化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4290-4304.DOI: 10.16085/j.issn.1000-6613.2020-1887
收稿日期:
2020-09-17
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
胡天丁
作者简介:
冯东(1990—),男,讲师,研究方向为高分子材料高性能化与多功能化。E-mail:基金资助:
FENG Dong1,2(), WANG Bo1, QI Fangwei2, HU Tianding1()
Received:
2020-09-17
Online:
2021-08-05
Published:
2021-08-12
Contact:
HU Tianding
摘要:
选择性激光烧结(selective laser sintering, SLS)是一种重要的3D打印加工技术,可制备传统加工无法制备的任意复杂形状的制件,广泛应用于航空航天、国防装备、医疗器械以及汽车等高新技术领域。本文介绍了SLS技术的加工原理和优势,综述了SLS技术加工成形用材料种类及聚合物基粉体材料的制备方法,主要包括相分离法、机械粉碎法、溶液法和喷雾干燥法。重点对SLS技术制备聚合物基压电复合材料及制品的国内外研究现状进行总结。虽然SLS打印制造技术面临聚合物原料种类少、功能缺乏、粉体生产成本高以及难以批量制备等瓶颈问题,但经过不断地创新与发展,SLS打印技术将成为高性能多功能高分子复合材料及其大型复杂制件的极佳制造方法。
中图分类号:
冯东, 王博, 戚方伟, 胡天丁. 选择性激光烧结用聚合物基材料制备研究进展[J]. 化工进展, 2021, 40(8): 4290-4304.
FENG Dong, WANG Bo, QI Fangwei, HU Tianding. Research progress in the preparation of polymer-based materials for selective laser sintering[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4290-4304.
29 | LI Dong, TANG Kungui, FU Long. 3D printing sand core of cylinder head[J]. Foundry, 2016, 65(4): 325-328. |
30 | SCHWENTENWEIN M, HOMA J. Additive manufacturing of dense alumina ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 1-7. |
31 | LIU K, SUN H J, SHI Y S, et al. Research on selective laser sintering of Kaolin-epoxy resin ceramic powders combined with cold isostatic pressing and sintering[J]. Ceramics International, 2016, 42(9): 10711-10718. |
32 | 史玉升, 闫春泽, 魏青松, 等. 选择性激光烧结3D打印用高分子复合材料[J]. 中国科学: 信息科学, 2015, 45(2): 204-211. |
SHI Yusheng, YAN Chunze, WEI Qingsong, et al. Polymer based composites for selective laser sintering 3D printing technology[J]. Scientia Sinica Informationis, 2015, 45(2): 204-211. | |
33 | BASHIR Z, GU H, YANG L T. Evaluation of poly(ethylene terephthalate) powder as a material for selective laser sintering, and characterization of printed part[J]. Polymer Engineering & Science, 2018, 58(10): 1888-1900. |
34 | BERRETTA S, GHITA O, EVANS K E. Morphology of polymeric powders in laser sintering (LS): from polyamide to new PEEK powders[J]. European Polymer Journal, 2014, 59: 218-229. |
35 | WANG G X, WANG P L, ZHEN Z C, et al. Preparation of PA12 microspheres with tunable morphology and size for use in SLS processing[J]. Materials & Design, 2015, 87: 656-662. |
36 | JIN Y P, CHEN N, LI Y J, et al. The selective laser sintering of a polyamide 11/BaTiO3/graphene ternary piezoelectric nanocomposite[J]. RSC Advances, 2020, 10(35): 20405-20413. |
37 | SINGH S, SHARMA V S, SACHDEVA A. Optimization and analysis of shrinkage in selective laser sintered polyamide parts[J]. Materials and Manufacturing Processes, 2012, 27(6): 707-714. |
38 | GUO Y L, JIANG K Y, BOURELL D L. Accuracy and mechanical property analysis of LPA12 parts fabricated by laser sintering[J]. Polymer Testing, 2015, 42: 175-180. |
39 | DICKENS E D, LEE B L, TAYLOR G A, et al. Sinterable semi-crystalline powder and near-fully dense article formed therein: US5648450[P]. 1997-07-15. |
40 | SALMORIA G V, LEITE J L, VIEIRA L F, et al. Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering[J]. Polymer Testing, 2012, 31(3): 411-416. |
1 | LEE J Y, AN J, CHUA C K. Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7: 120-133. |
2 | GOODRIDGE R D, TUCK C J, HAGUE R J M. Laser sintering of polyamides and other polymers[J]. Progress in Materials Science, 2012, 57(2): 229-267. |
41 | HOOREWEDER B VAN, MOENS D, BOONEN R, et al. On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering[J]. Polymer Testing, 2013, 32(5): 972-981. |
42 | CERARDI A, CANERI M, MENEGHELLO R, et al. Mechanical characterization of polyamide cellular structures fabricated using selective laser sintering technologies[J]. Materials & Design, 2013, 46: 910-915. |
43 | YUAN S S, STROBBE D, KRUTH J P, et al. Production of polyamide-12 membranes for microfiltration through selective laser sintering[J]. Journal of Membrane Science, 2017, 525: 157-162. |
3 | MOHAMED O A, MASOOD S H, BHOWMIK J L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects[J]. Advances in Manufacturing, 2015, 3(1): 42-53. |
4 | ZHOU C, CHEN Y, YANG Z G, et al. Digital material fabrication using mask-image-projection-based stereolithography[J]. Rapid Prototyping Journal, 2013, 19(3): 153-165. |
5 | PARANDOUSH P, LIN D. A review on additive manufacturing of polymer-fiber composites[J]. Composite Structures, 2017, 182: 36-53. |
6 | LIND J U, BUSBEE T A, VALENTINE A D, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing[J]. Nature Materials, 2017, 16(3): 303-308. |
44 | LAMMENS N, KERSEMANS M, DE BAERE I, et al. On the visco-elasto-plastic response of additively manufactured polyamide-12 (PA-12) through selective laser sintering[J]. Polymer Testing, 2017, 57: 149-155. |
45 | CAI Chao, LIU Jie, ZHU W, et al. Study on the selective laser sintering of a low-isotacticity polypropylene powder[J]. Rapid Prototyping Journal, 2016, 22(4): 621-629. |
7 | PANESAR A, ASHCROFT I, BRACKETT D, et al. Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems[J]. Additive Manufacturing, 2017, 16: 98-106. |
8 | BANDYOPADHYAY A, BOSE S, DAS S. 3D printing of biomaterials[J]. MRS Bulletin, 2015, 40(2): 108-115. |
46 | PEYRE P, ROUCHAUSSE Y, DEFAUCHY D, et al. Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers[J]. Journal of Materials Processing Technology, 2015, 225: 326-336. |
47 | BERRETTA S, EVANS K E, GHITA O. Processability of PEEK, a new polymer for high temperature laser sintering (HT-LS)[J]. European Polymer Journal, 2015, 68: 243-266. |
9 | ZAREK M, LAYANI M, COOPERSTEIN I, et al. 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials, 2016, 28(22): 4449-4454. |
10 | YAO X F, LIN Y Z. Emerging manufacturing paradigm shifts for the incoming industrial revolution[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5/6/7/8): 1665-1676. |
48 | GOODRIDGE R D, HAGUE R J M, TUCK C J. An empirical study into laser sintering of ultra-high molecular weight polyethylene (UHMWPE)[J]. Journal of Materials Processing Technology, 2010, 210(1): 72-80. |
49 | LISI LEITE J, SALMORIA G V, PAGGI R A, et al. Microstructural characterization and mechanical properties of functionally graded PA12/HDPE parts by selective laser sintering[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(5/6/7/8): 583-591. |
11 | WANG Y, ROUHOLAMIN D, DAVIES R, et al. Powder characteristics, microstructure and properties of graphite platelet reinforced poly ether ether ketone composites in high temperature laser sintering (HT-LS)[J]. Materials & Design, 2015, 88: 1310-1320. |
12 | ZHU W, YAN C Z, SHI Y S, et al. Investigation into mechanical and microstructural properties of polypropylene manufactured by selective laser sintering in comparison with injection molding counterparts[J]. Materials & Design, 2015, 82: 37-45. |
13 | BAI J M, ZHANG B C, SONG J, et al. The effect of processing conditions on the mechanical properties of polyethylene produced by selective laser sintering[J]. Polymer Testing, 2016, 52: 89-93. |
14 | ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials (2003—2006)[J]. Smart Materials and Structures, 2007, 16(3): R1-R21. |
15 | MAHANTY B, GHOSH S K, GARAIN S, et al. An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer[J]. Materials Chemistry and Physics, 2017, 186: 327-332. |
16 | DECKARD C R. Method for producing parts by selective sintering: US5639070[P]. 1997-06-17. |
50 | SCHMIDT J, SACHS M, FANSELOW S, et al. Optimized polybutylene terephthalate powders for selective laser beam melting[J]. Chemical Engineering Science, 2016, 156: 1-10. |
51 | GIBSON I, SHI D P. Material properties and fabrication parameters in selective laser sintering process[J]. Rapid Prototyping Journal, 1997, 3(4): 129-136. |
17 | CHATHAM C A, LONG T E, WILLIAMS C B. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing[J]. Progress in Polymer Science, 2019, 93: 68-95. |
18 | HOPKINSON N, DICKNES P. Analysis of rapid manufacturing—using layer manufacturing processes for production[J]. Proceedings of the Institution of Mechanical Engineers C: Journal of Mechanical Engineering Science, 2003, 217(1): 31-39. |
52 | SCHMID M, AMADO A, WEGENER K. Polymer powders for selective laser sintering(SLS)[C]//Proceedings of the AIP Conference, 2015. |
53 | MAZZOLI A, FERRETTI C, GIGANTE A, et al. Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering[J]. Rapid Prototyping Journal, 2015, 21(4): 386-392. |
19 | RUFFO M, TUCK C, HAGUE R. Cost estimation for rapid manufacturing - laser sintering production for low to medium volumes[J]. Proceedings of the Institution of Mechanical Engineers B: Journal of Engineering Manufacture, 2006, 220(9): 1417-1427. |
20 | LEVY G N, SCHINDEL R, KRUTH J P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives[J]. CIRP Annals, 2003, 52(2): 589-609. |
54 | VELU R, SINGAMNENI S. Selective laser sintering of polymer biocomposites based on polymethyl methacrylate[J]. Journal of Materials Research, 2014, 29(17): 1883-1892. |
55 | NGO T T, BLAIR S, KUWAHARA K, et al. Drug impregnation for laser sintered poly(methyl methacrylate) biocomposites using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2018, 136: 29-36. |
21 | KRUTH J P, LEVY G, KLOCKE F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Annals, 2007, 56(2): 730-759. |
22 | 贾礼宾, 王修春, 王小军, 等. 选择性激光烧结技术研究与应用进展[J]. 信息技术与信息化, 2015(11): 172-175. |
56 | MYS N, VERBERCKMOES A, CARDON L. Processing of syndiotactic polystyrene to microspheres for part manufacturing through selective laser sintering[J]. Polymers, 2016, 8(11): 383. |
57 | LI Z C, WANG Z H, GAN X P, et al. Selective laser sintering 3D printing: a way to construct 3D electrically conductive segregated network in polymer matrix[J]. Macromolecular Materials and Engineering, 2017, 302(11): 1700211. |
22 | JIA Libin, WANG Xiuchun, WANG Xiaojun, et al. The research and application progress of selected laser sintering technology[J]. Information Technology and Informatization, 2015(11): 172-175. |
23 | WEGNER A. New polymer materials for the laser sintering process: polypropylene and others[J]. Physics Procedia, 2016, 83: 1003-1012. |
24 | SINGH S, SHARMA V S, SACHDEVA A. Progress in selective laser sintering using metallic powders: a review[J]. Materials Science and Technology, 2016, 32(8): 760-772. |
25 | MYS N, VERBERCKMOES A, CARDON L. Spray drying as a processing technique for syndiotactic polystyrene to powder form for part manufacturing through selective laser sintering[J]. JOM, 2017, 69(3): 551-556. |
58 | SCHMID M, AMADO A, WEGENER K. Materials perspective of polymers for additive manufacturing with selective laser sintering[J]. Journal of Materials Research, 2014, 29(17): 1824-1832. |
59 | WANG X, JIANG M, ZHOU Z W, et al. 3D printing of polymer matrix composites: a review and prospective[J]. Composites Part B: Engineering, 2017, 110: 442-458. |
26 | FANSELOW S, EMAMJOMEH S E, WIRTH K E, et al. Production of spherical wax and polyolefin microparticles by melt emulsification for additive manufacturing[J]. Chemical Engineering Science, 2016, 141: 282-292. |
27 | 杨洁, 王庆顺, 关鹤. 选择性激光烧结技术原材料及技术发展研究[J]. 黑龙江科学, 2017, 8(20): 30-33. |
YANG Jie, WANG Qingshun, GUAN He. Selective laser sintering technology of raw materials and technology development[J]. Heilongjiang Science, 2017, 8(20): 30-33. | |
28 | 顾冬冬, 沈以赴. 青铜-镍粉末直接选择性激光烧结的研究[J]. 国外金属热处理, 2003, 24(5): 34-37. |
GU Dongdong, SHEN Yifu. Study on direct selective laser sintering of bronze-nickel powder[J]. Heat Treament of Metals Abroad, 2003, 24(5): 34-37. | |
29 | 李栋, 唐昆贵, 付龙. 3D打印的气缸盖砂芯[J]. 铸造, 2016, 65(4): 325-328. |
60 | SALMORIA G V, LEITE J L, PAGGI R A. The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering[J]. Polymer Testing, 2009, 28(7): 746-751. |
61 | ATHREYA S R, KALAITZIDOU K, DAS S. Processing and characterization of a carbon black-filled electrically conductive nylon-12 nanocomposite produced by selective laser sintering[J]. Materials Science and Engineering A, 2010, 527(10/11): 2637-2642. |
62 | ATHREYA S R, KALAITZIDOU K, DAS S. Mechanical and microstructural properties of nylon-12/carbon black composites: selective laser sintering versus melt compounding and injection molding[J]. Composites Science and Technology, 2011, 71(4): 506-510. |
63 | BAI J M, GOODRIDGE R D, HAGUE R J M, et al. Improving the mechanical properties of laser-sintered polyamide 12 through incorporation of carbon nanotubes[J]. Polymer Engineering & Science, 2013, 53(9): 1937-1946. |
64 | ZHU W, YAN C, SHI Y S, et al. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites [J]. Scientific Reports, 2016, 6: 33780. |
65 | WU J, CHEN H, WU Q, et al. Surface modification of carbon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder[J]. Materials & Design, 2017, 116: 253-260. |
66 | ALAYAVALLI K, BOURELL D L. Fabrication of modified graphite bipolar plates by indirect selective laser sintering (SLS) for direct methanol fuel cells[J]. Rapid Prototyping Journal, 2010, 16(4): 268-274. |
67 | GUO N N, LEU M C. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3558-3566. |
68 | CHEN B L, BERRETTA S, EVANS K, et al. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering[J]. Applied Surface Science, 2018, 428: 1018-1028. |
69 | CHUNG H, DAS S. Functionally graded nylon-11/silica nanocomposites produced by selective laser sintering[J]. Materials Science and Engineering A, 2008, 487(1/2): 251-257. |
70 | WANG Y, JAMES E, GHITA O R. Glass bead filled polyetherketone (PEK) composite by high temperature laser sintering (HT-LS)[J]. Materials & Design, 2015, 83: 545-551. |
71 | HON K K B, GILL T J. Selective laser sintering of SiC/polyamide composites[J]. CIRP Annals, 2003, 52(1): 173-176. |
72 | DU Y Y, LIU H M, YANG Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits[J]. Biomaterials, 2017, 137: 37-48. |
73 | SONG X H, LI W, SONG P H, et al. Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(1/2/3/4): 15-25. |
74 | SUBRAMANIAN K, VAIL N, BARLOW J, et al. Selective laser sintering of alumina with polymer binders[J]. Rapid Prototyping Journal, 1995, 1(2): 24-35. |
75 | ZHENG H Z, ZHANG J, LU S Q, et al. Effect of core-shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS[J]. Materials Letters, 2006, 60(9/10): 1219-1223. |
76 | ALMANSOORI A, SEABRIGHT R, MAJEWSKI C, et al. Feasibility of plasma treated clay in clay/polymer nanocomposites powders for use laser sintering (LS)[J]. IOP Conference Series: Materials Science and Engineering, 2017, 195: 012003. |
77 | GUO Y L, JIANG K Y, BOURELL D L. Preparation and laser sintering of limestone PA12 composite[J]. Polymer Testing, 2014, 37: 210-215. |
78 | ZHANG Y H, FANG J, LI J, et al. The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering[J]. Polymers, 2017, 9(12): 728. |
79 | CHUNG H, DAS S. Processing and properties of glass bead particulate-filled functionally graded nylon-11 composites produced by selective laser sintering[J]. Materials Science and Engineering A, 2006, 437(2): 226-234. |
80 | PEI A H, LIU A D, XIE T X, et al. A new strategy for the preparation of polyamide-6 microspheres with designed morphology[J]. Macromolecules, 2006, 39(23): 7801-7804. |
81 | CAI X X, ZHANG Y L, WU G Z. A novel approach to prepare PA6/Fe3O4 microspheres for protein immobilization[J]. Journal of Applied Polymer Science, 2011, 122(4): 2271-2277. |
82 | YUAN S Q, SHEN F, CHUA C K, et al. Polymeric composites for powder-based additive manufacturing: materials and applications[J]. Progress in Polymer Science, 2019, 91: 141-168. |
83 | YANG S Q, BAI S B, WANG Q. Polymeric composites for powder-based additive manufacturing: materials and applications[J]. Composites Science and Technology, 2018, 158: 34-42. |
84 | YANG S Q, BAI S B, WANG Q. Preparation of fine fiberglass-resin powders from waste printed circuit boards by different milling methods for reinforcing polypropylene composites[J]. Journal of Applied Polymer Science, 2015, 132(35): DOI:10.1002/app.42494. |
85 | HE P, BAI S B, WANG Q. Structure and performance of poly(vinyl alcohol)/wood powder composite prepared by thermal processing and solid state shear milling technology[J]. Composites Part B: Engineering, 2016, 99: 373-380. |
86 | WANG S J, LIU J Y, CHU L Q, et al. Preparation of polypropylene microspheres for selective laser sintering via thermal-induced phase separation: roles of liquid-liquid phase separation and crystallization[J]. Journal of Polymer Science Part B: Polymer Physics, 2017, 55(4): 320-329. |
87 | ZHOU W Y, LEE S H, WANG M, et al. Selective laser sintering of porous tissue engineering scaffolds from poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres[J]. Journal of Materials Science: Materials in Medicine, 2008, 19(7): 2535-2540. |
88 | CHUA C K, LEONG K F, TAN K H, et al. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects[J]. Journal of Materials Science: Materials in Medicine, 2004, 15(10): 1113-1121. |
89 | WAHAB M S, DALGARNO K W, COCHRANE R F, et al. Development of polymer nanocomposites for rapid prototyping process[M]//Proceedings of the World Congress on Engineering, London, UK, 2009. |
90 | MYS N, SANDE R V D, VERBERCKMOES A, et al. Processing of polysulfone to free flowing powder by mechanical milling and spray drying techniques for use in selective laser sintering[J]. Polymers, 2016, 8(4): 150. |
91 | QI F W, CHEN N, WANG Q. Preparation of PA11/BaTiO3 nanocomposite powders with improved processability, dielectric and piezoelectric properties for use in selective laser sintering[J]. Materials & Design, 2017, 131: 135-143. |
92 | GUO D, LI L T, CAI K. Rapid prototyping of piezoelectric ceramics via selective laser sintering and gelcasting[J]. Journal of the American Ceramic Society, 2004, 87(1): 17-22. |
93 | LIU K, SUN H J, TAN Y L, et al. Additive manufacturing of traditional ceramic powder via selective laser sintering with cold isostatic pressing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/2/3/4): 945-952. |
94 | STROBBE D, DADBAKHSH S, VERBELEN L, et al. Selective laser sintering of polystyrene: a single-layer approach[J]. Plastics, Rubber and Composites, 2018, 47(1): 2-8. |
95 | RÖDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681. |
96 | KESWANI B C, DEVAN R S, KAMBALE R C, et al. Correlation between structural, magnetic and ferroelectric properties of Fe-doped (Ba-Ca)TiO3 lead-free piezoelectric[J]. Journal of Alloys and Compounds, 2017, 712: 320-333. |
97 | SMITH M B, PAGE K, SIEGRIST T, et al. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3[J]. Journal of the American Chemical Society, 2008, 130(22): 6955-6963. |
98 | 刘欣然. 聚合物基压电复合材料研究进展[J]. 河北民族师范学院学报, 2017, 37(1): 123-128. |
LIU Xinran. Research progress on polymer-based piezoelectric composites[J]. Journal of Hebei Normal University for Nationalities, 2017, 37(1): 123-128. | |
99 | FRUBING P, KREMMER A, NEUMANN W, et al. Dielectric relaxation in piezo-, pyro- and ferroelectric polyamide 11[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(2): 271-279. |
100 | DAVID C, CAPSAL J F, LAFFONT L, et al. Piezoelectric properties of polyamide 11/NaNbO3 nanowire composites[J]. Journal of Physics D: Applied Physics, 2012, 45(41): 415305. |
101 | CARPONCIN D, DANTRAS E, DANDURAND J, et al. Electrical and piezoelectric behavior of polyamide/PZT/CNT multifunctional nanocomposites[J]. Advanced Engineering Materials2014, 16(8): 1018-1025. |
102 | CAPSAL J F, DANTRAS E, LAFFONT L, et al. Nanotexture influence of BaTiO3 particles on piezoelectric behaviour of PA11/BaTiO3 nanocomposites[J]. Journal of Non-Crystalline Solids, 2010, 356(11-17): 629-634. |
103 | KAKIMOTO K I, FUKATA K, OGAWA H. Fabrication of fibrous BaTiO3-reinforced PVDF composite sheet for transducer application[J]. Sensors and Actuators A: Physical, 2013, 200: 21-25. |
104 | BAJI A, MAI Y W, LI Q, et al. Nanoscale investigation of ferroelectric properties in electrospun Barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy[J]. Composites Science and Technology, 2011, 71(11): 1435-1440. |
105 | ZHANG C H, HU Z, GAO G, et al. Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites[J]. Materials & Design, 2013, 46: 503-510. |
106 | KIM K, ZHU W, QU X, et al. 3D optical printing of piezoelectric nanoparticle-polymer composite materials[J]. ACS Nano, 2014, 8(10): 9799-9806. |
107 | CHINYA I, PAL A, SEN S. Polyglycolated zinc ferrite incorporated poly(vinylidene fluoride)(PVDF) composites with enhanced piezoelectric response[J]. Journal of Alloys and Compounds, 2017, 722: 829-838. |
108 | PARK K I, LEE M, LIU Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Advanced Materials, 2012, 24(22): 2999-3004, 2937. |
109 | WANG Z, WANG T, FANG M R, et al. Enhancement of dielectric and electrical properties in BFN/Ni/PVDF three-phase composites[J]. Composites Science and Technology, 2017, 146: 139-146. |
110 | TONG W S, AN Q, WANG Z H, et al. Enhanced electricity generation and tunable preservation in porous polymeric materials via coupled piezoelectric and dielectric processes[J]. Advanced Materials, 2020, 32(39): 2003087. |
[1] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[2] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[3] | 张惠宁, 石中玉, 肖彦奎, 张晓琴, 尹鑫, 田丽红. 3D打印制备三维石墨烯及其在水处理中的应用[J]. 化工进展, 2022, 41(5): 2231-2242. |
[4] | 胡卓焕, 袁成伟, 许佳寅, 罗婷, 周志杰. 金属3D打印复合毛细芯孔径配比对环路热管特性影响[J]. 化工进展, 2022, 41(4): 1715-1724. |
[5] | 王日升, 彭鹏, 李婷婷, 杜宁宁, 王有和, 阎子峰. 多级孔沸石分子筛的制备及其催化应用研究进展[J]. 化工进展, 2021, 40(4): 1849-1858. |
[6] | 李仲明, 李斌, 武思蕊, 赵梁成. 基于3D打印技术制造柔性传感器研究进展[J]. 化工进展, 2020, 39(5): 1835-1843. |
[7] | 杨杰男, 付乾, 李俊, 张亮, 熊珂睿, 廖强, 朱恂. 3D打印微生物燃料电池阳极及其性能特性[J]. 化工进展, 2020, 39(10): 3987-3994. |
[8] | 周澳, 李熙腾, 李鑫培, 巨少华, 张利华. 3D打印多通道微反应器用于萃取分离In3+和Fe3+[J]. 化工进展, 2019, 38(05): 2093-2102. |
[9] | 周昕瞳, 刘振星, 刘昌俊. 3D打印在催化和吸附材料制备领域的应用[J]. 化工进展, 2019, 38(01): 516-528. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |