19 |
KUZNIK F, GONDRE D, JOHANNES K, et al. Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings[J]. Renewable Energy, 2019, 132: 761-772.
|
20 |
LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843.
|
21 |
CASEY S P, AYDIN D, ELVINS J, et al. Salt impregnated desiccant matrices for ‘open’ thermochemical energy conversion and storage–Improving energy density utilisation through hygrodynamic & thermodynamic reactor design[J]. Energy Conversion and Management, 2017, 142: 426-440.
|
22 |
DAOU K, WANG R Z, YANG G Z, et al. Theoretical comparison of the refrigerating performances of a CaCl2 impregnated composite adsorbent to those of the host silica gel[J]. International Journal of Thermal Sciences, 2008, 47(1): 68-75.
|
23 |
SAPIENZA A, SANTAMARIA S, FRAZZICA A, et al. Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method[J]. Applied Energy, 2014, 113: 1244-1251.
|
24 |
HU P, WANG S, WANG J, et al. Thermal performance analysis of the sorption heat storage system with packed bed based on a spatially resolved 2D model[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101753.
|
25 |
R-J CLARK, GHOLAMIBOZANJANI G, WOODS J, et al. Experimental screening of salt hydrates for thermochemical energy storage for building heating application[J]. Journal of Energy Storage, 2022, 51: 104415.
|
26 |
KUZNIK F, GONDRE D, JOHANNES K, et al. Sensitivity analysis of a zeolite energy storage model: impact of parameters on heat storage density and discharge power density[J]. Renewable Energy, 2020, 149: 468-478.
|
27 |
ZHANG Y, DONG H, WANG R, et al. Air humidity assisted sorption thermal battery governed by reaction wave model[J]. Energy Storage Materials, 2020, 27: 9-16.
|
28 |
GONDRE D. Numerical modeling and analysis of heat and mass transfers in an adsorption heat storage tank: Influences of material properties, operating conditions and system design on storage performances[D]. Lyon: Lyon University, 2016: 8-14.
|
29 |
章燕豪. 吸附作用[M]. 上海: 上海科学技术文献出版社, 1989: 46-51.
|
|
ZHANG Yanhao. Adsorption[M]. Shanghai: Shanghai Scientific and Technological Literature Publishing House, 1989: 46-51.
|
30 |
ZOU R P, YU A B. The packing of spheres in a cylindrical container: he thickness effect[J]. Chemical Engineering Science, 1995, 50(9): 1504-1507.
|
31 |
KLINE S, MCCLINTOCK F. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8.
|
32 |
TATSIDJODOUNG P, LE PIERRÈS N, HEINTZ J, et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings[J]. Energy Conversion and Management, 2016, 108: 488-500.
|
33 |
RISTIĆ A, FISCHER F, HAUER A, et al. Improved performance of binder-free zeolite Y for low-temperature sorption heat storage[J]. Journal of Materials Chemistry A, 2018, 6(24): 11521-11530.
|
34 |
DYLAN A B. An experimental evaluation of fixed and fluidized beds of zeolite 13X for the application of compact thermal energy storage[D]. Ottawa: Carleton University, 2016: 66-69.
|
35 |
KÖLL R, VAN HELDEN W, ENGEL G, et al. An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings[J]. Solar Energy, 2017, 155: 388-397.
|
36 |
THU K, SAHA B B, CHUA K J, et al. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1111-1122.
|
37 |
LIM K, CHE J, LEE J. Experimental study on adsorption characteristics of a water and silica-gel based thermal energy storage (TES) system[J]. Applied Thermal Engineering, 2017, 110: 80-88.
|
38 |
COURBON E, D'ANS P, SKRYLNYK O, et al. New prominent lithium bromide-based composites for thermal energy storage[J]. Journal of Energy Storage, 2020, 32: 101699.
|
39 |
HU P, WANG S, WANG J, et al. Scale-up of open zeolite bed reactors for sorption energy storage: Theory and experiment[J]. Energy and Buildings, 2022, 264: 112077.
|
40 |
GAEINI M, VAN ALEBEEK R, SCAPINO L, et al. Hot tap water production by a 4kW sorption segmented reactor in household scale for seasonal heat storage[J]. Journal of Energy Storage, 2018, 17: 118-128.
|
41 |
JÄNCHEN J, HERZOG T H, GLEICHMANN K, et al. Performance of an open thermal adsorption storage system with Linde type A zeolites: Beads versus honeycombs[J]. Microporous and Mesoporous Materials, 2015, 207: 179-184.
|
1 |
TREIER M S, DESAI A, SCHMIDT F P. Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage[J]. Energy, 2020, 194: 116890.
|
2 |
XU J, WANG R Z, LI Y. A review of available technologies for seasonal thermal energy storage[J]. Solar Energy, 2014, 103: 610-638.
|
3 |
李琳, 黄宏宇, 邓立生, 等. 低品位能源化学储热材料研究进展[J]. 化工进展, 2020, 39(9): 3608-3616.
|
|
LI Lin, HUANG Hongyu, DENG Lisheng, et al. Research progress of low-grade energy chemical heat storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3608-3616.
|
4 |
SCAPINO L, ZONDAG H A, VAN BAEL J, et al. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948.
|
5 |
AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367.
|
6 |
TATSIDJODOUNG P, LE PIERRÈS N, LUO L. A review of potential materials for thermal energy storage in building applications[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 327-349.
|
7 |
KRESE G, KOŽELJ R, BUTALA V, et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings[J]. Energy and Buildings, 2018, 164: 239-253.
|
8 |
GUR I, SAWYER K, PRASHER R. Searching for a better thermal battery[J]. Science, 2012, 335(6075): 1454-1455.
|
9 |
高士超, 王树刚, 胡沛裕, 等. 吸附蓄热材料性能研究进展[J]. 化工进展, 2021, 40(S2): 211-218.
|
|
GAO Shichao, WANG Shugang, HU Peiyu, et al. The state of the art on performance of sorption heat storage materials[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 211-218.
|
10 |
YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514.
|
11 |
KUZNIK F, JOHANNES K, OBRECHT C. Chemisorption heat storage in buildings: State-of-the-art and outlook[J]. Energy and Buildings, 2015, 106: 183-191.
|
12 |
ZHANG Y N, WANG R Z, LI T X. Experimental investigation on an open sorption thermal storage system for space heating[J]. Energy, 2017, 141: 2421-2433.
|
13 |
SHIGEISHI R A, LANGFORD C H, HOLLEBONE B R. Solar energy storage using chemical potential changes associated with drying of zeolites[J]. Solar Energy, 1979, 23(6): 489-495.
|
14 |
VAN ALEBEEK R, SCAPINO L, BEVING M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair[J]. Applied Thermal Engineering, 2018, 139: 325-333.
|
15 |
NONNEN T, PREIßLER H, KÖTT S, et al. Salt inclusion and deliquescence in salt/zeolite X composites for thermochemical heat storage[J]. Microporous and Mesoporous Materials, 2020, 303: 110239.
|
16 |
FINCK C, HENQUET E, VAN SOEST C, et al. Experimental results of a 3kWh thermochemical heat storage module for space heating application[J]. Energy Procedia, 2014, 48: 320-326.
|
17 |
ZETTL B, ENGLMAIR G, STEINMAURER G. Development of a revolving drum reactor for open-sorption heat storage processes[J]. Applied Thermal Engineering, 2014, 70(1): 42-49.
|
18 |
JOHANNES K, KUZNIK F, J-L HUBERT, et al. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings[J]. Applied Energy, 2015, 159: 80-86.
|
42 |
XU C, YU Z, XIE Y, et al. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J]. Applied Thermal Engineering, 2018, 129: 250-259.
|