1 |
ZHENG Q, BROWN J L, MANTLE M D, et al. Water-wax behaviour in porous silica at low temperature Fischer-Tropsch conditions[J]. Applied Catalysis A: General, 2019, 572(1): 142-150.
|
2 |
SANTOS R G D, ALENCAR A C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18114-18132.
|
3 |
FILIP L, ZÁMOSTNÝ P, RAUCH R. Mathematical model of Fischer-Tropsch synthesis using variable alpha-parameter to predict product distribution[J]. Fuel, 2019, 243(1): 603-609.
|
4 |
MÉNDEZ C I, ANCHEYTA J. Kinetic models for Fischer-Tropsch synthesis for the production of clean fuels[J]. Catalysis Today, 2020,353(1): 3-16.
|
5 |
袁华, 袁炜, 罗春桃. 低温费托合成重质油加工利用[J]. 合成材料老化与应用, 2018, 47(1): 124-129.
|
|
YUAN H, YUAN W, LUO C T. The processing and utilization of low-temperature Fischer-Tropsch heavy syncrude oil[J]. Synthetic Materials Aging and Application, 2018, 47(1): 124-129.
|
6 |
HUANG Y, CHU Q, YI Q, et al. Process systems engineering of high-low temperature Fischer-Tropsch synthesis integration in olefin production[J]. Energy Procedia, 2017, 142(1): 3049-3054.
|
7 |
BECKER P J, SERRAND N, CELSE B, et al. A single events microkinetic model for hydrocracking of vacuum gas oil[J]. Computers & Chemical Engineering, 2017, 98(1): 70-79.
|
8 |
段世生. 加氢裂化技术的新进展[J]. 中文信息, 2015,60(10): 247-249.
|
|
DUAN S S. New progress in hydrocracking technology[J]. Chinese Information, 2015, 60(10): 247-249.
|
9 |
ZHANG S, LIU D, DENG W, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062.
|
10 |
LECKEL D. Hydrocracking of iron-catalyzed Fischer-Tropsch waxes[J]. Energy & Fuels, 2005, 19(5): 1795-1803.
|
11 |
LECKEL D. Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel[J]. Energy & Fuels, 2007, 21(3): 1425-1431.
|
12 |
CALEMMA V, PERATELLO S, PEREGO C. Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO2-Al2O3 catalyst[J]. Applied Catalysis A: General, 2000, 190(1): 207-218.
|
13 |
CHANG J, FAN L, FUJIMOTO K. Enhancement effect of free radical initiator on hydro-thermal cracking of heavy oil and model compound[J]. Energy & Fuels, 1999, 13(5): 1107-1108.
|
14 |
WEITKAMP J. Catalytic hydrocracking-mechanisms and versatility of the process[J]. ChemCatChem, 2012, 4(3): 292-306.
|
15 |
MITSIOS M, GUILLAUME D, GALTIER P, et al. Single-event microkinetic model for long-chain paraffin hydrocracking and hydroisomerization on an amorphous Pt/SiO2·Al2O3 atalyst[J]. Industrial & Engineering Chemistry Research, 2009, 48(7): 3284-3292.
|
16 |
BOUCHY C, HASTOY G, GUILLON E, et al. Fischer-Tropsch waxes upgrading via hydrocracking and selective hydroisomerization[J]. Oil & Gas Science and Technology—Revue d’IFP Energies Nouvelles, 2009, 64(1): 91-112.
|
17 |
CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48.
|
18 |
NOH G, ZONES S I, IGLESIA E. Isomer sieving and the selective formation of terminal methyl isomers in reactions of linear alkanes on one-dimensional zeolites[J]. Journal of Catalysis, 2019, 377(1): 255-270.
|
19 |
MENDES P S F, SILVA J M, RIBEIRO M F, et al. Quantification of the available acid sites in the hydrocracking of nitrogen-containing feedstocks over USY shaped NiMo-catalysts[J]. Journal of Industrial and Engineering Chemistry, 2019, 71(1): 167-176.
|
20 |
SAAB R, POLYCHRONOPOULOU K, ZHENG L, et al. Synthesis and performance evaluation of hydrocracking catalysts: a review[J]. Journal of Industrial and Engineering Chemistry, 2020, 89(1): 83-103.
|
21 |
TOMASEK S, LONYI F, VALYON J, et al. Hydrocracking of Fischer-Tropsch paraffin mixtures over strong acid bifunctional catalysts to engine fuels[J]. ACS Omega, 2020, 5(41): 26413-26420.
|
22 |
SÁNCHEZ J, MORENO A, MONDRAGÓN F, et al. Bifunctional MoS2-silica-alumina catalysts for slurry phase phenanthrene-decalin hydroconversion[J]. Energy & Fuels, 2018, 32(10): 10910-10922.
|
23 |
AL-ATTAS T A, ALI S A, ZAHIR M H, et al. Recent advances in heavy oil upgrading using dispersed catalysts[J]. Energy & Fuels, 2019, 33(9): 7917-7949.
|
24 |
MAMPURU M B, NKAZI D B, MUKAYA H E. Hydrocracking of waste cooking oil into biogasoline in the presence of a bi-functional Ni-Mo/alumina catalyst[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(20): 2564-2575.
|
25 |
杨涛, 黄传峰, 邓文安. 油溶性催化剂在渣油悬浮床加氢反应中的加氢抑焦作用[J]. 石油炼制与化工, 2016, 47(5): 51-56.
|
|
YANG T, HUANG C F, DENG W A. Hydrogenation and coke suppression effect of oil-soluble catalyst in residual oil suspension bed hydrogenation [J]. Petroleum Processing and Petrochemicals, 2016, 47(5): 51-56.
|
26 |
LI C, LI J, YANG T, et al. Formation of Ni-MoS3 hollow material with enhanced activity in alurry-phase hydrogenation of heavy oil[J]. Energy & Fuels, 2019, 33(11): 10933-10940.
|
27 |
SÁNCHEZ J, TALLAFIGO M F, GILARRANZ M A, et al. Refining heavy neutral oil paraffin by catalytic hydrotreatment over Ni-W/Al2O3 catalysts[J]. Energy & Fuels, 2006, 20(1): 245-249.
|
28 |
ANILKUMAR M, LOKE N, PATIL V, et al. Hydrocracking of hydrotreated light cycle oil to mono aromatics over non-noble bi-functional (Ni-W supported) zeolite catalysts[J]. Catalysis Today, 2019, 12(1): 27.
|
29 |
NGUYEN M, PIRNGRUBER G D, ALBRIEUX F, et al. How does an acidic support affect the hydrotreatment of a gas oil with high nitrogen content[J]. Energy & Fuels, 2019, 33(2): 1467-1472.
|
30 |
方向晨, 杨占林, 王继锋, 等. 油品精制催化剂技术进展[J]. 化工进展, 2016, 35(6): 1748-1757.
|
|
FANG X C, YANG Z L, WANG J F, et al. Technology progress on oil hydrofining catalysts[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1748-1757.
|
31 |
BAI P, XIE M, ETIM U J, et al. Zeolite Y mother liquor modified γ-Al2O3 with enhanced Brönsted acidity as active matrix to improve the performance of fluid catalytic cracking catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1389-1398.
|
32 |
于婷婷. 劣质蜡油加氢处理催化剂载体的制备[D]. 北京: 中国石油大学(北京), 2018.
|
|
YU T T. Preparation of inferior wax oil hydrogenation catalyst carrier[D]. Beijing: China University of Petroleum(Beijing), 2018.
|
33 |
曲元瑗, 罗学刚. 新型催化剂V2O5/ZSM-5用于液体石蜡催化氧化合成脂肪酸[J]. 化工进展, 2017, 36(6): 2137-2142.
|
|
QU Y Y, LUO X G. Studies on a novel V2O5/ZSM-5 catalyst for catalytic oxidation of liquid paraffin to fatty acid[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2137-2142.
|
34 |
GUSEV A A, PSARRAS A C, TRIANTAFYLLIDIS K S, et al. ZSM-5 additive deactivation with nickel and vanadium metals in the fluid catalytic cracking (FCC) process[J]. Industrial & Engineering Chemistry Research, 2019, 59(6): 2631-2641.
|
35 |
任飞, 邓景辉, 沙昊, 等. 加氢轻循环油裂化反应规律研究[J]. 石油炼制与化工, 2016, 47(10): 38-44.
|
|
REN F, DENG J H, SHA H, et al. Study on catalytic cracking of hydrotreated LCO[J]. Petroleum Processing and Petrochemicals, 2016, 47(10): 38-44.
|
36 |
尹延超, 王晓峰, 王更更, 等. 均匀包覆的微-介孔复合材料Y/ASA的合成及其加氢裂化性能[J]. 石油化工, 2016, 45(8): 925-931.
|
|
YIN Y C, WANG X F, WANG G G, et al. Synthesis of uniform covering micro-and mesoporous composite materials Y/ASA and its hydrocracking performance[J]. Petrochemical Technology, 2016, 45(8): 925-931.
|
37 |
SHIMURA K, MIYAZAWA T, HANAOKA T, et al. Fischer-Tropsch synthesis over alumina supported cobalt catalyst: effect of promoter addition[J]. Applied Catalysis A: General, 2015, 494(1): 1-11.
|
38 |
BUDUKVA S V, KLIMOV O V, UVARKINA D D, et al. Effect of citric acid and triethylene glycol addition on the reactivation of CoMo/γ-Al2O3 hydrotreating catalysts[J]. Catalysis Today, 2019, 329(1): 35-43.
|
39 |
ELLER Z, VARGA Z, HANCSÓK J. Renewable jet fuel from Kerosene/Coconut oil mixtures with catalytic hydrogenation[J]. Energy & Fuels, 2019, 33(7): 6444-6453.
|
40 |
杨雪, 高凯丽, 徐新, 等. 负载型骨架镍催化剂催化轻质石脑油加氢脱苯[J]. 工业催化, 2017, 25(4): 63-67.
|
|
YANG X, GAO K L, XU X, et al. Hydrogenation light naphtha for removal of benzene over supported Raney nickel catalyst[J]. Industrial Catalysis, 2017, 25(4): 63-67.
|