化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4497-4507.DOI: 10.16085/j.issn.1000-6613.2020-1841
收稿日期:
2020-09-14
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
王秋华
作者简介:
张卫风(1977—),男,博士,副教授,研究方向为大气污染及其控制、温室气体CO2减排。E-mail:ZHANG Weifeng(), XU Yuanlong, WANG Qiuhua()
Received:
2020-09-14
Online:
2021-08-05
Published:
2021-08-12
Contact:
WANG Qiuhua
摘要:
醇胺法吸收CO2具有效率高、易改造等优点,但较高的再生能耗严重阻碍了其实际应用。本文在介绍醇胺吸收机理和各种醇胺的解吸特性的基础上,分析了采用非水溶剂、固体酸催化剂和纳米颗粒等方法来降低醇胺富液热解吸能耗,以及采用钙基化合物对富液进行化学解吸的原理及可行性。分析表明:再生热负荷与吸收产物密切相关,选择适合的醇胺吸收剂可降低再生反应自由能;非水溶剂在降低显热和汽化热方面效果显著,利用乙醇吸收产物稳定性低的特性,能在降低显热和汽化热的同时降低解吸热;优化固体酸催化剂的中孔比表面积和B酸酸位点或制备新型双功能催化剂能缩短加热时间和降低温度;纳米颗粒通过提高溶液传热传质效率减小再生热负荷,但对醇胺传质传热效果还需进一步研究;采用氯化钙和氢氧化钙等钙基化合物解吸富液成本低、效果好,通过改善粉煤灰等含钙工业废料的均质性和有效成分占比,化学解吸成本有望进一步降低,具有广阔的应用前景。
中图分类号:
张卫风, 许元龙, 王秋华. CO2醇胺富液低能耗再生研究进展[J]. 化工进展, 2021, 40(8): 4497-4507.
ZHANG Weifeng, XU Yuanlong, WANG Qiuhua. Progress of research on regeneration of rich alkanolamine solution with low energy consumption[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4497-4507.
1 | LYU D, CHEN J Y, YANG K X, et al. Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework[J]. Chemical Engineering Journal, 2019, 375: 122074. |
2 | SERRA-CRESPO P, BERGER R, YANG W P, et al. Separation of CO2/CH4 mixtures over NH2-MIL-53—An experimental and modelling study[J]. Chemical Engineering Science, 2015, 124: 96-108. |
3 | HU Z G, NALAPARAJU A, PENG Y W, et al. Modulated hydrothermal synthesis of UiO-66(Hf)-type metal-organic frameworks for optimal carbon dioxide separation[J]. Inorganic Chemistry, 2016, 55(3): 1134-1141. |
4 | SONG C F, LI R, FAN Z C, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation[J]. Separation and Purification Technology, 2020, 238: 116500. |
5 | 张卫风, 马伟春, 邱雪霏. 醇胺吸收液的浸润性对膜吸收法脱除CO2性能的影响[J]. 化工进展, 2017, 36(12): 4686-4691. |
ZHANG Weifeng, MA Weichun, QIU Xuefei. Effect of infiltration of organic amine absorbents on CO2 removal performance with membrane gas absorption method[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4686-4691. | |
6 | 张卫风, 李娟, 王秋华, 等. 燃煤烟气中CO2膜吸收分离技术的膜浸润特性述评[J]. 化工进展, 2019, 38(8): 3866-3873. |
ZHANG Weifeng, LI Juan, WANG Qiuhua, et al. Review on membrane wettability of membrane CO2 absorption method from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3866-3873. | |
7 | SHI H C, FU J X, WU Q M, et al. Studies of the coordination effect of DEA-MEA blended amines (within 1+4 to 2+3M) under heterogeneous catalysis by means of absorption and desorption parameters[J]. Separation and Purification Technology, 2020, 236: 116179. |
8 | AFKHAMIPOUR M, MOFARAHI M, REZAEI A, et al. Experimental and theoretical investigation of equilibrium absorption performance of CO2 using a mixed 1-dimethylamino-2-propanol (1DMA2P) and monoethanolamine (MEA) solution[J]. Fuel, 2019, 256: 115877. |
9 | NAKHJIRI A T, HEYDARINASAB A, BAKHTIARI O, et al. The effect of membrane pores wettability on CO2 removal from CO2/CH4 gaseous mixture using NaOH, MEA and TEA liquid absorbents in hollow fiber membrane contactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1845-1861. |
10 | 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886. |
LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. | |
11 | MANZOLINI G, SANCHEZ FERNANDEZ E, REZVANI S, et al. Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology[J]. Applied Energy, 2015, 138: 546-558. |
12 | LITTEL R J, VERSTEEG G F, SWAAIJ W P M VAN. Kinetics of CO2 with primary and secondary amines in aqueous solutions—I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines[J]. Chemical Engineering Science, 1992, 47(8): 2027-2035. |
13 | VAIDYA P D, KENIG E Y. CO2-alkanolamine reaction kinetics: a review of recent studies[J]. Chemical Engineering & Technology, 2007, 30(11): 1467-1474. |
14 | XIAO M, LIU H L, GAO H X, et al. CO2 absorption with aqueous tertiary amine solutions: equilibrium solubility and thermodynamic modeling[J]. The Journal of Chemical Thermodynamics, 2018, 122: 170-182. |
15 | SINGTO S, SUPAP T, IDEM R, et al. Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: the effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration[J]. Separation and Purification Technology, 2016, 167: 97-107. |
16 | KANG M K, JEON S B, CHO J H, et al. Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions[J]. International Journal of Greenhouse Gas Control, 2017, 63: 281-288. |
17 | GUO H, LI C X, SHI X Q, et al. Nonaqueous amine-based absorbents for energy efficient CO2 capture[J]. Applied Energy, 2019, 239: 725-734. |
18 | KANG S J, SHEN X Z, YANG W Z. Investigation of CO2 desorption kinetics in MDEA and MDEA+DEA rich amine solutions with thermo-gravimetric analysis method[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102947. |
19 | DE ÁVILA S G, LOGLI M A, MATOS J R. Kinetic study of the thermal decomposition of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA)[J]. International Journal of Greenhouse Gas Control, 2015, 42: 666-671. |
20 | WAI S K, NWAOHA C, SAIWAN C, et al. Absorption heat, solubility, absorption and desorption rates, cyclic capacity, heat duty, and absorption kinetic modeling of AMP-DETA blend for post-combustion CO2 capture[J]. Separation and Purification Technology, 2018, 194: 89-95. |
21 | LIU B, LUO X, GAO H X, et al. Reaction kinetics of the absorption of carbon dioxide (CO2) in aqueous solutions of sterically hindered secondary alkanolamines using the stopped-flow technique[J]. Chemical Engineering Science, 2017, 170: 16-25. |
22 | MURAI S, KATO Y, MAEZAWA Y, et al. Novel hindered amine absorbent for CO2 capture[J]. Energy Procedia, 2013, 37: 417-422. |
23 | NARKU-TETTEH J, MUCHAN P L, SAIWAN C, et al. Effect of side chain structure and number of hydroxyl groups of primary, secondary and tertiary amines on their post-combustion CO2 capture performance[J]. Energy Procedia, 2017, 114: 1811-1827. |
24 | DERKS P W J, KLEINGELD T, AKEN C VAN, et al. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions[J]. Chemical Engineering Science, 2006, 61(20): 6837-6854. |
25 | KHAN A A, HALDER G, SAHA A K. Experimental investigation on efficient carbon dioxide capture using piperazine (PZ) activated aqueous methyldiethanolamine (MDEA) solution in a packed column[J]. International Journal of Greenhouse Gas Control, 2017, 64: 163-173. |
26 | MUCHAN P L, NARKU-TETTEH J, SAIWAN C, et al. Effect of number of amine groups in aqueous polyamine solution on carbon dioxide (CO2) capture activities[J]. Separation and Purification Technology, 2017, 184: 128-134. |
27 | SHARIF M, ZHANG T T, WU X M, et al. Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines[J]. International Journal of Greenhouse Gas Control, 2020, 97: 103059. |
28 | XU G W, ZHANG C F, QIN S J, et al. Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine[J]. Industrial & Engineering Chemistry Research, 1992, 31(3): 921-927. |
29 | ZHANG X, ZHANG C F, QIN S J, et al. A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine[J]. Industrial & Engineering Chemistry Research, 2001, 40(17): 3785-3791. |
30 | ZHANG T T, YU Y S, ZHANG Z X. An interactive chemical enhancement of CO2 capture in the MEA/PZ/AMP/DEA binary solutions[J]. International Journal of Greenhouse Gas Control, 2018, 74: 119-129. |
31 | SHI H C, NAAMI A, IDEM R, et al. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents[J]. International Journal of Greenhouse Gas Control, 2014, 26: 39-50. |
32 | SHI H C, IDEM R, NAAMI A, et al. Catalytic solvent regeneration using hot water during amine based CO2 capture process[J]. Energy Procedia, 2014, 63: 266-272. |
33 | NAKAI H, NISHIMURA Y, KAIHO T, et al. Contrasting mechanisms for CO2 absorption and regeneration processes in aqueous amine solutions: insights from density-functional tight-binding molecular dynamics simulations[J]. Chemical Physics Letters, 2016, 647: 127-131. |
34 | SALEH BAIRQ Z ALI, GAO H X, HUANG Y F, et al. Enhancing CO2 desorption performance in rich MEA solution by addition of SO42-/ZrO2/SiO2 bifunctional catalyst[J]. Applied Energy, 2019, 252: 113440. |
35 | NWAOHA C, IDEM R, SUPAP T, et al. Heat duty, heat of absorption, sensible heat and heat of vaporization of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blend for carbon dioxide (CO2) capture[J]. Chemical Engineering Science, 2017, 170: 26-35. |
36 | ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
37 | YUAN Y, ROCHELLE G T. CO2 absorption rate and capacity of semi-aqueous piperazine for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2019, 85: 182-186. |
38 | BOUGIE F, POKRAS D, FAN X F. Novel non-aqueous MEA solutions for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2019, 86: 34-42. |
39 | WANDERLEY R R, PINTO D D D, KNUUTILA H K. Investigating opportunities for water-lean solvents in CO2 capture: VLE and heat of absorption in water-lean solvents containing MEA[J]. Separation and Purification Technology, 2020, 231: 115883. |
40 | BARZAGLI F, MANI F, PERUZZINI M. Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP)[J]. International Journal of Greenhouse Gas Control, 2013, 16: 217-223. |
41 | CHEN S M, CHEN S Y, ZHANG Y C, et al. Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 151-158. |
42 | LIU F, JING G H, ZHOU X B, et al. Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1352-1361. |
43 | LAI Q H, KONG L L, GONG W B, et al. Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution[J]. Applied Energy, 2019, 254: 113696. |
44 | AKACHUKU A, OSEI P A, DECARDI-NELSON B, et al. Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine- methyl-diethanolamine (MEA-MDEA) solutions[J]. Energy, 2019, 179: 475-489. |
45 | BHATTI U H, SHAH A K, HUSSAIN A, et al. Catalytic activity of facilely synthesized mesoporous HZSM-5 catalysts for optimizing the CO2 desorption rate from CO2-rich amine solutions[J]. Chemical Engineering Journal, 2020, 389: 123439. |
46 | ZHANG X W, ZHANG X, LIU H L, et al. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts[J]. Applied Energy, 2017, 202: 673-684. |
47 | ZHANG X W, LIU H L, LIANG Z W, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts[J]. Applied Energy, 2018, 229: 562-576. |
48 | ZHANG X W, HUANG Y F, GAO H X, et al. Zeolite catalyst-aided tri-solvent blend amine regeneration: an alternative pathway to reduce the energy consumption in amine-based CO2 capture process[J]. Applied Energy, 2019, 240: 827-841. |
49 | ZHANG X W, ZHANG R, LIU H L, et al. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts[J]. Applied Energy, 2018, 218: 417-429. |
50 | GAO H X, HUANG Y F, ZHANG X W, et al. Catalytic performance and mechanism of SO42-/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution[J]. Applied Energy, 2020, 259: 114179. |
51 | 李强. 纳米流体强化传热机理研究[D]. 南京: 南京理工大学, 2004. |
LI Qiang. Investigation on enhanced heat transfer of nanofluids[D]. Nanjing: Nanjing University of Science and Technology, 2004. | |
52 | LEE J W, TORRES PINEDA I, LEE J H, et al. Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents[J]. Applied Energy, 2016, 178: 164-176. |
53 | PANG C W, JUNG J Y, LEE J W, et al. Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5597-5602. |
54 | LEE J S, LEE J W, KANG Y T. CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application[J]. Applied Energy, 2015, 143: 119-129. |
55 | WANG T, YU W, LIU F, et al. Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7830-7838. |
56 | HAFIZI A, RAJABZADEH M, KHALIFEH R. Enhanced CO2 absorption and desorption efficiency using DETA functionalized nanomagnetite/water nano-fluid[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103845. |
57 | MURNANDARI A, KANG J M, YOUN M H, et al. Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization[J]. Korean Journal of Chemical Engineering, 2017, 34(3): 935-941. |
58 | LUO C, WU K J, YUE H R, et al. DBU-based CO2 absorption-mineralization system: reaction process, feasibility and process intensification[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1145-1155. |
60 | PARK S, JO H, KANG D, et al. A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry[J]. Energy, 2014, 75: 624-629. |
61 | 张卫风, 李娟, 王秋华. 响应面法优化解吸MDEA/PG富液中CO2再生工艺[J/OL]. 过程工程学报: 1-10[2021-02-19]. . |
ZHANG Weifeng, LI Juan, WANG Qiuhua. Response surface methodology for optimizing CO2 regeneration in MDEA/PG rich solutions[J/OL]. The Chinese Journal of Process Engineering: 1-10[2021-02-19]. . | |
62 | YU B, LI K K, JI L, et al. Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration: a high energy-saving process for CO2 absorption and sequestration[J]. International Journal of Greenhouse Gas Control, 2019, 87: 58-65. |
63 | CHANG R, CHOI D, KIM M H, et al. Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1659-1667. |
64 | ARTI M, YOUN M H, PARK K T, et al. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride[J]. Energy & Fuels, 2017, 31(1): 763-769. |
65 | KANG J M, MURNANDARI A, YOUN M H, et al. Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process[J]. Chemical Engineering Journal, 2018, 335: 338-344. |
66 | LYU B, GUO B S, ZHOU Z M, et al. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes[J]. Environmental Science & Technology, 2015, 49(17): 10728-10735. |
67 | 马伟春, 张卫风, 焦月潭, 等. 钙法解吸并固定乙醇胺富液中CO2[J]. 环境科学学报, 2018, 38(1): 109-114. |
MA Weichun, ZHANG Weifeng, JIAO Yuetan, et al. Desorption and mineralization of CO2 in monoethanolamine-rich solution by calcium method[J]. Acta Scientiae Circumstantiae, 2018, 38(1): 109-114. | |
68 | ARTI M, YOUN M H, PARK K T, et al. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride[J]. Energy & Fuels, 2017, 31(1): 763-769. |
69 | PARK S, MIN J, LEE M G, et al. Characteristics of CO2 fixation by chemical conversion to carbonate salts[J]. Chemical Engineering Journal, 2013, 231: 287-293. |
70 | 张卫风, 李娟, 王秋华. Ca(OH)2解吸并固定混合吸收液中CO2的实验研究[J]. 环境科学学报, 2020, 40(4): 1436-1442. |
ZHANG Weifeng, LI Juan, WANG Qiuhua. Experimental study on desorption and mineralization of CO2 in amine-rich solution[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1436-1442. | |
71 | LIU M S, GADIKOTA G. Single-step, low temperature and integrated CO2 capture and conversion using sodium glycinate to produce calcium carbonate[J]. Fuel, 2020, 275: 117887. |
72 | HONG S J, SIM G, MOON S, et al. Low-temperature regeneration of amines integrated with production of structure-controlled calcium carbonates for combined CO2 capture and utilization[J]. Energy & Fuels, 2020, 34(3): 3532-3539. |
73 | LIU M S, GADIKOTA G. Integrated CO2 capture, conversion, and storage to produce calcium carbonate using an amine looping strategy[J]. Energy & Fuels, 2019, 33(3): 1722-1733. |
74 | JI L, YU H, LI K K, et al. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration[J]. Applied Energy, 2018, 225: 356-366. |
75 | LIU Meishen, ASGAR Hassnain, SEIFERT Soenke, et al. Novel aqueous amine looping approach for the direct capture, conversion and storage of CO2 to produce magnesium carbonate[J]. Sustainable Energy & Fuels, 2020, 4(3): 1265-1275. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[3] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[11] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[12] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[13] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[14] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[15] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |