化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4486-4496.DOI: 10.16085/j.issn.1000-6613.2020-1852
收稿日期:
2020-09-14
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
张永祥
基金资助:
ZHANG Yongxiang(), WANG Jinhao, JING Qi, LI Yajun
Received:
2020-09-14
Online:
2021-08-05
Published:
2021-08-12
Contact:
ZHANG Yongxiang
摘要:
纳米零价铁(nZVI)具有较强的还原和吸附能力,能有效去除多种类型的污染物质,在地下水环境修复领域一直备受关注。但由于其易团聚和易钝化等缺陷,在实际应用过程中还存在着许多问题。本文综述了nZVI的常用制备方法,并对nZVI的常用改性方法进行归纳,分析各种改性方法起到的具体作用,指出改性过后的复合材料依然存在着的问题。在此基础上,阐述了改性nZVI在去除地下水中有机污染物和无机污染物的应用进展,总结了改性nZVI材料在去除过程中起到的具体作用和反应机制,并进一步归纳现阶段nZVI在地下水修复中的传输手段。根据已有研究成果,指出应改进现有制备方法实现nZVI的量产,在考虑nZVI生物毒性和材料再回收的前提下,合理使用多种改性方式实现nZVI的材料制备,选择符合污染场地实际情况的传输手段,从而提高nZVI在地下水污染修复中的使用寿命和对目标污染物的处理效果。
中图分类号:
张永祥, 王晋昊, 井琦, 李雅君. 地下水修复中纳米零价铁材料制备及应用综述[J]. 化工进展, 2021, 40(8): 4486-4496.
ZHANG Yongxiang, WANG Jinhao, JING Qi, LI Yajun. Preparation and application of modified nanoscale zero-valent iron (nZVI) in groundwater: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4486-4496.
7 | 潘成福, 侯登录, 张民. 纳米Fe微粒的溅射制备及粒度计算[J]. 磁记录材料, 1999(2): 8-9, 17. |
PAN Chengfu, HOU Denglu, ZHANG Min. Preparation and particle size calculation of iron nanoparticles by sputtering[J]. Information Recording Materials, 1999(2): 8-9, 17. | |
8 | DEL B L, HERNADO A, NAVARRO E, et al. Structural configuration and magnetic effects in as-milled and annealed nanocrystalline iron[J]. Le Journal de Physique IV, 1998, 8(2): r2-r107. |
9 | 李发伸, 杨文平, 薛德胜. 纳米Fe微粒的制备及研究[J]. 兰州大学学报, 1994, 30(1): 144-146. |
LI Fashen, YANG Wenping, XUE Desheng. Preparation and study of iron nanoparticles[J]. Journal of Lanzhou University (Natural Sciences), 1994, 30(1): 144-146. | |
10 | 杨丽梅, 王达望, 张禹涛, 等. 等离子体制备铁纳米颗粒方法及试验研究[J]. 核聚变与等离子体物理, 2011, 31(4): 372-378. |
YANG Limei, WANG Dawang, ZHANG Yutao, et al. Preparation of iron nanoparticles by plasma system and experimental study[J]. Nuclear Fusion and Plasma Physics, 2011, 31(4): 372-378. | |
11 | 罗驹华, 张振忠, 张少明. 气相法制备纳米铁颗粒新进展[J]. 材料导报, 2007, 21(S1): 130-133. |
LUO Juhua, ZHANG Zhenzhong, ZHANG Shaoming. New progress in preparation of iron nanoparticles by gas phase method[J]. Materials Review, 2007, 21(S1): 130-133. | |
12 | WANG Chuanbao, ZHANG Weixian. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2154-2156. |
13 | SANTOS A, ARDISSON J D, TAMBOURGI E B, et al. Synthesis of granular FeAl2O3 by the sol-gel method[J]. Journal of Magnetism and Magnetic Materials, 1998, 177/178/179/180/181: 247-248. |
14 | 柳学全, 徐教仁, 刘思林, 等. 纳米级金属铁颗粒的制取[J]. 粉末冶金技术, 1996, 14(1): 26-29. |
1 | 孙景云, 左犀. 地下水饮用水源地的保护[J]. 环境保护, 1996, 24(5): 20-24. |
SUN Jingyun, ZUO Xi. Protection of groundwater drinking water sources[J]. Environmental Protection, 1996, 24(5): 20-24. | |
14 | LIU Xuequan, XU Jiaoren, LIU Silin, et al. Preparation of nano-scale metallic iron particles[J]. Powder Metallurgy Technology, 1996, 14(1): 26-29. |
15 | LI F, VIPULANANDAN C, MOHANTY K K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 223(1/2/3): 103-112. |
2 | 范宏喜. 我国地下水资源与环境现状综述[J]. 水文地质工程地质, 2009, 36(2): 141-143. |
FAN Hongxi. Summary of the status of groundwater resources and environment in China[J]. Hydrogeology & Engineering Geology, 2009, 36(2): 141-143. | |
16 | NATTER H, SCHMELZER M, LÖFFLER M S, et al. Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time X-ray diffraction[J]. The Journal of Physical Chemistry B, 2000, 104(11): 2467-2476. |
17 | MACHADO S, PINTO S L, GROSSO J P, et al. Green production of zero-valent iron nanoparticles using tree leaf extracts[J]. Science of the Total Environment, 2013, 445/446: 1-8. |
3 | QIU J. China to spend billions cleaning up groundwater[J]. Science, 2011, 334(6057): 745. |
4 | 王琪, 王佳旭. 我国地下水污染现状与防治对策研究[J]. 环境与发展, 2017, 29(3): 106-107. |
18 | 张心亚, 沈慧芳, 黄洪, 等. 纳米粒子材料的表面改性及其应用研究进展[J]. 材料工程, 2005, 33(10): 58-63. |
ZHANG Xinya, SHEN Huifang, HUANG Hong, et al. Research progress in surface modification and application of nanoparticle materials[J]. Journal of Materials Engineering, 2005, 33(10): 58-63. | |
4 | WANG Qi, WANG Jiaxu. Study on present situation and countermeasures of groundwater pollution in China[J]. Environment and Development, 2017, 29(3): 106-107. |
5 | FAN D, O’BRIEN JOHNSON G, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17): 9558-9565. |
19 | TENG H H, XU S K, ZHAO C Y, et al. Removal of hexavalent chromium from aqueous solutions by sodium dodecyl sulfate stabilized nano zero-valent iron: a kinetics, equilibrium, thermodynamics study[J]. Separation Science & Technology, 2013, 48(11): 1729-1737. |
20 | ALESSI D S, LI Zhaohui. Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron[J]. Environmental Science & Technology, 2001, 35(18): 3713-3717. |
6 | JIEMVARANGKUL P, ZHANG Weixian, LIEN Hsing Lung. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media[J]. Chemical Engineering Journal, 2011, 170(2/3): 482-491. |
21 | XIE Yingying, CHENG Wan, TSANG P E, et al. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres[J]. Journal of Environmental Management, 2016, 166: 478-483. |
22 | DONG Haoran, ZHAO Feng, ZENG Guangming, et al. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: chemical transformation and structural evolution[J]. Journal of Hazardous Materials, 2016, 312: 234-242. |
23 | GENG Bing, JIN Zhaohui, LI Tielong, et al. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles[J]. Chemosphere, 2009, 75(6): 825-830. |
24 | KIM Eun-Ju, KIM Jae-Hwan, AZAD A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces, 2011, 3(5): 1457-1462. |
25 | RAJAJAYAVEL S R C, GHOSHAL S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron[J]. Water Research, 2015, 78: 144-153. |
26 | HAN Yanlai, YAN Weile. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment[J]. Environmental Science & Technology, 2016, 50(23): 12992-13001. |
27 | SU Yiming, ADELEYE A S, KELLER A A, et al. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal[J]. Water Research, 2015, 74: 47-57. |
28 | DONG Haoran, ZHANG Cong, DENG Junmin, et al. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution[J]. Water Research, 2018, 135: 1-10. |
29 | SONG Shikun, SU Yiming, ADELEYE A S, et al. Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal[J]. Applied Catalysis B: Environmental, 2017, 201: 211-220. |
30 | MU Yi, AI Zhihui, ZHANG Lizhi. Phosphate shifted oxygen reduction pathway on Fe@Fe2O3 core-shell nanowires for enhanced reactive oxygen species generation and aerobic 4-chlorophenol degradation[J]. Environmental Science & Technology, 2017, 51(14): 8101-8109. |
31 | LI Meiqi, MU Yi, SHANG Huan, et al. Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal[J]. Applied Catalysis B: Environmental, 2020, 263: 118364. |
32 | LI Xingyue, AI Lunhong, JIANG Jing. Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: surface corrosion retard induced the enhanced performance[J]. Chemical Engineering Journal, 2016, 288: 789-797. |
33 | HE Hongping, FROST R L, BOSTROM T, et al. Changes in the morphology of organoclays with HDTMA+ surfactant loading[J]. Applied Clay Science, 2006, 31(3/4): 262-271. |
34 | 樊明德, 袁鹏, 陈天虎, 等. 蒙脱石载体对“核-壳”结构零价铁纳米颗粒制备及其尺寸控制的影响与机理[J]. 科学通报, 2010, 55(9): 827-834. |
FAN Mingde, YUAN Peng, CHEN Tianhu, et al. Effect and mechanism of montmorillonite carrier on preparation and size control of “core-shell” zero-valent iron nanoparticles[J]. Chinese Science Bulletin, 2010, 55(9): 827-834. | |
35 | GU Cheng, JIA Hanzhong, LI Hui, et al. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates[J]. Environmental Science & Technology, 2010, 44(11): 4258-4263. |
36 | JIA Hanzhong, WANG Chuanyi. Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite[J]. Chemical Engineering Journal, 2012, 191: 202-209. |
37 | IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58. |
38 | Seong-jin YOO, HAN Sangho, KIM Woo Jin. Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J]. Scripta Materialia, 2013, 68(9): 711-714. |
39 | XIAO Shili, MA Hui, SHEN Mingwu, et al. Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381(1/2/3): 48-54. |
40 | 张家利, 张翠玲, 党瑞. 沸石在废水处理中的应用研究进展[J]. 环境科学与管理, 2013, 38(3): 75-79. |
ZHANG Jiali, ZHANG Cuiling, DANG Rui. Research progress of zeolite in wastewater treatment[J]. Environmental Science and Management, 2013, 38(3): 75-79. | |
41 | DANISH M, GU Xiaogang, LU Shuguang, et al. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite[J]. Environmental Science and Pollution Research, 2016, 23(13): 13298-13307. |
42 | LEHMANN J, GAUNT J, RONDON M. Biochar sequestration in terrestrial ecosystems-a review[J]. Mitigation & Adaptation Strategies for Global Change, 2006, 11(2): 403-427. |
43 | KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253. |
44 | NEOUZE M A, SCHUBERT U. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands[J]. Monatshefte Für Chemie Chemical Monthly, 2008, 139(3): 183-195. |
45 | YUAN Yong, BOLAN N, PRÉVOTEAU A, et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246: 271-281. |
46 | Seok-Young OH, Yong-Deuk SEO, KIM Beomseok, et al. Microbial reduction of nitrate in the presence of zero-valent iron and biochar[J]. Bioresource Technology, 2015, 200: 891-896. |
47 | WEI Gaoling, ZHANG Jinhua, LUO Jinqiu, et al. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Frontiers of Environmental Science & Engineering, 2019, 13(4): 1-11. |
48 | MORTAZAVIAN S, JONES-LEPP T, Jee-Hwan BAE, et al. Heat-treated biochar impregnated with zero-valent iron nanoparticles for organic contaminants removal from aqueous phase: material characterizations and kinetic studies[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 197-214. |
49 | ZHOU Shimin, LI Yuan, CHEN Jitao, et al. Enhanced Cr(VI) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: characterization, kinetics and mechanism[J]. RSC Advances, 2014, 4(92): 50699-50707. |
50 | XU Jian, BHATTACHARYYA D. Fe/Pd nanoparticle immobilization in microfiltration membrane pores: synthesis, characterization, and application in the dechlorination of polychlorinated biphenyls[J]. Industrial & Engineering Chemistry Research, 2007, 46(8): 2348-2359. |
51 | ZHU Fang, LI Luwei, MA Shaoyun, et al. Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles[J]. Chemical Engineering Journal, 2016, 302: 663-669. |
52 | CHUN Chanlan, BAER D R, MATSON D W, et al. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni[J]. Environmental Science & Technology, 2010, 44(13): 5079-5085. |
53 | WANG Shengsen, ZHAO Mingyue, ZHOU Min, et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review[J]. Journal of Hazardous Materials, 2019, 373: 820-834. |
54 | ZHANG Shuai, Honghong LYU, TANG Jingchun, et al. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water.[J]. Chemosphere, 2019, 217: 686-694. |
55 | NUNEZ GARCIA A, BOPARAI H K, DE BOER C V, et al. Fate and transport of sulfidated nano zerovalent iron (S-nZVI): a field study[J]. Water Research, 2020, 170: 115319. |
56 | ZHU Bao-Wei, Teik-Thye LIM, FENG Jing. Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial interactions[J]. Environmental Science & Technology, 2008, 42(12): 4513-4519. |
57 | ELLIOTT D W, ZHANG Weixian. Field assessment of nanoscale bimetallic particles for groundwater treatment[J]. Environmental Science & Technology, 2001, 35(24): 4922-4926. |
58 | O’CARROLL D, SLEEP B, KROL M, et al. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation[J]. Advances in Water Resources, 2013, 51: 104-122. |
59 | ZHANG Weixian, WANG Chuanbao, LIEN Hsing-Lung. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J]. Catalysis Today, 1998, 40(4): 387-395. |
60 | LI Xiaoqin, ZHANG Weixian. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007, 111(19): 6939-6946. |
61 | LI Yimin, ZHANG Yun, LI Jianfa, et al. Enhanced removal of pentachlorophenol by a novel composite: nanoscale zero valent iron immobilized on organobentonite[J]. Environmental Pollution, 2011, 159(12): 3744-3749. |
62 | 潘煜, 孙力平, 陈星宇, 等. CMC改性纳米Fe/Cu双金属模拟PRB去除地下水中2,4-二氯苯酚[J]. 中国环境科学, 2019, 39(9): 3789-3796. |
PAN Yu, SUN Liping, CHEN Xingyu, et al. CMC modified nano Fe/Cu bimetal simulated PRB to remove 2,4-dichlorophenol from groundwater[J]. China Environmental Science, 2019, 39(9): 3789-3796. | |
63 | MUELLER N C, BRAUN J, BRUNS J, et al. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe[J]. Environmental Science and Pollution Research, 2012, 19(2): 550-558. |
64 | REN Jiawei, Yun Chul WOO, YAO Minwei, et al. Nanoscale zero-valent iron (nZVI) immobilization onto graphene oxide (GO)-incorporated electrospun polyvinylidene fluoride (PVDF) nanofiber membrane for groundwater remediation via gravity-driven membrane filtration[J]. Science of the Total Environment, 2019, 688: 787-796. |
65 | BARD A J, PARSONS R, JORDAN J. Standard potentials in aqueous solution[M]: BocaRaton, Ratledge, 1985. |
66 | SHAO Fengli, ZHOU Shaoyu, XU Jiaxin, et al. Detoxification of Cr(VI) using biochar supported Cu/Fe bimetallic nanoparticles[J]. Desalination and Water Treatment, 2019, 158: 121-129. |
67 | ZHANG Yongxiang, TIAN Zhenjun, JING Qi, et al. Removal of Cr(VI) by modified diatomite supported NZVI from aqueous solution: evaluating the effects of removal factors by RSM and understanding the effects of pH[J]. Water Science and Technology, 2019, 80(2): 308-316. |
68 | LI Xiaoqin, CAO Jiasheng, ZHANG Weixian. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2131-2139. |
69 | LI Jing, FAN Mingjie, LI Miao, et al. Cr(VI) removal from groundwater using double surfactant-modified nanoscale zero-valent iron (nZVI): effects of materials in different status[J]. Science of the Total Environment, 2020, 717: 137112. |
70 | BARBARA K, KUIKEN T, OTTO M. Nanotechnology and in situ remediation: a review of the benefits and potential risks[J]. Environmental Health Perspectives, 2009, 117(12): 1823-1831. |
71 | ELLIOTT D W, LIEN Hsing-Lung, ZHANG Weixian. Nanoscale zero-valent iron (nZVI) for site remediation[M]//FRYXELL G E, CAO Guozhong. Environmental Applications of Nanomaterials. World Scientific Publishing Co Pte Ltd, 2007: 25-48. |
72 | U.S. EPA. Nanotechnology for site remediation: fact sheet[R]. EPA 542-F-08F009. Washington D C: U.S. Environmental Protection Agency, 2008. |
73 | BARDOS P, BONE B, DALY P, et al. A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites[R]. WP9 NanoRem, 2014. |
74 | HENN K W, WADDILL D W. Utilization of nanoscale zero-valent iron for source remediation- a case study[J]. Remediation Journal, 2006, 16(2): 57-77. |
75 | DING Yuanzhao, LIU Bo, SHEN Xin, et al. Foam-assisted delivery of nanoscale zero valent iron in porous media[J]. Journal of Environmental Engineering, 2013, 139(9): 1206-1212. |
76 | HE Feng, ZHAO Dongye, PAUL C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones[J]. Water Research, 2010, 44(7): 2360-2370. |
77 | SU Chunming, PULS R W, KRUG T A, et al. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticle[J]. Water Research, 2012, 46(16): 5071-5084. |
78 | SU Chunming, PULS R W, KRUG T A, et al. Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years[J]. Water Research, 2013, 47(12): 4095-4106. |
79 | HIGGINS M R, OLSON T M. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation[J]. Environmental Science & Technology, 2009, 43(24): 9432-9438. |
80 | Honghong LYU, TANG Jingchun, CUI Mengke, et al. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: synthesis, applications, and mechanisms[J]. Chemosphere, 2020, 246: 125609. |
81 | PHILLIPS D H, NOOTEN T V, BASTIAENS L, et al. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater[J]. Environmental Science & Technology, 2010, 44(10): 3861-3869. |
82 | WILKIN R T, SU Chunming, FORD R G, et al. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier[J]. Environmental Science & Technology, 2005, 39(12): 4599-4605. |
83 | LIU Yueqiang, LOWRY G V. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination[J]. Environmental Science & Technology, 2006, 40(19): 6085-6090. |
84 | KANEL S R, CHOI Heechul. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media[J]. Water Science and Technology, 2007, 55(1/2): 157-162. |
85 | CHOWDHURY A I A, O’CARROLL D M, XU Yanqing, et al. Electrophoresis enhanced transport of nano-scale zero valent iron[J]. Advances in Water Resources, 2012, 40: 71-82. |
86 | BUSCH J, MEIßNER T, POTTHOFF A, et al. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater[J]. Journal of Contaminant Hydrology, 2015, 181: 59-68. |
87 | LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2016, 565: 889-901. |
88 | COHEN M, WEISBROD N. Field scale mobility and transport manipulation of carbon-supported nanoscale zerovalent iron in fractured media[J]. Environmental Science & Technology, 2018, 52(14): 7849-7858. |
89 | REN Jiawei, YAO Minwei, Yun Chul WOO, et al. Recyclable nanoscale zerovalent iron(nZVI)-immobilized electrospun nanofiber composites with improved mechanical strength for groundwater remediation[J]. Composites Part B: Engineering, 2019, 171: 339-346. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[5] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[6] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[7] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[8] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[9] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[10] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[11] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[12] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[13] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[14] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[15] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |