1 |
孙启文, 吴建民, 张宗森, 等. 煤间接液化技术及其研究进展[J]. 化工进展, 2013, 32(1): 1-12.
|
|
SUN Qiwen, WU Jianming, ZHANG Zongsen, et al. Indirect coal liquefaction technology and its reaearch progress[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 1-12.
|
2 |
侯朝鹏, 夏国富, 李明丰,等. F-T合成催化剂羰基硫中毒热力学分析[J]. 燃料化学学报, 2012, 40(1): 68-74.
|
|
HOU Chaopeng, XIA Guofu, LI Mingfeng, et al. Thermodynamics of carbonyl sulfide poisoning on F-T synthesis catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 68-74.
|
3 |
DRY M E. The Fischer-Tropsch process: 1950—2000[J]. Catalysis Today, 2002, 71(3):227-241.
|
4 |
BARTHOLOMEW C H, BOWMAN R M. Sulfur poisoning of cobalt and iron Fisher-Tropsch catalysts[J]. Applied Catalysis, 1985, 15(1):59-67.
|
5 |
VISCONTI C G, LIETTI L, FORZATTI P, et al. Fischer-Tropsch synthesis on sulphur poisoned Co/Al2O3, catalyst[J]. Applied Catalysis A: General, 2007, 330(1): 49-56.
|
6 |
SAIB A M, MOODLEY D J, CIOBC I M, et al. Fundamental understanding of deactivation and regeneration of cobalt Fischer-Tropsch synthesis catalysts[J]. Catalysis Today, 2010, 154(3/4):271-282.
|
7 |
CLARKSON J, ELLIS P R, HUMBLE R, et al. Deactivation of alumina supported cobalt F-T catalysts during testing in a continuous-stirred tank reactor (CSTR) [J]. Applied Catalysis A: General, 2018, 550: 28-37.
|
8 |
SOLED S L, KISS G, KLIEWER C, et al. Learnings from Co Fischer-Tropsch catalyst studies[J]. American Chemical Society, Division of Fuel Chemistry, Preprints, 2013, 58(1): 1286-1286.
|
9 |
石利红, 李晓峰, 李德宝, 等. 钴基催化剂在费-托反应过程中的失活行为[J]. 催化学报, 2010, 31(12): 1483-1488.
|
|
SHI Lihong, LI Xiaofeng, LI Debao, et al. Deactivation of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2010, 31(12): 1483-1488.
|
10 |
KLIEWER C E, SOLED S L, KISS G. Morphological transformations during Fischer-Tropsch synthesis on a titania-supported cobalt catalyst[J]. Catalysis Today, 2019, 323: 233-256.
|
11 |
KARACA H, HONG J, FONGARLAND P, et al. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis[J]. Chemical Communication, 2010, 46: 788-790.
|
12 |
MOODLEY D J, DE LOOSDRECHT J VAN, SAIB A M, et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions[J]. Applied Catalysis A: General, 2009, 354: 102-110.
|
13 |
DUCREUX O, LYNCH J, REBOURS B, et al. In situ characterisation of cobalt based Fischer-Tropsch catalysts: a new approach to the active phase[J]. Studies in Surface Ence and Catalysis, 1998, 119:125-130.
|
14 |
MOODLEY D J, LOOSDRECHT J V D, SAIB A M, et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions[J]. Applied Catalysis A:General, 2009, 354(1/2): 102-110.
|
15 |
ZONNEVYLLE M C, GEERLINGS J J C, SANTEN R A V. Conversion of surface carbidic to subsurface carbon on cobalt (0001): a theoretical study[J]. Surface Science, 1990, 240(1-3): 253-262.
|
16 |
BERGE P J V, LOOSDRECHT J V D, BARRADAS S, et al. Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism[J]. Catalysis Today, 2000, 58(4): 321-334
|
17 |
STEEN E VAN, CLAEYS M, DRY M E, et al. Stability of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures[J]. Journal of Physical Chemistry B, 2005, 109(8):3575-3577
|
18 |
BEZEMER G L, BITTER J H, KUIPERS H P, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of the American Chemical Society, 2006,128(12): 3956-3964.
|
19 |
DE LOOSDRECHT J VAN, BALZHINIMAEV B, DALMON J A, et al. Cobalt Fischer-Tropsch synthesis: deactivation by oxidation?[J]. Catalysis Today, 2007, 123(1-4): 293-302.
|
20 |
SAIB A M, BORGNA A, LOOSDRECHT J V D, et al. In situ surface oxidation study of a planar Co/SiO2/Si(100) model catalyst with nanosized cobalt crystallites under model Fischer-Tropsch synthesis conditions.[J]. The Journal of Physical Chemistry B, 2006, 110(17): 8657-8664.
|
21 |
JACOBS G, PATTERSON P M, ZHANG Y, et al. Fischer-Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts[J]. Applied Catalysis A: General, 2002, 233(1/2): 215-226.
|
22 |
JACOBS G, PATTERSON P M, DAS T K, et al. Fischer-Tropsch synthesis: effect of water on Co/Al2O3 catalysts and XAFS characterization of reoxidation phenomena[J]. Applied Catalysis A: General, 2004, 270(1/2): 65-76.
|
23 |
SIRIJARUPHAN A, HORVÁTH A, GOODWIN J G, et al. Cobalt aluminate formation in alumina-supported cobalt catalysts: effects of cobalt reduction state and water vapor[J]. Catalysis Letters, 2003, 91(1/2): 89-94.
|
24 |
代小平, 余长春, 李然家. 费托合成CeO2助Co/SiO2催化剂的失活[J]. 催化学报, 2007, 28(12): 1047-1052.
|
|
DAI Xiaoping, YU Changchun, LI Ranjia. Deactivation of CeO2-promoted Co/SiO2 Fischer-Tropsch catalysts[J]. Chinese Journal of Catalysis, 2007, 28(12): 1047-1052.
|
25 |
KOGELBAUER A, WEBER J C, GOODWIN J G. The formation of cobalt silicates on Co/SiO2 under hydrothermal conditions[J]. Catalysis Letters, 1995, 34(3): 259-267.
|
26 |
SCHULZ H, NIE Z Q, OUSMANOV F. Construction of the Fischer-Tropsch regime with cobalt catalysts[J]. Catalysis Today, 2002, 71(3): 351-360.
|
27 |
WILSON J, DE GROOT C. Atomic-scale restructuring in high-pressure catalysis[J]. Journal of Physical Chemistry, 1995, 99(20): 7860-7866.
|
28 |
BEZEMER G L, BITTER J H, KUIPERS H P C E, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956-3964.
|
29 |
JABLONSKI J M, OKAL J, POTOCZNA-PETRU D, et al. High temperature reduction with hydrogen, phase composition, and activity of cobalt/silica catalyst[J]. Journal of Catalysis, 2003, 220(1): 146-160.
|
30 |
WEI D, GOODWIN J G, OUKACI R, et al. Attrition resistance of cobalt F-T catalysts for slurry bubble column reactor use[J]. Applied Catalysis A: General, 2001, 210(1/2):137-150.
|
31 |
RYTTER E, SKAGSETH T H, WIGUM H. Attrition resistant supports for Fischer-Tropsch catalyst and process for making same:US2015375201A1[P]. 2015-12-31.
|
32 |
CHEN J G, XIANG H W, GAO H Y, et al. Study on deactivation of Co/ZrO2/SiO2 catalyst for Fischer-Tropsch synthesis[J]. Reaction Kinetics and Catalysis Letters, 2001, 73(1): 169-177.
|
33 |
IGLESIA E, SOLED S L, FIATO R A, et al. Bimetallic synergy in cobalt ruthenium Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis, 1993, 143(2): 345-368.
|
34 |
吴昊,胡志海,聂红.一种费托合成催化剂的再活化方法: CN102371189B[P]. 2013-06-26.
|
|
WU Hao, HU Zhihai, NIE Hong. Reactivation of catalyst for Fischer-Tropsch synthesis: CN102371189B[P]. 2013-06-26.
|
35 |
WESTSTRATE C J, HAUMAN M M, MOODLEY D J, et al. Cobalt Fischer-Tropsch catalyst regeneration: the crucial role of the Kirkendall effect for cobalt redispersion[J]. Topics in Catalysis, 2011, 54(13): 811-816.
|
36 |
SAIB A M, GAUCHÉ, JEAN L, WESTSTRATE C J, et al. Fundamental science of cobalt catalyst oxidation and eduction applied to the development of a commercial Fischer-Tropsch regeneration process[J]. Industrial & Engineering Chemistry Research, 2014, 53(5):1816-1824.
|
37 |
ADRIAAN B W, JAN V D L. Catalysts: US2011245355A1[P]. 2011-10-06.
|
38 |
STEPHEN N, MARIA S J T, LEENDERT B G. Process for regenerating a catalyst: US8729140B2[P]. 2014-05-20.
|
39 |
MICHEL D, BAOCHUN S E, JOHN K R. Fischer-Tropsch catalyst enhancement: US6753354B2[P]. 2004-06-22.
|
40 |
SCHANKE D, KINNARI K J. Regeneration of Fischer-Tropsch catalysts by using synthesis gas at a low flow rate: US94553698A[P]. 2000-02-08.
|
41 |
YOSHIYUKI N, KAZUAKI H, HIDEKI O. Method for manufacturing a regenerated Fischer-Tropsch synthesis catalyst and hydrocarbon manufacturing method: CA2791270A1[P]. 2011-09-09.
|
42 |
SUBRAMANIAN V, CHENG K, LANCELOT C, et al. Nanoreactors: an efficient tool to control the chain-length distribution in Fischer-Tropsch synthesis[J]. ACS Catalysis, 2016, 6(3): 1785-1792.
|
43 |
ISHIHARA D, TAO K, YANG G H, et al. Precisely designing bimodal catalyst structure to trap cobalt nanoparticles inside mesopores and its application in Fischer-Tropsch synthesis[J]. Chemical Engineering Journal, 2016, 306: 784-790.
|
44 |
PHAAHLAMOHLAKA T N, DLAMINI M W, MOGODI M W, et al. A sinter resistant Co Fischer-Tropsch catalyst promoted with Ru and supported on titania encapsulated by mesoporous silica[J]. Applied Catalysis A: General, 2018, 552: 129-137.
|
45 |
TAGHAVI S, ASGHARI A, TAVASOLI A. Enhancement of performance and stability of graphene nano sheets supported cobalt catalyst in Fischer-Tropsch synthesis using graphene functionalization[J]. Chemical Engineering Research & Design Transactions of the Institution of Chemical Engineers, 2017, 119: 198-208.
|
46 |
IGLESIA E, SOLED S L, FIATO R A, et al. Dispersion, support, and bimetallic effects in Fischer-Tropsch synthesis on cobalt catalysts[J]. Studies in Surface Ence and Catalysis, 1994, 81: 433-442.
|
47 |
SAEYS M, TAN K F, CHANG J, et al. Improving the stability of cobalt Fischer-Tropsch catalysts by boron promotion[J]. Industrial & Engineering Chemistry Research, 2010, 49(21):11098-11100.
|
48 |
PARK S J, BAE J W, LEE Y J, et al. Deactivation behaviors of Pt or Ru promoted Co/P-Al2O3 catalysts during slurry-phase Fischer-Tropsch synthesis[J]. Catalysis Communications, 2011, 12(6): 539-543.
|