化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4540-4550.DOI: 10.16085/j.issn.1000-6613.2020-1814
庆雅诗1,2(), 李燕青1, 胡丹3, 李艳香1,2(), 曹丽霞1, 林松4,5, 王在谦4,5, 李望良1,2()
收稿日期:
2020-09-09
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
李艳香,李望良
作者简介:
庆雅诗(1997—),女,博士研究生,研究方向为水中内分泌干扰物的去除。E-mail:基金资助:
QING Yashi1,2(), LI Yanqing1, HU Dan3, LI Yanxiang1,2(), CAO Lixia1, LIN Song4,5, WANG Zaiqian4,5, LI Wangliang1,2()
Received:
2020-09-09
Online:
2021-08-05
Published:
2021-08-12
Contact:
LI Yanxiang,LI Wangliang
摘要:
光催化分离膜将膜分离与光催化结合在同一处理单元中,可发挥膜分离作用,同时也可以利用光催化剂高效降解水中的有毒有害污染物,提高膜的抗污染性能和水处理效率。因此是水处理领域的研究热点,并显示出巨大的应用潜力。本文综述了基于二氧化钛(TiO2)、氧化锌(ZnO)、石墨相氮化碳(g-C3N4)和氧化钨(WO3)四种常用催化剂的光催化分离膜的研究概况,重点对光催化分离膜的制备方法和性能进行了总结,光催化分离膜具有良好的发展前景,制备高效、稳定的可见光响应光催化分离膜是未来的发展趋势。
中图分类号:
庆雅诗, 李燕青, 胡丹, 李艳香, 曹丽霞, 林松, 王在谦, 李望良. 光催化分离膜的制备及其在水处理中的应用[J]. 化工进展, 2021, 40(8): 4540-4550.
QING Yashi, LI Yanqing, HU Dan, LI Yanxiang, CAO Lixia, LIN Song, WANG Zaiqian, LI Wangliang. Preparation of photocatalytic separation membranes and their application in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4540-4550.
1 | YIN Jun, DENG Baolin. Polymer-matrix nanocomposite membranes for water treatment[J]. Journal of Membrane Science, 2015, 479: 256-275. |
2 | LI Xin, FANG Xiaofeng, PANG Ruizhi, et al. Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling[J]. Journal of Membrane Science, 2014, 467: 226-235. |
3 | ZHAO Huanxin, CHEN Shuo, QUAN Xie, et al. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment[J]. Applied Catalysis B: Environmental, 2016, 194: 134-140. |
4 | CHONG Mengnan, JIN Bo, CHOW Christopher W K, et al. Recent developments in photocatalytic water treatment technology: a review[J]. Water Research, 2010, 44(10): 2997-3027. |
5 | MALATO S, FERNÁNDEZ-IBÁÑEZ P, MALDONADO M I, et al. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends[J]. Catalysis Today, 2009, 147(1): 1-59. |
6 | MOLINARI Raffaele, LAVORATO Cristina, ARGURIO Pietro. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds: a review[J]. Catalysis Today, 2017, 281: 144-164. |
7 | SHI Yahui, HUANG Jinhui, ZENG Guangming, et al. Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light?[J]. Journal of Membrane Science, 2019, 584: 364-392. |
8 | CHENG Min, ZENG Guangming, HUANG Danlian, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284: 582-598. |
9 | ERJAVEC Boštjan, HUDOKLIN Petra, PERC Katja, et al. Glass fiber-supported TiO2 photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs[J]. Applied Catalysis B: Environmental, 2016, 183: 149-158. |
10 | IGLESIAS Olalla, RIVERO María J, URTIAGA Ana María, et al. Membrane-based photocatalytic systems for process intensification[J]. Chemical Engineering Journal, 2016, 305: 136-148. |
11 | ZHANG Xiwang, WANG David K, DINIZ DA COSTA João C. Recent progresses on fabrication of photocatalytic membranes for water treatment[J]. Catalysis Today, 2014, 230: 47-54. |
12 | MOUSTAKAS N G, KATSAROS F K, KONTOS A G, et al. Visible light active TiO2 photocatalytic filtration membranes with improved permeability and low energy consumption[J]. Catalysis Today, 2014, 224: 56-69. |
13 | ZHOU Kaige, MCMANUS Daryl, PRESTAT Eric, et al. Self-catalytic membrane photo-reactor made of carbon nitride nanosheets[J]. Journal of Materials Chemistry A, 2016, 4(30): 11666-11671. |
14 | Yan LYU, ZHANG Chao, HE Ai, et al. Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment[J]. Advanced Functional Materials, 2017, 27(27): 1700251. |
15 | XU Chunwei, SHAO Feifei, YI Zhan, et al. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method[J]. Separation and Purification Technology, 2019, 223: 178-185. |
16 | SEYYED SHAHABI Soulmaz, AZIZI Najmedin, VATANPOUR Vahid, et al. Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination[J]. Separation and Purification Technology, 2020, 235. |
17 | ZHOU Anran, JIA Ruibao, WANG Yonglei, et al. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system[J]. Separation and Purification Technology, 2020, 234: 10. |
18 | YOU Shengjie, SEMBLANTE Galilee Uy, LU Shaochung, et al. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2[J]. Journal of Hazardous Materials, 2012, 237: 10-19. |
19 | QIAN Yingjia, CHI Lina, ZHOU Weili, et al. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment[J]. Applied Surface Science, 2016, 360: 749-757. |
20 | WANG Meng, YANG Guang, JIN Peng, et al. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water[J]. Scientific Reports, 2016, 6: 19148. |
21 | FU Jingli, WANG Xiuju, MA Zhun, et al. Photocatalytic ultrafiltration membranes based on visible light responsive photocatalyst: a review[J]. Desalination and Water Treatment, 2019, 168: 42-55. |
22 | SHAREEF Usman, OTHMAN Mohd Hafiz Dzarfan, ISMAIL Ahmad Fauzi, et al. Facile removal of bisphenol A from water through novel Ag-doped TiO2 photocatalytic hollow fiber ceramic membrane[J]. Journal of the Australian Ceramic Society, 2019, 56(1): 29-39. |
23 | WANG Qiao, YANG Chunyan, ZHANG Guangshan, et al. Photocatalytic Fe-doped TiO2/PSF composite UF membranes: characterization and performance on BPA removal under visible-light irradiation[J]. Chemical Engineering Journal, 2017, 319: 39-47. |
24 | SALAZAR H, MARTINS P M, SANTOS Bruno, et al. Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications[J]. Chemosphere, 2020, 250: 126299. |
25 | GAO Yifan, YAN Ni, JIANG Chengxu, et al. Filtration-enhanced highly efficient photocatalytic degradation with a novel electrospun rGO@TiO2 nanofibrous membrane: Implication for improving photocatalytic efficiency[J]. Applied Catalysis B-Environmental, 2020, 268: 11. |
26 | LIU Yuchuan, YU Zongxue, PENG Yixin, et al. A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane[J]. Chemical Physics Letters, 2020, 749: 137424. |
27 | KAMALUDIN Roziana, PUAD Amir Syarifuddin Mohamad, OTHMAN Mohd Hafiz Dzarfan, et al. Incorporation of N-doped TiO2 into dual layer hollow fiber (DLHF) membrane for visible light-driven photocatalytic removal of reactive black 5[J]. Polymer Testing, 2019, 78: 11. |
28 | CHI Lina, QIAN Yingjia, GUO Junqiu, et al. Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning[J]. Catalysis Today, 2019, 335: 527-537. |
29 | BESSEKHOUAD Y, ROBERT D, WEBER J V. Photocatalytic activity of CU2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions[J]. Catalysis Today, 2005, 101(3/4): 315-321. |
30 | ZHANG Yan, DUOERKUN Gumila, SHI Zhun, et al. Construction of TiO2/Ag3PO4 nanojunctions on carbon fiber cloth for photocatalytically removing various organic pollutants in static or flowing wastewater[J]. Journal of Colloid and Interface Science, 2020, 571: 213-221. |
31 | PETRONELLA Francesca, RTIMI Sami, COMPARELLI Roberto, et al. Uniform TiO2/In2O3 surface films effective in bacterial inactivation under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 279: 1-7. |
32 | XU Hang, DING Mingmei, CHEN Wei, et al. Nitrogen-doped GO/TiO2 nanocomposite ultrafiltration membranes for improved photocatalytic performance[J]. Separation and Purification Technology, 2018, 195: 70-82. |
33 | XU Hang, DING Mingmei, LIU Shan, et al. Preparation and characterization of novel polysulphone hybrid ultrafiltration membranes blended with N-doped GO/TiO2 nanocomposites[J]. Polymer, 2017, 117: 198-207. |
34 | WU Tao, ZHANG Zongman, ZHAI Ding, et al. Dye degrading and fouling-resistant membranes formed by deposition with ternary nanocomposites of N-doped graphene/TiO2/activated carbon[J]. Membranes, 2019, 9(1): 1-14. |
35 | KUVAREGA Alex T, KHUMALO Nomcebo, DLAMINI Derrick, et al. Polysulfone/N,Pd co-doped TiO2 composite membranes for photocatalytic dye degradation[J]. Separation and Purification Technology, 2018, 191: 122-133. |
36 | YU Zongxue, FENG XiaoFang, MIN Xia, et al. RGO/PDA/Bi12O17Cl2-TiO2 composite membranes based on Bi12O17Cl2-TiO2 heterojunctions with excellent photocatalytic activity for photocatalytic dyes degradation and oil-water separation[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(19): 18246-18258. |
37 | QI Kezhen, CHENG Bei, YU Jiaguo, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds, 2017, 727: 792-820. |
38 | SHEIKH Mahdi, PAZIROFTEH Mahdieh, DEHGHANI Mostafa, et al. Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review[J]. Chemical Engineering Journal, 2020, 391: 123475. |
39 | AHMAD A L, ABDULKARIM A A, ISMAIL S, et al. Preparation and characterisation of PES-ZnO mixed matrix membranes for humic acid removal[J]. Desalination and Water Treatment, 2014, 54(12): 3257-3268. |
40 | Lívia NASZÁLYI, BOSC Florence, MANSOURI Abdeslam EL, et al. Sol-gel-derived mesoporous SiO2/ZnO active coating and development of multifunctional ceramic membranes[J]. Separation and Purification Technology, 2008, 59(3): 304-309. |
41 | BOJARSKA Marta, NOWAK Bartosz, Jarosław SKOWROŃSKI, et al. Growth of ZnO nanowires on polypropylene membrane surface: characterization and reactivity[J]. Applied Surface Science, 2017, 391: 457-467. |
42 | KAYACI Fatma, VEMPATI Sesha, Cagla OZGIT-AKGUN, et al. Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: a combination of atomic layer deposition and hydrothermal growth[J]. Applied Catalysis B: Environmental, 2014, 156/157: 173-183. |
43 | GONDAL Mohammed A, SADULLAH Muhammad S, QAHTAN Talal F, et al. Fabrication and wettability study of WO3 coated photocatalytic membrane for oil-water separation: a comparative study with ZnO coated membrane[J]. Scientific Reports, 2017, 7(1): 1686. |
44 | HONG Junming, HE Yang. Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning[J]. Desalination, 2014, 332(1): 67-75. |
45 | RAJESWARI A, JACKCINA STOBEL C E, PIUS Anitha. New insight of hybrid membrane to degrade Congo Red and Reactive Yellow under sunlight[J]. Journal of Photochem and Photobiology B: Biology, 2018, 179: 7-17. |
46 | ZINADINI Sirus, ROSTAMI Saeed, VATANPOUR Vahid, et al. Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite[J]. Journal of Membrane Science, 2017, 529: 133-141. |
47 | KIM Han Joo, PANT Hem Raj, PARK Chan Hee, et al. Hydrothermal growth of mop-brush-shaped ZnO rods on the surface of electrospun nylon-6 nanofibers[J]. Ceramics International, 2013, 39(3): 3095-3102. |
48 | LAOHAPRAPANON Sawanya, VANDERLIPE Angelita D, DOMA JR Bonifacio T, et al. Self-cleaning and antifouling properties of plasma-grafted poly(vinylidene fluoride) membrane coated with ZnO for water treatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 15-22. |
49 | BAI Hongwei, LIU Zhaoyang, SUN Darren Delai. A hierarchically structured and multifunctional membrane for water treatment[J]. Applied Catalysis B: Environmental, 2012, 111: 571-577. |
50 | BAI Hongwei, ZAN Xiaoli, ZHANG Lilin, et al. Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation[J]. Separation and Purification Technology, 2015, 156: 922-930. |
51 | BAI Hongwei, LIU Zhaoyang, SUN Darren Delai. Hierarchical ZnO nanostructured membrane for multifunctional environmental applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410: 11-17. |
52 | LI Ning, TIAN Yu, ZHANG Jun, et al. Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation[J]. Journal of Membrane Science, 2017, 528: 359-368. |
53 | SONG Jun, SUN Gang, YU Jianyong, et al. Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification[J]. Ceramics International, 2020, 46(1): 468-475. |
54 | CAO Keteng, JIANG Zhongyi, ZHANG Xiaoshan, et al. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix[J]. Journal of Membrane Science, 2015, 490: 72-83. |
55 | MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377. |
56 | ZHANG Manying, LIU Ziya, GAO Yong, et al. Ag modified g-C3N4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance[J]. RSC Advances, 2017, 7(68): 42919-42928. |
57 | HU Chechi, WANG Maosheng, CHEN Chienhua, et al. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment[J]. Journal of Membrane Science, 2019, 580: 1-11. |
58 | YANG Fan, DING Guoyu, WANG Jin, et al. Self-cleaning, antimicrobial, and antifouling membrane via integrating mesoporous graphitic carbon nitride into polyvinylidene fluoride[J]. Journal of Membrane Science, 2020, 606: 118146. |
59 | SALIM Noor Elyzawerni, JAAFAR Juhana, ISMAIL A F, et al. Preparation and characterization of hydrophilic surface modifier macromolecule modified poly(ether sulfone) photocatalytic membrane for phenol removal[J]. Chemical Engineering Journal, 2018, 335: 236-247. |
60 | LI Binrong, MENG Minjia, CUI Yanhua, et al. Changing conventional blending photocatalytic membranes (BPMs): focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method[J]. Chemical Engineering Journal, 2019, 365: 405-414. |
61 | LI Rui, REN Yuling, ZHAO Peixia, et al. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance[J]. Journal of Hazardous Materials, 2019, 365: 606-614. |
62 | WANG Xiaoting, WANG Guanlong, CHEN Shuo, et al. Integration of membrane filtration and photoelectrocatalysis on g-C3N4/CNTs/Al2O3 membrane with visible-light response for enhanced water treatment[J]. Journal of Membrane Science, 2017, 541: 153-161. |
63 | WEI Yibin, ZHU Yuxiang, JIANG Yijiao. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification[J]. Chemical Engineering Journal, 2019, 356: 915-925. |
64 | ZHANG Qi, CHEN Shuo, FAN Xinfei, et al. A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving[J]. Applied Catalysis B: Environmental, 2018, 224: 204-213. |
65 | HUANG Jinhui, HU Jianglin, SHI Yahui, et al. Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light[J]. Jouranl of Colloid Interface Science, 2019, 541: 356-366. |
66 | LI Fei, YU Zongxue, SHI Heng, et al. A Mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation[J]. Chemical Engineering Journal, 2017, 322: 33-45. |
67 | JANÁKY C, RAJESHWAR K, DE TACCONI N R, et al. Tungsten-based oxide semiconductors for solar hydrogen generation[J]. Catalysis Today, 2013, 199: 53-64. |
68 | REY A, GARCÍA-MUÑOZ P, HERNÁNDEZ-ALONSO M D, et al. WO3-TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent[J]. Applied Catalysis B: Environmental, 2014, 154/155: 274-284. |
69 | FENG Chengxin, WANG Shaozhen, GENG Baoyou. Ti(Ⅳ) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance[J]. Nanoscale, 2011, 3(9): 3695-3699. |
70 | KAZEMI Maryamossadat, JAHANSHAHI Mohsen, PEYRAVI Majid. Chitosan-sodium alginate multilayer membrane developed by Fe0@WO3 nanoparticles: photocatalytic removal of hexavalent chromium[J]. Carbohydrate Polymers, 2018, 198: 164-174. |
71 | SHAFAEI Nader, JAHANSHAHI Mohsen, PEYRAVI Majid, et al. Self-cleaning behavior of nanocomposite membrane induced by photocatalytic WO3 nanoparticles for landfill leachate treatment[J]. Korean Journal of Chemical Engineering, 2016, 33(10): 2968-2981. |
72 | SATHYA U, NITHYA M, KEERTHI. Fabrication and characterisation of fine-tuned polyetherimide (PEI)/WO3 composite ultrafiltration membranes for antifouling studies[J]. Chemical Physics Letters, 2020, 744: 137201. |
73 | MARTINS Alysson Stefan, LACHGAR Abdou, BOLDRIN ZANONI Maria Valnice. Sandwich nylon/stainless-steel/WO3 membrane for the photoelectrocatalytic removal of Reactive Red 120 dye applied in a flow reactor[J]. Separation and Purification Technology, 2020, 237: 116338. |
[1] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[9] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[10] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[11] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[12] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[13] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[14] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[15] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |