin, DENNIS Mike. An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications[J]. Chemical Engineering Science, 2015, 137: 938-946. |
60 | KOYANAGI Shunsuke, OHMURA Ryo. Crystal Growth of Ionic Semiclathrate Hydrate Formed in CO2 gas+tetrabutylammonium bromide aqueous solution system[J]. Crystal Growth & Design, 2013, 13(5): 2087-2093. |
61 | 路大勇, 吕晓方, 柳扬, 等. 丁二酸二异辛酯磺酸钠对甲烷水合物生长动力学特性的影响[J]. 化工进展, 2020, 39(3): 938-946. |
LU Dayong, Xiaofang LYU, LIU Yang, et al. Effect of docusate sodium on growth kinetics of methane hydrate[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 938-946. | |
62 | 胡亚飞, 蔡晶, 李小森, 环戊烷-甲烷水合物生成过程的温度特性[J]. 化工进展, 2016, 35(5): 1418-1427. |
[1] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[2] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[3] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[4] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[5] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[6] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
[7] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[8] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[9] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[10] | 刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759. |
[11] | 吴霞, 蒋勋涛, 张余晓, 吕慧园, 黄方, 于筱溪. 基于液滴微流控技术的蛋白质结晶[J]. 化工进展, 2023, 42(4): 2024-2030. |
[12] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[13] | 王唯, 张东旭, 李遵照, 王晓霖, 黄启玉. 油包水乳状液体系中水合物生长行为研究进展[J]. 化工进展, 2023, 42(3): 1155-1166. |
[14] | 姚稳, 张雨晨, 滕文馨, 黎江玲. 表面活性剂对制备Ca掺杂β-In2S3微观结构的影响及其光催化降解甲基橙性能[J]. 化工进展, 2023, 42(2): 774-782. |
[15] | 康宇, 苟泽念. 氨基酸和DTAC对CO2水合分离动力学影响[J]. 化工进展, 2023, 42(10): 5067-5075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |