化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1849-1858.DOI: 10.16085/j.issn.1000-6613.2020-1989
王日升(), 彭鹏, 李婷婷, 杜宁宁, 王有和(), 阎子峰()
收稿日期:
2020-09-30
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
王有和,阎子峰
作者简介:
王日升(1995—),男,硕士研究生。E-mail:基金资助:
WANG Risheng(), PENG Peng, LI Tingting, DU Ningning, WANG Youhe(), YAN Zifeng()
Received:
2020-09-30
Online:
2021-04-05
Published:
2021-04-14
Contact:
WANG Youhe,YAN Zifeng
摘要:
多级孔沸石分子筛在保留了微孔沸石优异的催化活性与择形性的同时,能够从本质上大幅提升沸石分子筛的传质与扩散效率,改善催化剂因积炭问题失活较快的弊端。本文介绍了当前阶段多级孔沸石分子筛的研究现状,主要基于孔径大小的差异,重点综述了微孔-介孔、微孔-大孔以及微孔-介孔-大孔三类具有多级孔道结构的沸石分子筛在制备及催化应用方面的最新研究进展,综合分析了各种制备方法在性能、成本、可操作性及应用上的利弊关系,并且指出,设计并可控地制备出具有多级孔道结构且在三维空间高度贯通的多级孔沸石分子筛材料以最大限度地提高催化效率,将会是未来多级孔沸石分子筛领域的研究重点。
中图分类号:
王日升, 彭鹏, 李婷婷, 杜宁宁, 王有和, 阎子峰. 多级孔沸石分子筛的制备及其催化应用研究进展[J]. 化工进展, 2021, 40(4): 1849-1858.
WANG Risheng, PENG Peng, LI Tingting, DU Ningning, WANG Youhe, YAN Zifeng. Synthesis and application of hierarchical zeolite materials[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1849-1858.
1 | IUPAC. Manual of symbols and terminology for physicochemical quantities and units-appendixⅡ[J]. Chem., 1976, 46: 74-86. |
2 | XIE Zaiku, LIU Zhicheng, WANG Yangdong, et al. Applied catalysis for sustainable development of chemical industry in China[J]. National Science Review, 2015, 2(2): 167-182. |
3 | AL-SABAWI M, ATIAS J A, DE LASA H. Heterogeneous approach to the catalytic cracking of vacuum gas oil[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7631-7641. |
4 | PEREZ-RAMIREZ J, CHRISTENSEN C H, EGEBLAD K, et al. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews, 2008, 37(11): 2530-2542. |
5 | SCHNEIDER D, MEHLHORN D, ZEIGERMANN P, et al. Transport properties of hierarchical micro-mesoporous materials[J]. Chemical Society Reviews, 2016, 45(12): 3439-3467. |
6 | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712. |
7 | DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821. |
8 | SUN Minghui, HUANG Shaozhuan, CHEN Lihua, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563. |
9 | MENG Lala, ZHANG Xiaofei, TANG Yusheng, et al. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes[J]. Scientific Reports, 2015, 5: 7910. |
10 | ZHANG Yingxi, YU Shuai, LOU Gaobo, et al. Review of macroporous materials as electrochemical supercapacitor electrodes[J]. Journal of Materials Science, 2017, 52(19): 11201-11228. |
11 | CHEN Lihua, SUN Minghui, WANG Zhao, et al. Hierarchically structured zeolites: from design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294. |
12 | PENG Peng, GAO Xionghou, YAN Zifeng, et al. Diffusion and catalyst efficiency in hierarchical zeolite catalysts[J]. National Science Review, 2020, 7(11): 1726-1742. |
13 | KLOETSTRA K R, ZANDBERGEN H W, JANSEN J C, et al. Overgrowth of mesoporous MCM-41 on faujasite[J]. Microporous Materials, 1996, 6(5/6): 287-293. |
14 | DAVIS M E. Mesoporous zeolites: preparation, characterization and applications[M]. New York: John Wiley & Sons, 2015. |
15 | LI Kunhao, VALLA J, GARCIA-MARTINEZ J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking[J]. ChemCatChem, 2014, 6(1): 46-66. |
16 | BAI Risheng, SONG Yue, LI Yi, et al. Creating hierarchical pores in zeolite catalysts[J]. Trends in Chemistry, 2019, 1(6): 601-611. |
17 | SUN Minghui, CHEN Chen, CHEN Lihua, et al. Hierarchically porous materials: synthesis strategies and emerging applications[J]. Frontiers of Chemical Science and Engineering, 2016, 10(3): 301-347. |
18 | WEI Ying, PARMENTIER T E, DE JONG K P, et al. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chemical Society Reviews, 2015, 44(20): 7234-7261. |
19 | YOUNG D A. Hydrocarbon conversion process and catalyst comprising a crystalline alumino-silicate leached with sodium hydroxide: US3326797[P]. 1967-06-20. |
20 | GROEN J C, BACH T, ZIESE U, et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J]. Journal of the American Chemical Society, 2005, 127(31): 10792-10793. |
21 | PÉREZ-RAMÍREZ J, VERBOEKEND D, BONILLA A, et al. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Advanced Functional Materials, 2009, 19(24): 3972-3979. |
22 | JI Yongjun, XU Hao, WANG Darui, et al. Mesoporous MCM-22 zeolites prepared through organic amine-assisted reversible structural change and protective desilication for catalysis of bulky molecules[J]. ACS Catalysis, 2013, 3(8): 1892-1901. |
23 | WANG Darui, ZHANG Lin, CHEN Li, et al. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking[J]. Journal of Materials Chemistry A, 2015, 3(7): 3511-3521. |
24 | DONK S VAN, JANSSEN A H, BITTER J H, et al. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catalysis Reviews, 2003, 45(2): 297-319. |
25 | ZUKAL A, PATZELOVÁ V, LOHSE U. Secondary porous structure of dealuminated Y zeolites[J]. Zeolites, 1986, 6(2): 133-136. |
26 | SHENG Qingtao, LING Kaicheng, LI Zhenrong, et al. Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene[J]. Fuel Processing Technology, 2013, 110: 73-78. |
27 | 刘欣梅, 阎子峰. 柠檬酸对USY分子筛的化学改性研究[J]. 化学学报, 2000, 58(8): 1009-1014. |
LIU Xinmei, YAN Zifeng. Modification of USY zeolites with citric acid[J]. Acta Chimica Sinica, 2000, 58(8): 1009-1014. | |
28 | LIU Xinmei, YAN Zifeng. Optimization of nanopores and acidity of USY zeolite by citric modification[J]. Catalysis Today, 2001, 68(1/2/3): 145-154. |
29 | CHANG Xingwen, HE Lifeng, LIANG Haining, et al. Screening of optimum condition for combined modification of ultra-stable Y zeolites using multi-hydroxyl carboxylic acid and phosphate[J]. Catalysis Today, 2010, 158(3/4): 198-204. |
30 | SCHMIDT I, BOISEN A, GUSTAVSSON E, et al. Carbon nanotube templated growth of mesoporous zeolite single crystals[J]. Chemistry of Materials, 2001, 13(12): 4416-4418. |
31 | SCHMIDT F, PAASCH S, BRUNNER E, et al. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J]. Microporous and Mesoporous Materials, 2012, 164: 214-221. |
32 | JANSSEN A H, SCHMIDT I, JACOBSEN C J H, et al. Exploratory study of mesopore templating with carbon during zeolite synthesis[J]. Microporous and Mesoporous Materials, 2003, 65(1): 59-75. |
33 | REN Zhibin, KIM E, PATTINSON S W, et al. Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties[J]. Chemical Science, 2012, 3(1): 209-216. |
34 | LI Dan, QIU Ling, WANG Kun, et al. Growth of zeolite crystals with graphene oxide nanosheets[J]. Chemical Communications, 2012, 48(16): 2249-2251. |
35 | DU Jun, WANG Quanhua, WANG Yan, et al. A hierarchical zeolite beta with well-connected pores via using graphene oxide[J]. Materials Letters, 2019, 250: 139-142. |
36 | SERRANO D P, AGUADO J, MORALES G, et al. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization[J]. Chemistry of Materials, 2009, 21(4): 641-654. |
37 | SERRANO D P, PINNAVAIA T J, AGUADO J, et al. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: mediating the mesoporosity contribution by changing the organosilane type[J]. Catalysis Today, 2014, 227: 15-25. |
38 | CHOI Minkee, Hae Sung CHO, SRIVASTAVA R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Materials, 2006, 5(9): 718-723. |
39 | Dong-Hwan LEE, CHOI Minkee, YU Byung-Woo, et al. Organic functionalization of mesopore walls in hierarchically porous zeolites[J]. Chemical Communications, 2009(1): 74-76. |
40 | SHANBHAG Ganapati V, CHOI Minkee, KIM Jeongnam, et al. Mesoporous sodalite: a novel, stable solid catalyst for base-catalyzed organic transformations[J]. Journal of Catalysis, 2009, 264(1): 88-92. |
41 | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
42 | NA Kyungsu, CHOI Minkee, PARK Woojin, et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness[J]. Journal of the American Chemical Society, 2010, 132(12): 4169-4177. |
43 | NA Kyungsu, Changbum JO, KIM Jeongnam, et al. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science, 2011, 333(6040): 328-332. |
44 | SINGH B K, XU Dongdong, HAN Lu, et al. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant[J]. Chemistry of Materials, 2014, 26(24): 7183-7188. |
45 | XU Dongdong, JING Zhifeng, CAO Fenglei, et al. Surfactants with aromatic-group tail and single quaternary ammonium head for directing single-crystalline mesostructured zeolite nanosheets[J]. Chemistry of Materials, 2014, 26(15): 4612-4619. |
46 | ZHANG Yunjuan, SHEN Xuefeng, GONG Zheng, et al. Single-crystalline MFI zeolite with sheet-like mesopores layered along the a axis[J]. Chemistry: a European Journal, 2019, 25(3): 738-742. |
47 | XU Dongdong, MA Yanhang, JING Zhifeng, et al. π-π Interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nature Communications, 2014, 5: 4262. |
48 | ZHANG Yunjuan, MA Yanhang, CHE Shunai. Synthesis of lamellar mesostructured ZSM-48 nanosheets[J]. Chemistry of Materials, 2018, 30(6): 1839-1843. |
49 | SHEN Xuefeng, MAO Wenting, MA Yanhang, et al. A hierarchical MFI zeolite with a two-dimensional square mesostructure[J]. Angewandte Chemie International Edition, 2018, 57(3): 724-728. |
50 | ZHANG Yunjuan, LUO Peng, XU Hao, et al. Hierarchical MFI zeolites with a single-crystalline sponge-like mesostructure[J]. Chemistry: a European Journal, 2018, 24(72): 19300-19308. |
51 | LUO H Yu, MICHAELIS V K, HODGES S, et al. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent[J]. Chemical Science, 2015, 6(11): 6320-6324. |
52 | KORE R, SRIVASTAVA R, SATPATI B. ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents[J]. Chemistry: a European Journal, 2014, 20(36): 11511-11521. |
53 | XU Le, JI Xinyi, LI Shenhui, et al. Self-assembly of cetyltrimethylammonium bromide and lamellar zeolite precursor for the preparation of hierarchical MWW zeolite[J]. Chemistry of Materials, 2016, 28(12): 4512-4521. |
54 | MENG Lingqian, MEZARI B, GOESTEN M G, et al. One-step synthesis of hierarchical ZSM-5 using cetyltrimethylammonium as mesoporogen and structure-directing agent[J]. Chemistry of Materials, 2017, 29(9): 4091-4096. |
55 | ZHU Xiaochun, GOESTEN M G, KOEKKOEK A J J, et al. Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets[J]. Chemical Science, 2016, 7(10): 6506-6513. |
56 | CHEN Lihua, LI Xiaoyun, ROOKE J C, et al. Hierarchically structured zeolites: synthesis, mass transport properties and applications[J]. Journal of Materials Chemistry, 2012, 22(34): 17381-17403. |
57 | YANG Xiaoyu, TIAN Ge, CHEN Lihua, et al. Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance[J]. Chemistry: a European Journal, 2011, 17(52): 14987-14995. |
58 | KIM Jeongnam, CHOI Minkee, RYOO Ryong. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. Journal of Catalysis, 2010, 269(1): 219-228. |
59 | YANG Xiaoyu, CHEN Lihua, LI Yu, et al. Hierarchically porous materials: synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
60 | DONG A G, REN N, YANG W L, et al. Preparation of hollow zeolite spheres and three-dimensionally ordered macroporous zeolite monoliths with functionalized interiors[J]. Advanced Functional Materials, 2003, 13(12): 943-948. |
61 | MACHOKE A G, BELTRÁN A M, INAYAT A, et al. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores[J]. Advanced Materials, 2015, 27(6): 1066-1070. |
62 | WEISSENBERGER T, REIPRICH B, MACHOKE A G, et al. Hierarchical MFI type zeolites with intracrystalline macropores: the effect of the macropore size on the deactivation behaviour in the MTO reaction[J]. Catalysis Science & Technology, 2019, 9(12): 3259-3269. |
63 | WEISSENBERGER T, MACHOKE A G, BAUER J, et al. Hierarchical ZSM-5 catalysts: the effect of different intracrystalline pore dimensions on catalyst deactivation behaviour in the MTO reaction[J]. ChemCatChem, 2020, 12(9): 2461-2468. |
64 | WEISSENBERGER T, LEONHARDT R, ZUBIRI B A, et al. Synthesis and characterisation of hierarchically structured titanium silicalite-1 zeolites with large intracrystalline macropores[J]. Chemistry: a European Journal, 2019, 25(63): 14430-14440. |
65 | ZHANG Jian, WANG Ya, DONG Lei, et al. Organic-free one-step synthesis of macro/microporous LTA zeolite and its encapsulation of metal nanoparticles[J]. Microporous and Mesoporous Materials, 2020, 293: 109813. |
66 | LI Xin, LI Wenbin, REZAEI F, et al. Catalytic cracking of n-hexane for producing light olefins on 3D-printed monoliths of MFI and FAU zeolites[J]. Chemical Engineering Journal, 2018, 333: 545-553. |
67 | HĘDRZAK E, WEGRZYNOWICZ A, RACHWALIK R, et al. Monoliths with MFI zeolite layers prepared with the assistance of 3D printing: characterization and performance in the gas phase isomerization of alpha-pinene[J]. Applied Catalysis A: General, 2019, 579: 75-85. |
68 | WANG Shuang, BAI Pu, WEI Yingzhen, et al. Three-dimensional-printed core-shell structured MFI-type zeolite monoliths for volatile organic compound capture under humid conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38955-38963. |
69 | CHEN Lihua, LI Xiaoyun, TIAN Ge, et al. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure[J]. Angewandte Chemie International Edition, 2011, 50(47): 11156-11161. |
70 | WANG Yan, REN Fenfen, PAN Dahai, et al. A hierarchically micro-meso-macroporous zeolite CaA for methanol conversion to dimethyl ether[J]. Crystals, 2016, 6(11): 155. |
71 | TRAVKINA O S, AGLIULLIN M R, FILIPPOVA N A, et al. Template-free synthesis of high degree crystallinity zeolite Y with micro-meso-macroporous structure[J]. RSC Advances, 2017, 7(52): 32581-32590. |
72 | PAVLOV M, TRAVKINA O, KUTEPOV B. Grained binder-free zeolites: synthesis and properties[J]. Catalysis in Industry, 2012, 4(1): 11-18. |
73 | GORSHUNOVA K K, TRAVKINA O S, PAVLOV M L, et al. Synthesis of binder-free granulated MOR-type zeolite with hierarchical pore structure[J]. Russian Journal of Applied Chemistry, 2013, 86(12): 1805-1810. |
74 | TRAVKINA O S, AGLIULLIN M R, KUVATOVA R Z, et al. New method of synthesis of hierarchical mordenite of high crystallinity and its application in hydroizomerization of benzene-n-heptane mixture[J]. Journal of Porous Materials, 2019, 26(4): 995-1004. |
75 | SUN Minghui, CHEN Lihua, YU Shen, et al. Micron-sized zeolite beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance[J]. Angewandte Chemie: International Edition, 2020, 59(44): 19582-19591. |
76 | 孙明慧, 陈丽华, 苏宝连. 有序大孔-介孔-微孔多级孔分子筛[C]//中国化学会分子筛专业委员会. 第18届全国分子筛学术大会论文集(下). 中国上海: 华东师范大学上海市绿色化学与化工过程绿色化重点实验室, 2015. |
SUN Minghui, CHEN Lihua, SU Baolian. Ordered micro-meso-macroporous hierarchical zeolite[C]// Chinese Zeolite Association. The 18th Chinese Zeolite Conference. Shanghai, China: Shanghai Key Laboratory of Green Chemistry and Chemical Process, 2015. | |
77 | SUN Minghui, ZHOU Jian, HU Zhiyi, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency[J]. Matter, 2020, 3(4): 1226-1245. |
[1] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[2] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[3] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[4] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[5] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[6] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[7] | 殷成阳, 侯铭, 杨爽, 毛迪, 刘俊言. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974. |
[8] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[9] | 任重远, 何金龙, 袁清. 分子筛膜晶间缺陷控制与修复技术研究进展[J]. 化工进展, 2023, 42(5): 2454-2463. |
[10] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[11] | 陈昊, 张传浩, 于峰, 范彬彬, 李瑞丰. Y型沸石在异丁醇齐聚反应中的催化性能[J]. 化工进展, 2023, 42(2): 794-802. |
[12] | 范旭阳, 陈延信, 赵博, 张蕾蕾. 气体硫黄还原磷石膏制酸新工艺预还原数值模拟[J]. 化工进展, 2023, 42(10): 5414-5426. |
[13] | 朱义浩, 赵白航, 王淳, 张雨晴, 杨海山. 改性煤矸石基沸石对水中腐殖酸的吸附性能[J]. 化工进展, 2023, 42(10): 5531-5537. |
[14] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[15] | 高士超, 王树刚, 胡沛裕, 赵一铭, 王继红, 孙毅, 蒋爽. 沸石堆积高度对反应器蓄放热性能的影响[J]. 化工进展, 2023, 42(10): 5092-5100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |