化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3760-3771.DOI: 10.16085/j.issn.1000-6613.2020-1677
收稿日期:
2020-08-21
修回日期:
2020-12-07
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
张跃伟
作者简介:
于雪(1987—),女,副教授,博士,研究方向为生物质催化转化。E-mail:基金资助:
YU Xue1(), BAO Qingqing2, GAO Shuang3, ZHANG Yuewei2()
Received:
2020-08-21
Revised:
2020-12-07
Online:
2021-07-06
Published:
2021-07-19
Contact:
ZHANG Yuewei
摘要:
将生物质平台分子5-羟甲基糠醛(5-hydroxymethylfurfural,HMF)高效、绿色地催化转化为更高附加值的2,5-呋喃二甲酸(2,5-furandicarboxylic acid,FDCA)已经成为目前生物质能源转化领域的研究热点。碱性载体负载贵金属催化剂用于HMF无碱氧化为FDCA已经得到广泛研究,并取得了一系列成果。本文综述了水滑石、羟基磷灰石、碳材料、金属氧化物等不同载体负载的贵金属催化剂用于HMF无碱氧化为FDCA的最新进展,详细介绍了各类催化剂的结构性质、催化反应参数及催化活性,重点讨论了催化剂与催化反应的构效关系及催化反应机理等研究工作。最后,指出了今后在HMF转化为FDCA的研究工作中负载型贵金属催化剂的设计开发及机理探究等方面的努力方向。
中图分类号:
于雪, 包青青, 高爽, 张跃伟. 5-羟甲基糠醛无碱有氧氧化合成2,5-呋喃二甲酸负载型贵金属催化剂的研究进展[J]. 化工进展, 2021, 40(7): 3760-3771.
YU Xue, BAO Qingqing, GAO Shuang, ZHANG Yuewei. Research progresses on supported precious metal catalysts for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3760-3771.
催化剂 | 反应条件 | HMF | FDCA | 参考文献 | ||
---|---|---|---|---|---|---|
温度/℃ | 氧化剂, 压力/MPa | 反应时间/h | 转化率/% | 产率/% | ||
Ru/MgO | 160 | O2, 0.62 | 4 | 100 | 90以上 | [ |
Pt/C-O-Mg | 110 | O2, 1 | 12 | 99以上 | 97 | [ |
Au/MgF2-MgO | 110 | O2, 2.6 | 2 | 98 | 64 | [ |
xPd-HT-n | 100 | O2流(100mL/min) | 8 | 100 | 99.9 | [ |
Au/HT | 95 | O2, 常压 | 7 | 100 | 99 | [ |
AuPd/La-CaMgAl-LDH | 100 | O2, 0.5 | 6 | 96 | 85 | [ |
Au/HT-AC | 100 | O2, 0.5 | 12 | 100 | 100 | [ |
Ru/HAP | 120 | O2, 1 | 24 | 100 | 99.6 | [ |
表1 碱土金属化合物负载的贵金属催化剂催化HMF有氧氧化为FDCA
催化剂 | 反应条件 | HMF | FDCA | 参考文献 | ||
---|---|---|---|---|---|---|
温度/℃ | 氧化剂, 压力/MPa | 反应时间/h | 转化率/% | 产率/% | ||
Ru/MgO | 160 | O2, 0.62 | 4 | 100 | 90以上 | [ |
Pt/C-O-Mg | 110 | O2, 1 | 12 | 99以上 | 97 | [ |
Au/MgF2-MgO | 110 | O2, 2.6 | 2 | 98 | 64 | [ |
xPd-HT-n | 100 | O2流(100mL/min) | 8 | 100 | 99.9 | [ |
Au/HT | 95 | O2, 常压 | 7 | 100 | 99 | [ |
AuPd/La-CaMgAl-LDH | 100 | O2, 0.5 | 6 | 96 | 85 | [ |
Au/HT-AC | 100 | O2, 0.5 | 12 | 100 | 100 | [ |
Ru/HAP | 120 | O2, 1 | 24 | 100 | 99.6 | [ |
催化剂 | 反应条件 | HMF | FDCA | 参考文献 | ||
---|---|---|---|---|---|---|
温度/℃ | 氧化剂, 压力/MPa | 反应时间/h | 转化率/% | 产率/% | ||
AuPd/CNT | 100 | O2, 0.5 | 12 | 100 | 96 | [ |
Pt/C-EDA-4.1 | 110 | O2, 1 | 12 | 99以上 | 96 | [ |
Pt/Fe3O4/rGO | 95 | O2, 0.5 | 9 | 100 | 99 | [ |
Ru/NrGO | 100 | 空气, 1 | 8 | 100 | 79.6 | [ |
表2 碳材料负载的贵金属催化剂催化HMF有氧氧化为FDCA
催化剂 | 反应条件 | HMF | FDCA | 参考文献 | ||
---|---|---|---|---|---|---|
温度/℃ | 氧化剂, 压力/MPa | 反应时间/h | 转化率/% | 产率/% | ||
AuPd/CNT | 100 | O2, 0.5 | 12 | 100 | 96 | [ |
Pt/C-EDA-4.1 | 110 | O2, 1 | 12 | 99以上 | 96 | [ |
Pt/Fe3O4/rGO | 95 | O2, 0.5 | 9 | 100 | 99 | [ |
Ru/NrGO | 100 | 空气, 1 | 8 | 100 | 79.6 | [ |
催化剂 | 反应条件 | HMF | FDCA | 参考文献 | ||
---|---|---|---|---|---|---|
温度/℃ | 氧化剂,压力/MPa | 反应时间/h | 转化率/% | 产率/% | ||
CaMn2O4 | 100 | O2流(100mL/min) | 12 | 100 | 96.8 | [ |
Ru/Mn6Ce1Oy | 150 | O2, 1 | 15 | 100 | 99 | [ |
RuxCoOy(OH) | 140 | O2, 1 | 18 | 100 | 99.9 | [ |
Ru/MnCo2O4 | 120 | 空气, 2.4 | 10 | 100 | 99.1 | [ |
Pt/ZrO2 | 100 | O2, 0.4 | 12 | 100 | 97.3 | [ |
Ru/ZrO2 | 120 | O2, 1 | 16 | 100 | 97 | [ |
PtSn/TiO2 | 110 | O2, 1 | 4 | 68 | 13 | [ |
AuPd/NiO | 90 | O2, 1 | 6 | 95 | 70 | [ |
Pt/NC-CeO2 | 110 | O2, 4 | 8 | 100 | 100 | [ |
表3 过渡金属氧化物负载的贵金属催化剂催化HMF有氧氧化为FDCA
催化剂 | 反应条件 | HMF | FDCA | 参考文献 | ||
---|---|---|---|---|---|---|
温度/℃ | 氧化剂,压力/MPa | 反应时间/h | 转化率/% | 产率/% | ||
CaMn2O4 | 100 | O2流(100mL/min) | 12 | 100 | 96.8 | [ |
Ru/Mn6Ce1Oy | 150 | O2, 1 | 15 | 100 | 99 | [ |
RuxCoOy(OH) | 140 | O2, 1 | 18 | 100 | 99.9 | [ |
Ru/MnCo2O4 | 120 | 空气, 2.4 | 10 | 100 | 99.1 | [ |
Pt/ZrO2 | 100 | O2, 0.4 | 12 | 100 | 97.3 | [ |
Ru/ZrO2 | 120 | O2, 1 | 16 | 100 | 97 | [ |
PtSn/TiO2 | 110 | O2, 1 | 4 | 68 | 13 | [ |
AuPd/NiO | 90 | O2, 1 | 6 | 95 | 70 | [ |
Pt/NC-CeO2 | 110 | O2, 4 | 8 | 100 | 100 | [ |
1 | SAJID M, ZHAO X B, LIU D H. Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes[J]. Green Chemistry, 2018, 20(24): 5427-5453. |
2 | PAL P, SARAVANAMURUGAN S. Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts[J]. ChemSusChem, 2019, 12(1): 145-163. |
3 | HAMEED S, LIN L, WANG A Q, et al. Recent developments in metal-based catalysts for the catalytic aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid[J]. Catalysts, 2020, 10(1): 120. |
4 | HAN X W, GENG L, GUO Y, et al. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst[J]. Green Chemistry, 2016, 18(6): 1597-1604. |
5 | CHEN C, LI X, WANG L, et al. Highly porous nitrogen- and phosphorus-codoped graphene: an outstanding support for Pd catalysts to oxidize 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11300-11306. |
6 | SANG B, LI J, TIAN X, et al. Selective aerobic oxidation of the 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold nanoparticles supported on graphitized carbon: study on reaction pathways[J]. Molecular Catalysis, 2019, 470: 67-74. |
7 | SI Z, ZHANG X, ZUO M, et al. Selective oxidation of 5-formyloxymethylfurfural to 2,5-furandicarboxylic acid with Ru/C in water solution[J]. Korean Journal of Chemical Engineering, 2020, 37(2): 224-230. |
8 | WAN X, ZHOU C, CHEN J, et al. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles[J]. ACS Catalysis, 2014, 4(7): 2175-2185. |
9 | 顾勇冰. 负载金属催化剂的载体调控及其反应性的密度泛函理论研究[D]. 杭州: 浙江工业大学, 2019. |
GU Yongbing. DFT study on the support effect of supported metal catalyst and reactivity[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
10 | 李晓. 负载型Ni/MgO和PdO/MO2(M=Sn, Ti, Si)催化剂载体效应研究[D]. 南昌: 南昌大学, 2018. |
LI Xiao. Support effect on Ni/MgO and PdO/MO2(M=Sn, Ti, Si) supported catalysts[D]. Nanchang: Nanchang University, 2018. | |
11 | FERRAZ C P, ZIELIŃSKI M, PIETROWSKI M, et al. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16332-16340. |
12 | CHEN C, WANG L, ZHU B, et al. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: catalysts, processes and reaction mechanism[J]. Journal of Energy Chemistry, 2021, 54: 528-554. |
13 | 杨晓龙, 夏春谷, 唐立平, 等. 氧化镁载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响[J]. 无机化学学报, 2011, 27(8): 1541-1549. |
YANG Xiaolong, XIA Chungu, TANG Liping, et al. Effect of MgO support and BaO promoter on structure and catalytic activity of ruthenium catalysts for ammonia synthesis[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(8): 1541-1549. | |
14 | ZHANG W, TAY H L, LIM S S, et al. Supported cobalt oxide on MgO: highly efficient catalysts for degradation of organic dyes in dilute solutions[J]. Applied Catalysis B: Environmental, 2010, 95(1/2): 93-99. |
15 | HERNÁNDEZ W Y, LAUWAERT J, VOORT P VAN DER, et al. Recent advances on the utilization of layered double hydroxides (LDHs) and related heterogeneous catalysts in a lignocellulosic-feedstock biorefinery scheme[J]. Green Chemistry, 2017, 19(22): 5269-5302. |
16 | BING W, ZHENG L, HE S, et al. Insights on active sites of CaAl-hydrotalcite as a high-performance solid base catalyst toward aldol condensation[J]. ACS Catalysis, 2018, 8(1): 656-664. |
17 | STURGEON M R,O′BRIEN M H, CIESIELSKI P N, et al. Lignin depolymerisation by nickel supported layered-double hydroxide catalysts[J]. Green Chemistry, 2014, 16(2): 824-835. |
18 | 孙艳荣, 范涛, 黄勇, 等. 羟基磷灰石生物陶瓷材料的研究趋势及展望[J]. 硅酸盐学报, 2010, 38(6): 1145-1150. |
SUN Yanrong, FAN Tao, HUANG Yong, et al. Research trend and prospect of hydroxyapatite bioceramic materials[J]. Journal of the Chinese Ceramic Society, 2010, 38(6): 1145-1150. | |
19 | 马利国, 孙艳荣, 李东来, 等. 羟基磷灰石载体的结构和作用及在催化剂制备中的应用[J]. 硅酸盐学报, 2019, 47(12): 1808-1817. |
MA Liguo, SUN Yanrong, LI Donglai, et al. Structure and effect of hydroxyapatite support as well as application in catalyst preparation[J]. Journal of the Chinese Ceramic Society, 2019, 47(12): 1808-1817. | |
20 | MORI K, HARA T, MIZUGAKI T, et al. Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen[J]. Journal of the American Chemical Society, 2004, 126(34): 10657-10666. |
21 | XU G, GUO J, ZHANG Y, et al. Selective hydrogenation of phenol to cyclohexanone over Pd-HAP catalyst in aqueous media[J]. ChemCatChem, 2015, 7(16): 2485-2492. |
22 | ANTONYRAJ C A, HUYNH N T T, LEE K W, et al. Base-free oxidation of 5-hydroxymethyl-2-furfural to 2,5-furan dicarboxylic acid over basic metal oxide-supported ruthenium catalysts under aqueous conditions[J]. Journal of Chemical Sciences, 2018, 130(11): 156. |
23 | WANG Y, YU K, LEI D, et al. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4752-4761. |
24 | GAO T, YIN Y, FANG W, et al. Highly dispersed ruthenium nanoparticles on hydroxyapatite as selective and reusable catalyst for aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under base-free conditions[J]. Molecular Catalysis, 2018, 450: 55-64. |
25 | GUPTA N K, NISHIMURA S, TAKAGAKI A, et al. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chemistry, 2011, 13(4): 824-827. |
26 | ARDEMANI L, CIBIN G, DENT A J, et al. Solid base catalysed 5-HMF oxidation to 2,5-FDCA over Au/hydrotalcites: fact or fiction?[J]. Chemical Science, 2015, 6(8): 4940-4945. |
27 | GAO Z, XIE R, FAN G, et al. Highly efficient and stable bimetallic AuPd over La-doped Ca-Mg-Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5852-5861. |
28 | GAO T, GAO T, FANG W, et al. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst[J]. Molecular Catalysis, 2017, 439: 171-179. |
29 | SUN W, GAO T, ZHU G, et al. Influence of support properties and particle size on the gold‐catalyzed base‐free aerobic oxidation of 5-hydroxymethylfurfural[J]. ChemistrySelect, 2020, 5(4): 1416-1423. |
30 | LI M, XU F, LI H, et al. Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation[J]. Catalysis Science & Technology, 2016, 6(11): 3670-3693. |
31 | NGUYEN C V, LIAO Y T, KANG T C, et al. A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion[J]. Green Chemistry, 2016, 18(22): 5957-5961. |
32 | ZHANG J, LI X, CHEN H, et al. Hydrogen production by catalytic methane decomposition: carbon materials as catalysts or catalyst supports[J]. International Journal of Hydrogen Energy, 2017, 42(31): 19755-19775. |
33 | GAO X, LI X, WANG Q, et al. A mesoporous carbon derived from 4,4′-dipyridyl iron as an efficient catalyst for oxygen reduction[J]. Journal of Materials Chemistry A, 2020, 8(5): 2439-2444. |
34 | KIM M-C, LEE D, JEONG S H, et al. Nanodiamond-gold nanocomposites with the peroxidase-like oxidative catalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34317-34326. |
35 | SHI R, ZHAO J, LIU S, et al. Nitrogen-doped graphene supported copper catalysts for methanol oxidative carbonylation: enhancement of catalytic activity and stability by nitrogen species[J]. Carbon, 2018, 130: 185-195. |
36 | HAN X, LI C, GUO Y, et al. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Applied Catalysis A: General, 2016, 526: 1-8. |
37 | ZHOU C, SHI W, WAN X, et al. Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst[J]. Catalysis Today, 2019, 330: 92-100. |
38 | RAMIREZ-BARRIA C, LÓPEZ-OLMOS C, GUERRERO-RUIZ A, et al. Direct catalytic effect of nitrogen functional groups exposed on graphenic materials when acting cooperatively with Ru nanoparticles[J]. RSC Advances, 2017, 7(70): 44568-44577. |
39 | GUO D, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365. |
40 | LI O L, PRABAKAR K, KANEKO A, et al. Exploration of Lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts[J]. Catalysis Today, 2019, 337: 102-109. |
41 | YANG J, YU H, WANG Y, et al. Effect of the oxygen coordination environment of Ca-Mn oxides on the catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural[J]. Catalysis Science & Technology, 2019, 9(23): 6659-6668. |
42 | GAO T, CHEN J, FANG W, et al. Ru/MnXCe1OY catalysts with enhanced oxygen mobility and strong metal-support interaction: exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation[J]. Journal of Catalysis, 2018, 368: 53-68. |
43 | GAO T, ZHANG H, HU C, et al. Base-free aerobic oxidation of 5-hydroxymethylfurfural on a Ru(0) center in cooperation with a Co(Ⅱ)/Co(Ⅲ) redox pair over the one-pot synthesized Ru-Co composites[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17200-17209. |
44 | MISHRA D K, LEE H J, KIM J, et al. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions[J]. Green Chemistry, 2017, 19(7): 1619-1623. |
45 | CHEN H, SHEN J, CHEN K, et al. Atomic layer deposition of Pt nanoparticles on low surface area zirconium oxide for the efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Applied Catalysis A: General, 2018, 555: 98-107. |
46 | PICHLER C M, AL-SHAAL M G, GU D, et al. Ruthenium supported on high-surface-area zirconia as an efficient catalyst for the base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. ChemSusChem, 2018, 11(13): 2083-2090. |
47 | BONINCONTRO D, LOLLI A, STORIONE A, et al. Pt and Pt/Sn carbonyl clusters as precursors for the synthesis of supported metal catalysts for the base-free oxidation of HMF[J]. Applied Catalysis A: General, 2019, 588: 117279. |
48 | BONINCONTRO D, LOLLI A, VILLA A, et al. AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions[J]. Green Chemistry, 2019, 21(15): 4090-4099. |
49 | KE C, LI M, FAN G, et al. Pt nanoparticles supported on nitrogen-doped-carbon-decorated CeO2 for base-free aerobic oxidation of 5-hydroxymethylfurfural[J]. Chemistry: an Asian Journal, 2018, 13(18): 2714-2722. |
50 | ZHANG S, SUN X, ZHENG Z, et al. Nanoscale center-hollowed hexagon MnCo2O4 spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Catalysis Communications, 2018, 113: 19-22. |
51 | HAN X, LI C, LIU X, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx-CeO2 composite catalysts[J]. Green Chemistry, 2017, 19(4): 996-1004. |
52 | YANG F, DING Y, TANG J, et al. Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation[J]. Molecular Catalysis, 2017, 435: 144-155. |
53 | GAO T, YIN Y, ZHU G, et al. Co3O4 NPs decorated Mn-Co-O solid solution as highly selective catalyst for aerobic base-free oxidation of 5-HMF to 2,5-FDCA in water[J]. Catalysis Today, 2020, 355: 252-262. |
54 | PAKHARUKOVA V P, MOROZ E M, ZYUZIN D A, et al. Structure of copper oxide species supported on monoclinic zirconia[J]. The Journal of Physical Chemistry C, 2015, 119(52): 28828-28835. |
55 | AKUNE T, MORITA Y, SHIRAKAWA S, et al. ZrO2 nanocrystals as catalyst for synthesis of dimethylcarbonate from methanol and carbon dioxide: catalytic activity and elucidation of active sites[J]. Langmuir, 2018, 34(1): 23-29. |
56 | YANG X, YU X, LIN M, et al. Interface effect of mixed phase Pt/ZrO2 catalysts for HCHO oxidation at ambient temperature[J]. Journal of Materials Chemistry A, 2017, 5(26): 13799-13806. |
57 | LI S, LI M, ZHANG C, WANG S, et al. Steam reforming of ethanol over Ni/ZrO2 catalysts: effect of support on product distribution[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2940-2949. |
58 | BAGHERI S, MUHD JULKAPLI N, HAMID S BEE ABD.Titanium dioxide as a catalyst support in heterogeneous catalysis[J]. The Scientific World Journal, 2014, 2014: 727496. |
59 | CARRASCO J, LÓPEZ-DURÁN D, LIU Z, et al. In situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal-support interactions for the cleavage of O—H bonds[J]. Angewandte Chemie International Edition, 2015, 54(13): 3917-3921. |
60 | 于鑫. 三嗪基共价有机框架材料的设计、合成与表征[D]. 长春: 吉林大学, 2019. |
YU Xin. Design, synthesis and characterization of covalent triazine-based framework materials[D]. Changchun: Jilin University, 2019. | |
61 | ARTZ J, PALKOVITS R. Base-free aqueous-phase oxidation of 5-hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks[J]. ChemSusChem, 2015, 8(22): 3832-3838. |
62 | 羡策, 毛以朝, 龙湘云, 等. Y型分子筛应用于双环芳烃加氢裂化多产轻芳烃过程研究进展[J]. 化工进展, 2020, 39(S1): 133-140. |
XIAN Ce, MAO Yichao, LONG Xiangyun, et al. Advances on the application of zeolite Y in the producing light aromatic hydrocarbons from dicyclic aromatics hydrocracking[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 133-140. | |
63 | KANDASAMY P, GOGOI P, VENUGOPALAN A T, et al. A highly efficient and reusable Ru-NaY catalyst for the base free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. Catalysis Today, 2020. . |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[8] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[9] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[10] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[11] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[12] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[13] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[14] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[15] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |