化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1837-1848.DOI: 10.16085/j.issn.1000-6613.2020-1905
收稿日期:
2020-09-19
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
杨为民
作者简介:
王达锐(1990—),男,博士,高级工程师,研究方向为分子筛催化剂。E-mail:基金资助:
WANG Darui(), SUN Hongmin, YANG Weimin()
Received:
2020-09-19
Online:
2021-04-05
Published:
2021-04-14
Contact:
YANG Weimin
摘要:
分子筛催化剂广泛应用于石油炼制、石油化工和环境催化等领域,但以传统路线制备分子筛催化剂的过程中存在着有机氨氮废水和含氮废气排放、生产成本高的问题。为了满足日益严格的环保要求,同时达到降本增效的目的,设计开发分子筛催化剂的清洁高效制备技术显得尤为重要。本文从高效、环保和经济的角度综述了分子筛催化剂制备过程中存在的一些问题,以及为了解决上述问题所采取的包括避免或者替换使用有机模板剂、钠离子电荷平衡剂、溶剂和黏结剂,有效组分回收利用在内的技术进展。探讨了分子筛催化剂清洁高效制备技术的未来发展方向,指出加深对分子筛催化剂基础理论研究,并将基础研究和产业化相结合,以高效催化性能为前提,将现有多种清洁技术方案进行协调配合是高效率、低成本制备分子筛催化剂的工作重点。
中图分类号:
王达锐, 孙洪敏, 杨为民. 分子筛催化剂清洁高效制备技术的进展[J]. 化工进展, 2021, 40(4): 1837-1848.
WANG Darui, SUN Hongmin, YANG Weimin. Advances in the clean and efficient preparation of zeolite catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1837-1848.
1 | CORMA A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614. |
2 | CUNDY C S, COX P A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time[J]. Chemical Reviews, 2003, 103(3): 663-702. |
3 | DUSSELIER M, DAVIS M E. Small-pore zeolites: synthesis and catalysis[J]. Chemical Reviews, 2018, 118(11): 5265-5329. |
53 | DOU T, FENG F X, XIAO Y Z, et al. Synthesis and catalytic properties of silicalite-1[J]. Journal of Fuel Chemistry and Technology, 1997, 25(2): 152-156. |
54 | 李晓峰, 徐景炎, 李玉平, 等. 分子筛生产工艺中的节能新技术——固相转化法的创新和应用[J]. 化工进展, 2006, 25(S1): 94-97. |
LI X F, XU J Y, LI Y P, et al. Application and innovation of solid phase method in the synthesis of zeolites as a novel economizing energy technology[J]. Chemical Industry and Engineering Progress, 2006, 25(S1): 94-97. | |
55 | 王德举, 刘仲能, 谢在库. 汽相转化法制备无黏结剂小晶粒ZSM-5沸石[J]. 无机材料学报, 2008, 23(3): 592-596. |
4 | MOLINER M, MARTÍNEZ C, CORMA A. Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis[J]. Chemistry of Materials, 2014, 26(1): 246-258. |
5 | ZHANG Q, YU J H, CORMA A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
6 | GROSE R W, FLANIGEN E M. Novel zeolite compositions and processes for preparing and using same: US4257885[P]. 1981-03-24. |
55 | WANG D J, LIU Z N, XIE Z K. Preparation of binder-free ultrafine ZSM-5 zeolite monoliths by vapor-phase transformation method[J]. Journal of Inorganic Materials, 2008, 23(3): 592-596. |
56 | VATTIPALLI V, PARACHA A M, HU W G, et al. Broadening the scope for fluoride-free synthesis of siliceous zeolites[J]. Angewandte Chemie International Edition, 2017, 57(14): 3607-3611. |
7 | 李赫咺, 项寿鹤, 吴德明, 等. ZSM-5沸石分子筛合成的研究[J]. 高等学校化学学报, 1981, 2(4):517-519. |
LI H X, XIANG S H, WU D M, et al. Study on the synthesis of zeolite ZSM-5[J]. Chemical Journal of Chinese Universities, 1981, 2(4):517-519. | |
57 | REN L M, WU Q M, YANG C G, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176. |
58 | ZHU L F, ZHANG J, WANG L, et al. Solvent-free synthesis of titanosilicate zeolites[J]. Journal of Materials Chemistry A, 2015, 3(27): 14093-14095. |
8 | 王福生, 程文才, 张式. 无机铵型ZSM系高硅沸石的合成[J]. 催化学报, 1981, 2(4): 282-287. |
WANG F S, CHENG W C, ZHANG S. Synthesis of inorgano-ammonium high silica zeolites of ZSM series[J]. Chinese Journal of Catalysis, 1981, 2(4): 282-287. | |
9 | SHIRALKAR V P, CLEARFIELD A. Synthesis of the molecularsieve ZSM-5 without the aid of templates[J]. Zeolites, 1989, 9(5): 363-370. |
10 | 黄先亮, 王正宝. 无模板剂两步法合成小颗粒ZSM-5沸石团聚体[J]. 催化学报, 2011, 32(11): 1702-1711. |
HUANG X L, WANG Z B. Synthesis of zeolite ZSM-5 small particle aggregates by a two-step method in the absence of an organic template[J]. Chinese Journal of Catalysis, 2011, 32(11): 1702-1711. | |
11 | BANIHASHEMI F, IBRAHIM A F M, BABALUO A A, et al. Template-free synthesis of highly b-oriented MFI-type zeolite thin films by seeded secondary growth[J]. Angewandte Chemie International Edition, 2019, 58(8): 2519-2523. |
12 | CHENG Y, WANG L J, LI J S, et al. Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template[J]. Materials Letters, 2005, 59(27): 3427-3430. |
13 | QIN W, JAIN R, HERNÁNDEZ F C R, et al. Organic-free interzeolite transformation in the absence of common building units[J]. Chemistry A: European Journal, 2019, 25(23): 5893-5898. |
14 | WU Q M, ZHU L F, CHU Y Y, et al. Sustainable synthesis of pure silica zeolites from a combined strategy of zeolite seeding and alcohol filling[J]. Angewandte Chemie International Edition, 2019, 58(35): 12138-12142. |
15 | NG E P, CHATEIGNER D, BEIN T, et al. Capturing ultrasmall EMT zeolite from template-free systems[J]. Science, 2012, 335(6064): 70-73. |
59 | JIN Y Y, SUN Q, QI G D, et al. Solvent-free synthesis of silicoaluminophosphate zeolites[J]. Angewandte Chemie International Edition, 2013, 52(35): 9172-9175. |
60 | 石秀峰, 李玉平, 任蕾, 等. 超浓体系下SAPO-34及其共晶分子筛的合成[J]. 石油学报(石油加工), 2008, 24(S1): 230-233, 244. |
SHI X F, LI Y P, REN L, et al. The synthesis of SAPO-34 and its eutectic molecular sieves in extremely dense system[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2008, 24(S1): 230-233, 244. | |
61 | LIU Z Y, REN S, YU X, et al. Melting-assisted solvent-free synthesis of hierarchical SAPO-34 with enhanced methanol to olefins (MTO) performance[J]. Catalysis Science & Technology, 2018, 8(2): 423-427. |
62 | PASHKOVA V, MLEKODAJ K, KLEIN P, et al. Mechanochemical pre-treatment for efficient solvent-free synthesis of SSZ-13 zeolite[J]. Chemistry: A European Journal, 2019, 25(52): 12068-12073. |
63 | ZHU Q Y, WANG Y Q, WANG L X, et al. Solvent-free crystallization of ZSM-5 zeolite on SiC foam as a monolith catalyst for biofuel upgrading[J]. Chinese Journal of Catalysis, 2020, 41(7): 1118-1124. |
64 | MOHR G D, JANSSEN M J G. Hydrocarbon conversion process using a zeolite bound zeolite catalyst: US6458736B2[P]. 2002-10-01. |
65 | 滕加伟, 谢在库. 无黏结剂复合孔分子筛催化烯烃裂解制丙烯技术[J]. 中国科学: 化学, 2015, 45(5): 533-540. |
TENG J W, XIE Z K. Novel binder-less hierarchical ZSM-5 catalyst for olefins catalytic cracking to produce propylene[J]. Scientia Sinica Chimica, 2015, 45(5): 533-540. | |
66 | ZHOU J, TENG J W, REN L P, et al. Full-crystalline hierarchical monolithic ZSM-5 zeolites as superiorly active and long-lived practical catalysts in methanol-to-hydrocarbons reaction[J]. Journal of Catalysis, 2016, 340: 166-176. |
67 | 程晓维, 汪靖, 郭娟, 等. 无黏结剂ZSM-5沸石催化剂骨架脱铝改性的研究[J]. 化学学报, 2008, 66(19): 2099-2106. |
CHENG X W, WANG J, GUO J, et al. Binder-free ZSM-5 zeolite catalysts modified with framework de-alumination[J]. Acta Chimica Sinica, 2008, 66(19): 2099-2106. | |
68 | 李玉宁, 任丽萍, 李亚男, 等. 无黏结剂成型的Zn/ZSM-5催化剂上混合碳四烃类芳构化反应性能[J]. 催化学报, 2011, 32(6): 992-996. |
LI Y N, REN L P, LI Y N, et al. Aromatization of mixed C4 hydrocarbons over the binderless Zn/ZSM-5 catalyst[J]. Chinese Journal of Catalysis, 2011, 32(6): 992-996. | |
69 | 贾立胜, 田震. 无黏结剂A型沸石合成[J]. 非金属矿, 2002, 25(6): 26-27. |
JIA L S, TIAN Z. Synthesis of binder-less A zeolite[J]. Non-Metallic Mines, 2002, 25(6): 26-27. | |
70 | 王德举, 郭友娣, 韩亚梅, 等. 无黏结剂β沸石的制备及其苯加氢烷基化性能[J]. 化学世界, 2016, 57(11): 688-692. |
WANG D J, GUO Y D, HAN Y M, et al. Preparation of binderless β zeolite and its performance in the hydroalkylation of benzene[J]. Chemical World, 2016, 57(11): 688-692. | |
71 | 李娜, 王振东, 张斌, 等. 无黏结剂MCM-22分子筛催化剂制备及其催化性能[J]. 化学反应工程与工艺, 2016, 32(3):198-202. |
LI N, WANG Z D, ZAHNG B, et al. Preparation and catalytic performance of binder-free MCM-22 catalyst[J]. Chemical Reaction Engineering and Technology, 2016, 32(3):198-202. | |
16 | GRAND J, BARRIER N, DEBOST M, et al. Flexible template-free RHO nanosized zeolite for selective CO2 adsorption[J]. Chemistry of Materials, 2020, 32(14): 5985-5993. |
17 | WANG J Y, LIU P S, BORONAT M, et al. Organic-free synthesis of zeolite Y with high Si/Al ratios: combined strategy of in situ hydroxyl radical assistance and post-synthesis treatment[J]. Angewandte Chemie International Edition, 2020, 59(39): 17225-17228. |
18 | LIU L J, WANG H B, WANG Z Q, et al. Evolving mechanism of organotemplate-free hierarchical FAU zeolites with house-of-card-like structures[J]. Chemical Communications, 2018, 54(70): 9821-9824. |
19 | PARK S H, CHOI W, CHOI H J, et al. Organic-free synthesis of silicoaluminophosphate molecular sieves[J]. Angewandte Chemie International Edition, 2018, 57(30): 9413-9418. |
72 | 中国石化石油化工科学研究院开发分子筛清洁生产新工艺[J]. 石油炼制与化工, 2017, 48(11): 11. |
New cleaner production process of zeolites developed by sinopec research institute of petroleum processing[J]. Petroleum Processing and Petrochemicals, 2017, 48(11): 11. | |
20 | ITABASHI K, KAMIMURA Y, IYOKI K, et al. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent[J]. Journal of the American Chemical Society, 2012, 134(28):11542-11549. |
21 | KUBOTA Y, ITABASHI K, INAGAKI S, et al. Effective fabrication of catalysts from large-pore, multidimensional zeolites synthesized without using organic structure-directing agents[J]. Chemistry of Materials, 2014, 26(2): 1250-1259. |
22 | MAJANO G, DARWICHE A, MINTOVA S, et al. Seed-induced crystallization of nanosized Na-ZSM-5 crystals[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 7084-7091. |
23 | NADA M H, LARSEN S C. Insight into seed-assisted template free synthesis of ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2017, 239: 444-452. |
24 | XIE B, ZHANG H Y, YANG C G, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chemical Communications, 2011, 47(13): 3945-3947. |
25 | YANG C G, REN L M, ZHANG H Y, et al. Organotemplate-free and seed-directed synthesis of ZSM-34 zeolite with good performance in methanol-to-olefins[J]. Journal of Materials Chemistry, 2012, 22(24): 12238-12245. |
26 | ZHANG H Y, YANG C G, ZHU L F, et al. Organotemplate-free and seed-directed synthesis of levyne zeolite[J]. Microporous and Mesoporous Materials, 2012, 155: 1-7. |
27 | ZHANG H Y, GUO Q, REN L M, et al. Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units[J]. Journal of Materials Chemistry, 2011, 21(26): 9494-9497. |
28 | BING L C, TIAN A X, WANG F, et al. Template-free synthesis of hierarchical SSZ-13 microspheres with high MTO catalytic activity[J]. Chemistry: A European Journal, 2018, 24(29): 7428-7433. |
29 | 王德举, 李学礼, 刘仲能, 等. 晶种导向剂法制备纳米ZSM-5沸石[J]. 工业催化, 2008, 16(4): 19-23. |
WANG D J, LI X L, LIU Z N, et al. Preparation od nanosized ZSM-5 zeolite using seeding director[J]. Industrial Catalysis, 2008, 16(4): 19-23. | |
30 | 黄先亮, 张荣荣, 王正宝. 无模板剂预晶化液添加法合成ZSM-5分子筛[J]. 无机化学学报, 2012, 28(11): 2285-2293. |
HUANG X L, ZHANG R R, WANG Z B. Synthesis of aggregate ZSM-5 zeolite with nucleation gel in the absence of organic template[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(11): 2285-2293. | |
31 | FIGUEIREDO A L, ARAUJO A S, LINARES M, et al. Catalytic cracking of LDPE over nanocrystalline HZSM-5 zeolite prepared by seed-assisted synthesis from an organic-template-free system[J]. Journal of Analytical & Applied Pyrolysis, 2016, 117: 132-140. |
32 | RAZAVIAN M, FATEMI S, KOMASI M. Seed-assisted OSDA-free synthesis of ZSM-5 zeolite and its application in dehydrogenation of propane[J]. Materials Research Bulletin, 2015, 65: 253-259. |
33 | CHEN G R, SUN Q M, YU J H. Nanoseed-assisted synthesis of nano-sized SAPO-34 zeolite using morpholine as the sole template with superior MTO performance[J]. Chemical Communications, 2017, 53(10): 13328-13331. |
34 | 王振东, 刘闯, 孙洪敏, 等. 不同有机结构导向剂合成MCM-22分子筛及其催化性能[J]. 石油化工, 2020, 49(3): 209-213. |
WANG Z D, LIU C, SUN H M, et al. MCM-22 zeolites synthesized with different organic structure-directing agents and catalytic performances thereof[J]. Petrochemical Technology, 2020, 49(3): 209-213. | |
35 | LUO Y, WANG Z D, SUN J L, et al. A facile and green method for the synthesis of SFE borosilicate zeolite and its heteroatom-substituted analogues with promising catalytic performances[J]. Chemistry: a European Journal, 2018, 24(2): 306-311. |
36 | FU W H, YUAN Z Q, JIN S Q, et al. Cooperative structure-directing effect of choline cation and *BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolite[J]. Chinese Journal of Catalysis, 2019, 40(6): 856-866. |
37 | FU W H, YUAN Z Q, WANG Z D, et al. Direct synthesis of hydrothermally stable Ge-IWR zeolites[J]. Dalton Transactions, 2017, 46(20): 6692-6699. |
38 | MENG L Q, MEZARI B, GOESTEN M G, et al. One-step synthesis of hierarchical ZSM-5 using cetyltrimethylammonium as mesoporogen and structure-directing agent[J]. Chemistry of Materials, 2017, 29(9): 4091-4096. |
39 | HE D W, YUAN D H, SONG Z J, et al. Eco-friendly synthesis of high silica zeolite Y with choline as green and innocent structure-directing agent[J]. Chinese Journal of Catalysis, 2019, 40(1): 52-59. |
40 | ZHU D L, WANG L Y, FAN D, et al. A bottom-up strategy for the synthesis of highly siliceous faujasite-type zeolite[J]. Advanced Materials, 2020, 32(20): 2000272. |
41 | WU P F, YANG M, ZHANG W N, et al. Synthesis of SAPO-34 nanoaggregates with the assistance of an inexpensive “three-in-one” nonsurfactant organosilane[J]. Chemical Communications, 2017, 53(36): 4985-4988. |
42 | BIBBY D M, MILESTONE N B, ALDRIDGE L P. NH4+-tetraalkyl ammonium systems in the synthesis of zeolites[J]. Nature, 1980, 285(5759): 30-31. |
43 | 韩淑芸, 徐如人, 左丽华, 等. 直接法合成NH4-ZSM-5沸石分子筛的研究[J]. 高等学校化学学报, 1984, 5(2):118-119. |
HAN S Y, XU R R, ZUO L H, et al. Study on the synthesis of zeolite NH4-ZSM-5 by direct method[J]. Chemical Journal of Chinese Universities, 1984, 5(2):118-119. | |
44 | 韩淑芸, 史苏华, 梁启, 等. 沸石分子筛的生成机理与晶体生长 (Ⅹ)——NH4-ZSM-5沸石分子筛晶体生长动力学[J]. 高等学校化学学报, 1983, 4(5): 540-544. |
HAN S Y, SHI S H, LIANG Q, et al. The mechanism of formation and crystal growth of molecular sieve zeolite (Ⅹ)—The kinetics of crystals growth of zeolite NH4-ZSM-5[J]. Chemical Journal of Chinese Universities, 1983, 4(5): 540-544. | |
45 | 韩淑芸, 宋瑞芳, 左丽华, 等. 含铬(钒)的NH4-ZSM-5沸石分子筛[J]. 吉林大学自然科学学报, 1984(2): 99-103. |
HAN S Y, SONG R F, ZUO L H, et al. Study on NH4-ZSM-5 zeolite containing chromium (or vanadium)[J]. Acta Scientiarum Naturalium Universitatis Jilinensis, 1984(2): 99-103. | |
46 | HOU L Y, SAND L B, THOMPSON R W. Nucleation and growth of NH4-ZSM-5 zeolites[J]. Studies in Surface Science & Catalysis, 1986, 28(9): 239-246. |
47 | XUE T, LIU H P, WANG Y M, et al. Seed-induced synthesis of small-crystal TS-1 using ammonia as alkali source[J]. Chinese Journal of Catalysis, 2015, 36(11): 1928-1935. |
48 | 郭舒隽, 李炎, 黄清明, 等. 碱源/氟体系Ti-MWW分子筛的合成[J]. 工业催化, 2017, 25(7): 29-33. |
GUO S J, LI Y, HUANG Q M, et al. Synthesis of Ti-MWW molecule sieves with fluorine ion and alkali sources[J]. Industrial Catalysis, 2017, 25(7): 29-33. | |
49 | 赵大庆, 庞文琴. 直接法合成胺型沸石[J]. 催化学报, 1991, 12(4): 324-327. |
ZHAO D Q, PANG W Q. Direct synthesis of amine form zeolites[J]. Chinese Journal of Catalysis, 1991, 12(4): 324-327. | |
50 | 王永睿, 贾晓梅, 余少兵, 等. 无钠Beta分子筛的合成[J]. 石油学报(石油加工), 2015, 31(2): 325-330. |
WANG Y R, JIA X M, YU S B, et al. Synthesis of Beta zeolite in the absence of alkali cations[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(2): 325-330. | |
51 | XU W Y, DONG J X, LI J P, et al. A novel method for the preparation of zeolite ZSM-5[J]. Journal of the Chemical Society, Chemical Communications, 1990, 10(10): 755-756. |
52 | 窦涛, 冯芳霞, 萧墉壮, 等. 杂原子B-ZSM-35沸石的干法合成、表征及CO+H2反应性能的研究[J]. 燃料化学学报, 1997, 25(1): 16-20. |
DOU T, FENG F X, XIAO Y Z, et al. Study on dry powder synthesis, characterization and catalytic properties of heteroatomic zeolite B-ZSM-35[J]. Journal of Fuel Chemistry and Technology, 1997, 25(1): 16-20. | |
53 | 窦涛, 冯芳霞, 萧墉壮, 等. 硅沸石-1的合成及催化作用[J]. 燃料化学学报, 1997, 25(2): 152-156. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[8] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |