化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5414-5426.DOI: 10.16085/j.issn.1000-6613.2022-2140
收稿日期:
2022-11-18
修回日期:
2023-05-22
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
陈延信
作者简介:
范旭阳(1997—),男,硕士研究生,研究方向为固废资源化及多相流数值仿真。E-mail:fxy_mail@126.com。
基金资助:
FAN Xuyang(), CHEN Yanxin(), ZHAO Bo, ZHANG Leilei
Received:
2022-11-18
Revised:
2023-05-22
Online:
2023-10-15
Published:
2023-11-11
Contact:
CHEN Yanxin
摘要:
气体硫黄还原磷石膏制酸联产硫铝酸盐水泥熟料是处理工业固废磷石膏的新工艺技术,通过计算流体力学(CFD)与实验验证相结合的方法对该系统的还原炉进行研究分析,利用基于欧拉-拉格朗日的组分运输模型实现还原炉内气体硫黄和磷石膏生料颗粒的多相流化学反应过程的数值仿真计算,通过对数值仿真结果与中试试验数据的分析对比,得到了还原炉内温度、速度、组分、浓度场等关键工艺参数,且还原炉内气固相运动轨迹以及温度场分布均稳定。在入炉气体硫黄温度1023K、CaSO4与气体硫黄的摩尔比为3.14∶1的条件下,CaSO4预还原率达到26.84%,满足深度还原的要求。数值模拟关键显性工艺参数与中试系统运行数据吻合度高,误差仅为3.82%~4.84%,为气体硫黄还原磷石膏工艺技术的优化开发提供了数据支撑。
中图分类号:
范旭阳, 陈延信, 赵博, 张蕾蕾. 气体硫黄还原磷石膏制酸新工艺预还原数值模拟[J]. 化工进展, 2023, 42(10): 5414-5426.
FAN Xuyang, CHEN Yanxin, ZHAO Bo, ZHANG Leilei. Numerical simulation of pre-reduction for a new process of acid production from phosphogypsum by gas sulfur reduction[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5414-5426.
边界 | 速度/m·s-1 | 质量流量/kg·s-1 | 温度/K | DPM边界 | 备注 |
---|---|---|---|---|---|
窑尾烟气入口 | 20 | — | 1173 | Escape | 速度入口 |
气体硫黄入口 | — | 0.3 | 1023 | Escape | 质量流量入口 |
生料颗粒入口 | — | 2 | 870 | Wall-jet | 质量流量入口 |
出口 | — | — | — | Trap | 自由流动 |
表1 各边界条件的参数设置
边界 | 速度/m·s-1 | 质量流量/kg·s-1 | 温度/K | DPM边界 | 备注 |
---|---|---|---|---|---|
窑尾烟气入口 | 20 | — | 1173 | Escape | 速度入口 |
气体硫黄入口 | — | 0.3 | 1023 | Escape | 质量流量入口 |
生料颗粒入口 | — | 2 | 870 | Wall-jet | 质量流量入口 |
出口 | — | — | — | Trap | 自由流动 |
原材料 | SiO2 | CaO | SO3 | Al2O3 | MgO | Fe2O3 | TiO2 | P2O5 | F | 烧失量 |
---|---|---|---|---|---|---|---|---|---|---|
铝土矿 | 10.47 | 0.07 | 7.55 | 54.63 | 0.25 | 11.06 | 2.79 | — | — | 13.73 |
石灰石 | 4.00 | 53.49 | 0.04 | 0.37 | 1.15 | 0.72 | — | — | — | 41.17 |
赤铁矿 | 8.96 | 2.64 | 0.54 | 4.49 | 0.69 | 75.89 | 0.89 | — | — | 4.65 |
磷石膏 | 4.19 | 35.75 | 48.21 | 1.00 | 0.07 | 0.54 | 0.14 | 1.23 | 0.30 | 3.62 |
表3 试验材料化学成分分析 (%)
原材料 | SiO2 | CaO | SO3 | Al2O3 | MgO | Fe2O3 | TiO2 | P2O5 | F | 烧失量 |
---|---|---|---|---|---|---|---|---|---|---|
铝土矿 | 10.47 | 0.07 | 7.55 | 54.63 | 0.25 | 11.06 | 2.79 | — | — | 13.73 |
石灰石 | 4.00 | 53.49 | 0.04 | 0.37 | 1.15 | 0.72 | — | — | — | 41.17 |
赤铁矿 | 8.96 | 2.64 | 0.54 | 4.49 | 0.69 | 75.89 | 0.89 | — | — | 4.65 |
磷石膏 | 4.19 | 35.75 | 48.21 | 1.00 | 0.07 | 0.54 | 0.14 | 1.23 | 0.30 | 3.62 |
数据 | 还原炉温度/K | 分解率/% | ||
---|---|---|---|---|
底部 | 中部 | 顶部 | ||
仿真计算数据 | 1173 | 991 | 982 | 26.84 |
实测数据 | 1150 | 943 | 932 | 25.54 |
表4 计算结果与实测数据对比
数据 | 还原炉温度/K | 分解率/% | ||
---|---|---|---|---|
底部 | 中部 | 顶部 | ||
仿真计算数据 | 1173 | 991 | 982 | 26.84 |
实测数据 | 1150 | 943 | 932 | 25.54 |
1 | TAYIBI Hanan, CHOURA Mohamed, LÓPEZ Félix A, et al. Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management, 2009, 90(8): 2377-2386. |
2 | GAO Jing, LI Qiang, LIU Fuli. Calcium sulfate whisker prepared by flue gas desulfurization gypsum: A physical-chemical coupling production process[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2221-2226. |
3 | 陆金驰, 李东南, 陈凯, 等. 煅烧磷石膏对蒸压硅酸盐制品水化过程的影响[J]. 化工学报, 2012, 63(7): 2317-2323. |
LU Jinchi, LI Dongnan, CHEN Kai, et al. Effect of calcined phosphogypsum on hydration process of autoclaved silicate products[J]. CIESC Journal, 2012, 63(7): 2317-2323. | |
4 | 李凤玲. 磷石膏分解特性与其分段煅烧制备硫铝酸盐水泥研究[D]. 重庆: 重庆大学, 2016. |
LI Fengling. Decomposition characteristics of phosphogypsum and piecewise calcination for preparing sulphoaluminate cement[D]. Chongqing: Chongqing University, 2016. | |
5 | SHEN Yan, QIAN Jueshi, CHAI Junqing, et al. Calcium sulphoaluminate cements made with phosphogypsum: Production issues and material properties[J]. Cement and Concrete Composites, 2014, 48: 67-74. |
6 | MA Liping, NING Ping, ZHENG Shaocong, et al. Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3597-3602. |
7 | YAN Xiaodan, MA Liping, ZHU Bin, et al. Reaction mechanism process analysis with phosphogypsum decomposition in multiatmosphere control[J]. Industrial & Engineering Chemistry Research, 2014, 53(50): 19453-19459. |
8 | 孟令佳, 吉忠海, 陈津. 工业副产石膏热分解脱硫的研究进展[J]. 化工进展, 2017, 36(2): 626-633. |
MENG Lingjia, JI Zhonghai, CHEN Jin. Advance of the thermal decomposition of industrial by-product gypsum[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 626-633. | |
9 | Antar KAl¨S, MOHAMED Jemal. A thermogravimetric study into the effects of additives and water vapor on the reduction of gypsum and Tunisian phosphogypsum with graphite or coke in a nitrogen atmosphere[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(1): 113-125. |
10 | 钟本和, 王辛龙, 张志业, 等. 硫黄还原分解磷石膏制硫酸节能减排新工艺[J]. 化肥工业, 2014, 41(2): 7-10, 27. |
ZHONG Benhe, WANG Xinlong, ZHANG Zhiye, et al. New saving energy and reducing discharge process of producing sulfuric acid by phosphogypsum reduction and decomposition with sulfur[J]. Chemical Fertilizer Industry, 2014, 41(2): 7-10, 27. | |
11 | 王辛龙, 张志业, 杨守明, 等. 硫黄分解磷石膏制硫酸技术进展及推广应用[J]. 硫酸工业, 2018(1): 45-49, 53. |
WANG Xinlong, ZHANG Zhiye, YANG Shouming, et al. Technical progress and application of sulphuric acid production by decomposing phosphogypsum with sulphur[J]. Sulphuric Acid Industry, 2018(1): 45-49, 53. | |
12 | 张国兴, 陈延信, 庞仁杰, 等. 一种硫黄气体还原石膏制硫铝酸盐水泥联产硫酸的方法: CN111559879B[P]. 2022-05-20. |
ZHANG Guoxing, CHEN Yanxin, PANG Renjie, et al. Method for preparing sulphoaluminate cement and coproducing sulfuric acid by reducing gypsum with sulfur gas: CN111559879B[P]. 2022-05-20. | |
13 | 任盼锋, 海润泽, 李奇, 等. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
REN Panfeng, Runze HAI, LI Qi, et al. Review of numerical study on liquid-solids two-phase mass transfer process in fluidized bed[J]. CIESC Journal, 2022, 73(1): 1-17. | |
14 | 尹少武, 张朝, 康鹏, 等. 硅粉氮化输送床内气固反应过程数值模拟[J]. 化工进展, 2022, 41(5): 2256-2267. |
YIN Shaowu, ZHANG Chao, KANG Peng, et al. Numerical simulation of gas solid reaction process in silicon powder nitriding conveying bed[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2256-2267. | |
15 | YANG Yu, ZHANG Yan, LI Shijin, et al. Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization[J]. Chemosphere, 2020, 258: 127420. |
16 | ZHANG Wenwu, XIE Xing, ZHU Baoshan, et al. Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model[J]. Renewable Energy, 2021, 164: 1496-1507. |
17 | KAPPELT Carolin, RZEHAK Roland. Investigation of fluid-dynamics and mass-transfer in a bubbly mixing layer by Euler-Euler simulation[J]. Chemical Engineering Science, 2022, 264: 118147. |
18 | Hongmei LYU, LUCAS Dirk, RZEHAK Roland, et al. A particle-center-averaged Euler-Euler model for monodisperse bubbly flows[J]. Chemical Engineering Science, 2022, 260: 117943. |
19 | PANDEY Bhoopendra, PRAJAPATI Yogesh K, SHETH Pratik N. CFD analysis of the downdraft gasifier using species-transport and discrete phase model[J]. Fuel, 2022, 328: 125302. |
20 | NGAMSIDHIPHONGSA Nathada, PONPESH Pimporn, SHOTIPRUK Artiwan, et al. Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions[J]. Energy Conversion and Management, 2020, 213: 112808. |
21 | MURUGAN P C, JOSEPH SEKHAR S. Species-Transport CFD model for the gasification of rice husk (Oryza Sativa) using downdraft gasifier[J]. Computers and Electronics in Agriculture, 2017, 139: 33-40. |
22 | Anderson JOHN D., 姚朝晖, 周强. 计算流体力学入门[M]. 北京: 清华大学出版社, 2010. |
Anderson JOHN D., YAO Zhaohui, ZHOU Qiang. Computational fluid dynamics: The basics with applications[M]. Beijing: Tsinghua University Press, 2010. | |
23 | 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. |
WANG Fujun. Computational fluid dynamics analysis: Principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004. | |
24 | LIU Huanpeng, LIU Wentie, ZHENG Jianxiang, et al. Numerical study of gas-solid flow in a precalciner using kinetic theory of granular flow[J]. Chemical Engineering Journal, 2004, 102(2): 151-160. |
25 | 梅书霞, 谢峻林, 陈晓琳, 等. 涡旋式分解炉中煤及垃圾衍生燃料共燃烧耦合CaCO3分解的数值模拟[J]. 化工学报, 2017, 68(6): 2519-2525. |
MEI Shuxia, XIE Junlin, CHEN Xiaolin, et al. Numerical simulation of co-combustion of coal and refuse derived fuel in coupling with decomposition of calcium carbonate in precalciner with swirl type prechamber[J]. CIESC Journal, 2017, 68(6): 2519-2525. | |
26 | 石朝亭. 水泥分解炉高温预热燃料燃烧耦合窑气NO还原数值研究[D]. 北京: 中国科学院大学, 2021. |
SHI Zhaoting. Numerical study on NO reduction of kiln gas coupled with high temperature preheating fuel combustion in cement calciner[D]. Beijing: University of Chinese Academy of Sciences, 2021. | |
27 | 王家楣, 肖国权. 分解炉内气固两相流场不同模型模拟结果分析[J]. 海军工程大学学报, 2005, 17(3): 5-8. |
WANG Jiamei, XIAO Guoquan. Analysis of simulating results with different models for gas-solid two-phase flows in a precalciner[J]. Journal of Naval University of Engineering, 2005, 17(3): 5-8. | |
28 | YAN Zhiqiang, WANG Zean, WANG Xiaofeng, et al. Kinetic model for calcium sulfate decomposition at high temperature[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3490-3497. |
29 | KHINAST J, KRAMMER G F, BRUNNER Ch, et al. Decomposition of limestone: The influence of CO2 and particle size on the reaction rate[J]. Chemical Engineering Science, 1996, 51(4): 623-634. |
30 | SATTERFIELD Charles N, FEAKES Frank. Kinetics of the thermal decomposition of calcium carbonate[J]. AIChE Journal, 1959, 5(1): 115-122. |
31 | VON BOHNSTEIN Maximilian, LANGEN Josef, FRIGGE Lorenz, et al. Comparison of CFD simulations with measurements of gaseous sulfur species concentrations in a pulverized coal fired 1 MWth furnace[J]. Energy & Fuels, 2016, 30(11): 9836-9849. |
32 | 王聪. 气体硫黄协同高硫铝土矿预分解磷石膏制硫铝酸盐水泥[D]. 西安: 西安建筑科技大学, 2021. |
WANG Cong. Preparation of sulphoaluminate cement by pre decomposition of phosphogypsum with gas sulfur and high sulfur bauxite[D]. Xi’an: Xi’an University of Architecture and Technology, 2021. | |
33 | 庞仁杰. 以硫代碳化学分解石膏制硫酸的可行性分析[J]. 硫酸工业, 2015(2): 22-25. |
PANG Renjie. Feasibility analysis of sulphuric acid production by gypsum decomposed by sulphur instead of carbon[J]. Sulphuric Acid Industry, 2015(2): 22-25. | |
34 | 赵博, 张国兴, 陈延信, 等. 气体硫黄和高硫铝土矿协同还原石膏制硫铝酸盐水泥联产硫酸的方法: CN111574079B[P]. 2022-05-20. |
ZHAO Bo, ZHANG Guoxing, CHEN Yanxin, et al. Method for preparing sulphoaluminate cement and co-producing sulfuric acid by synergistically reducing gypsum through gaseous sulfur and high-sulfur bauxite: CN111574079B[P]. 2022-05-20. | |
35 | 陈延信, 庞仁杰, 赵博, 等. 硫黄气体还原石膏制贝利特硫铝酸盐水泥联产硫酸的方法: CN111574080B[P]. 2022-05-20. |
CHEN Yanxin, PANG Renjie, ZHAO Bo, et al. Method for preparation of belite sulphoaluminate cement and co-production of sulfuric acid by reducing gypsum with sulfur gas: CN111574080B[P]. 2022-05-20. | |
36 | 张国兴, 庞仁杰, 刘景霞, 等. 由硫黄气体还原石膏制硫酸联产水泥熟料的方法: CN104555946B[P]. 2017-01-18. |
ZHANG Guoxing, PANG Renjie, LIU Jingxia, et al. Method for jointly producing sulphuric acid and cement clinker by using sulphur gas to reduce gypsum: CN104555946B[P]. 2017-01-18. | |
37 | 张国兴, 庞仁杰. 一种硫黄气体还原废硫酸制液体二氧化硫和硫酸的系统: CN209161488U[P]. 2019-07-26. |
ZHANG Guoxing, PANG Renjie. System for preparing liquid sulfur dioxide and sulfuric acid by reducing waste sulfuric acid with sulfur gas: CN209161488U[P]. 2019-07-26. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[4] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[5] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[6] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[7] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[8] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[9] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[10] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[11] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[12] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[13] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[14] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[15] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |