化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3772-3784.DOI: 10.16085/j.issn.1000-6613.2020-1733
郭俊艳(), 张海军(), 段红娟, 李孝建, 刘鑫, 韩磊
收稿日期:
2020-08-28
修回日期:
2020-11-23
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
张海军
作者简介:
郭俊艳(1995—),女,硕士研究生,研究方向为能源催化。E-mail:基金资助:
GUO Junyan(), ZHANG Haijun(), DUAN Hongjuan, LI Xiaojian, LIU Xin, HAN Lei
Received:
2020-08-28
Revised:
2020-11-23
Online:
2021-07-06
Published:
2021-07-19
Contact:
ZHANG Haijun
摘要:
乙醇制氢具有环保、清洁、可持续等优点,其关键在于选择合适的催化剂。相较于贵金属催化剂而言,Ni与Co基催化剂因其具有成本低且活性高的优点,近年来在乙醇催化制氢中逐渐成为研究热点。然而Ni与Co基催化剂在催化乙醇水蒸气重整制氢的过程中仍存在着稳定性较差、低温催化活性低和使用寿命较短等问题。本文介绍了乙醇制氢的机理,围绕载体的类型及催化剂活性纳米颗粒的合金化改性,综述了近年来Ni与Co基催化剂催化乙醇水蒸气重整制氢的研究现状,总结了提高催化剂性能的方法及措施,并展望了Ni与Co基催化剂未来的发展方向,为颗粒尺寸小且低温催化活性高、稳定性好的Ni与Co基催化剂的制备提供思路。
中图分类号:
郭俊艳, 张海军, 段红娟, 李孝建, 刘鑫, 韩磊. Ni与Co催化乙醇制氢研究进展[J]. 化工进展, 2021, 40(7): 3772-3784.
GUO Junyan, ZHANG Haijun, DUAN Hongjuan, LI Xiaojian, LIU Xin, HAN Lei. Recently progress of Ni and Co-based catalysts for hydrogen production from ethanol[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3772-3784.
化学反应 | 反应方程式 | 编号 | |
---|---|---|---|
乙醇脱氢反应 | C2H5OH | ? | (4) |
乙醇分解反应 | C2H5OH | ? | (5) |
乙醛水蒸气重整 | CH3CHO+H2O | ? | (6) |
水煤气变换反应 | CO+H2O | ? | (7) |
甲烷水蒸气重整 | CH4+H2O | ? | (8) |
乙醇脱水反应 | C2H5OH | ? | (9) |
乙醛分解反应 | CH3CHO | ? | (10) |
乙醛羟醛缩合反应 | 2CH3CHO | ? | (11) |
一氧化碳甲烷化反应 | CO+3H2 | ? | (12) |
二氧化碳甲烷化反应 | CO2+4H2 | ? | (13) |
乙烯分解反应 | C2H4 | ? | (14) |
甲烷分解反应 | CH4 | ? | (15) |
一氧化碳歧化反应 | 2CO | ? | (16) |
表1 乙醇制氢反应可能发生的副反应
化学反应 | 反应方程式 | 编号 | |
---|---|---|---|
乙醇脱氢反应 | C2H5OH | ? | (4) |
乙醇分解反应 | C2H5OH | ? | (5) |
乙醛水蒸气重整 | CH3CHO+H2O | ? | (6) |
水煤气变换反应 | CO+H2O | ? | (7) |
甲烷水蒸气重整 | CH4+H2O | ? | (8) |
乙醇脱水反应 | C2H5OH | ? | (9) |
乙醛分解反应 | CH3CHO | ? | (10) |
乙醛羟醛缩合反应 | 2CH3CHO | ? | (11) |
一氧化碳甲烷化反应 | CO+3H2 | ? | (12) |
二氧化碳甲烷化反应 | CO2+4H2 | ? | (13) |
乙烯分解反应 | C2H4 | ? | (14) |
甲烷分解反应 | CH4 | ? | (15) |
一氧化碳歧化反应 | 2CO | ? | (16) |
催化剂 | 制备方法 | 金属负载量 (质量分数)/% | 乙醇转化率/% | H2产率/% | 反应条件 | 参考文献 |
---|---|---|---|---|---|---|
Ni/多孔SiO2 | 浸渍法 | 10 | 95 | 47 | T=873K、S/E①=9、 W/F②=18g·h·mol-1 | [ |
Ni/SiO2纤维 | 浸渍法 | 10 | 100 | 55 | ||
Ni/SiO2纤维 | 共沉淀法 | 10 | 100 | 60 | ||
Ni/SiO2纤维 | 静电吸附法 | 10 | 100 | 65 | ||
Ni/SBA-15 | 浸渍法 | 6 | 100 | 82.5 | T=823K、S/E=3、 | [ |
Ni/β沸石 | 溶胶-凝胶等体积 浸渍法 | 15 | 100 | 78 | T=823K、S/E = 6、 WHSV④=30h-1 | [ |
Ni/Al2O3-TiO2 | 一步法 | 10 | 93 | 88 | T=773K、S/E=3、 WHSV=2773h-1 | [ |
Ni/La2O3-α-Al2O3 | 浸渍法 | 10 | 100 | 82 | T=873K、S/E=6、 W/F=0.35g·h·g-1 | [ |
Ni/La2O3-α-Al2O3 | 浸渍法 | 15 | 100 | 62 | T=723K、S/E=3、 GHSV⑤=23140mL·g-1·h-1 | [ |
Ni/La2O3-CeO2 | 浸渍法 | 8 | 100 | 70 | T=823K、S/E=6、 | [ |
Ni/La2O3-CeO2-ZrO2 | 浸渍法 | 10 | 90 | 85 | T=773K、S/E =3、 GHSV=64.8h-1 | [ |
Ni/凹凸棒石 | 共沉淀法 | 20 | 95 | 78 | T=873K、S/E = 1.5、 WHSV=12.6h-1 | [ |
Ni/Mg-凹凸棒石 | 共沉淀法 | 20 | 100 | 96.7 | T=973K、S/E=1.5、 GHSV=19200~19400h-1 | [ |
Au-Ni/CaO-CeO2 | 浸渍法 | 10 | 100 | 75 | T=773K、S/E=3、 | [ |
Ni/水滑石 | 浸渍法 | 10 | 75 | 68 | T=673K、S/E=9、 GHSV=2700mL·g-1·h-1 | [ |
Cu-Ni-Co/水滑石 | 浸渍法 | 10 | 85 | 83 | ||
Ni/CeO2 | 浸渍法 | 10 | 100 | 60 | T=873K、S/E=3、 | [ |
Ni/CeO2 | 浸渍法 | 10 | 100 | 68 | T=693K、S/E=12、 GHSV=60000mL·g-1·h-1 | [ |
K-Ni/CeO2 | 100 | 85 | ||||
Ni/CeO2 | 浸渍法 | 13 | 89 | 71 | T=873K、S/E=6、 GHSV=20000mL·g-1·h-1 | [ |
4Cu-Ni/CeO2 | 99 | 73 | ||||
4Co-Ni/CeO2 | 91 | 73 | ||||
4Mg-Ni/CeO2 | 96 | 74 | ||||
Ni/La2O3-CeO2 | 浸渍法 | 10 | 100 | 88 | T=733K、S/E=12、 GHSV=60000mL·g-1·h-1 | [ |
Ni/Ce0.5Zr0.5O2 | 浸渍法 | 10 | 100 | 73 | T=723K、S/E=13、 GHSV=22000h-1 | [ |
Ni/Ce0.5Zr0.5O2 | 共沉淀法 | 10 | 100 | 89 | ||
B-Ni/Ce0.5Zr0.5O2 | 共沉淀法 | 10 | 100 | 92 | ||
Ni/MgO-CaO | 共沉淀法 | 5 | 100 | 97.2 | T=873K、S/E=4、 GHSV=2620mL·g-1·h-1 | [ |
Ni/脱铝β沸石 | 浸渍法 | 10 | 100 | 75 | T=773K、S/E = 12、 WHSV=9.5h-1 | [ |
Ce-Ni/SBA-15 | 表面活性剂辅助 等容浸渍法 | 3 | 100 | 97 | T=923K、S/E=4、 W/F=1.7g·h·mol-1 | [ |
Ce-Ni/蒙脱石 | 超声波辅助阳离子交换浸渍法 | 10 | 97.3 | 88.5 | T=923K、S/E=4、 | [ |
Fe-Cu-Ni/β沸石 | 浸渍法 | 10 | 100 | 72.1 | T=773K、S/E=8、 WHSV=7.35h -1 | [ |
Rh-Ni/La2O3-CeO2-Al2O3 | 浸渍法 | 10 | 100 | 69 | T=773K、S/E=3、 GHSV=26000h -1 | [ |
表2 Ni基催化剂催化乙醇水蒸气重整的活性
催化剂 | 制备方法 | 金属负载量 (质量分数)/% | 乙醇转化率/% | H2产率/% | 反应条件 | 参考文献 |
---|---|---|---|---|---|---|
Ni/多孔SiO2 | 浸渍法 | 10 | 95 | 47 | T=873K、S/E①=9、 W/F②=18g·h·mol-1 | [ |
Ni/SiO2纤维 | 浸渍法 | 10 | 100 | 55 | ||
Ni/SiO2纤维 | 共沉淀法 | 10 | 100 | 60 | ||
Ni/SiO2纤维 | 静电吸附法 | 10 | 100 | 65 | ||
Ni/SBA-15 | 浸渍法 | 6 | 100 | 82.5 | T=823K、S/E=3、 | [ |
Ni/β沸石 | 溶胶-凝胶等体积 浸渍法 | 15 | 100 | 78 | T=823K、S/E = 6、 WHSV④=30h-1 | [ |
Ni/Al2O3-TiO2 | 一步法 | 10 | 93 | 88 | T=773K、S/E=3、 WHSV=2773h-1 | [ |
Ni/La2O3-α-Al2O3 | 浸渍法 | 10 | 100 | 82 | T=873K、S/E=6、 W/F=0.35g·h·g-1 | [ |
Ni/La2O3-α-Al2O3 | 浸渍法 | 15 | 100 | 62 | T=723K、S/E=3、 GHSV⑤=23140mL·g-1·h-1 | [ |
Ni/La2O3-CeO2 | 浸渍法 | 8 | 100 | 70 | T=823K、S/E=6、 | [ |
Ni/La2O3-CeO2-ZrO2 | 浸渍法 | 10 | 90 | 85 | T=773K、S/E =3、 GHSV=64.8h-1 | [ |
Ni/凹凸棒石 | 共沉淀法 | 20 | 95 | 78 | T=873K、S/E = 1.5、 WHSV=12.6h-1 | [ |
Ni/Mg-凹凸棒石 | 共沉淀法 | 20 | 100 | 96.7 | T=973K、S/E=1.5、 GHSV=19200~19400h-1 | [ |
Au-Ni/CaO-CeO2 | 浸渍法 | 10 | 100 | 75 | T=773K、S/E=3、 | [ |
Ni/水滑石 | 浸渍法 | 10 | 75 | 68 | T=673K、S/E=9、 GHSV=2700mL·g-1·h-1 | [ |
Cu-Ni-Co/水滑石 | 浸渍法 | 10 | 85 | 83 | ||
Ni/CeO2 | 浸渍法 | 10 | 100 | 60 | T=873K、S/E=3、 | [ |
Ni/CeO2 | 浸渍法 | 10 | 100 | 68 | T=693K、S/E=12、 GHSV=60000mL·g-1·h-1 | [ |
K-Ni/CeO2 | 100 | 85 | ||||
Ni/CeO2 | 浸渍法 | 13 | 89 | 71 | T=873K、S/E=6、 GHSV=20000mL·g-1·h-1 | [ |
4Cu-Ni/CeO2 | 99 | 73 | ||||
4Co-Ni/CeO2 | 91 | 73 | ||||
4Mg-Ni/CeO2 | 96 | 74 | ||||
Ni/La2O3-CeO2 | 浸渍法 | 10 | 100 | 88 | T=733K、S/E=12、 GHSV=60000mL·g-1·h-1 | [ |
Ni/Ce0.5Zr0.5O2 | 浸渍法 | 10 | 100 | 73 | T=723K、S/E=13、 GHSV=22000h-1 | [ |
Ni/Ce0.5Zr0.5O2 | 共沉淀法 | 10 | 100 | 89 | ||
B-Ni/Ce0.5Zr0.5O2 | 共沉淀法 | 10 | 100 | 92 | ||
Ni/MgO-CaO | 共沉淀法 | 5 | 100 | 97.2 | T=873K、S/E=4、 GHSV=2620mL·g-1·h-1 | [ |
Ni/脱铝β沸石 | 浸渍法 | 10 | 100 | 75 | T=773K、S/E = 12、 WHSV=9.5h-1 | [ |
Ce-Ni/SBA-15 | 表面活性剂辅助 等容浸渍法 | 3 | 100 | 97 | T=923K、S/E=4、 W/F=1.7g·h·mol-1 | [ |
Ce-Ni/蒙脱石 | 超声波辅助阳离子交换浸渍法 | 10 | 97.3 | 88.5 | T=923K、S/E=4、 | [ |
Fe-Cu-Ni/β沸石 | 浸渍法 | 10 | 100 | 72.1 | T=773K、S/E=8、 WHSV=7.35h -1 | [ |
Rh-Ni/La2O3-CeO2-Al2O3 | 浸渍法 | 10 | 100 | 69 | T=773K、S/E=3、 GHSV=26000h -1 | [ |
催化剂 | 制备方法 | 金属负载量 (质量分数)/% | 乙醇转化率/% | H2产率/% | 反应条件 | 参考文献 |
---|---|---|---|---|---|---|
Co/SiO2 | 浸渍法 | 20 | 100 | 75 | T=873K、S/E=6、 GHSV=51700h-1 | [ |
Co/CeO2 | 浸渍法 | 10 | 97.1 | 93.3 | T=723K、S/E=10、 WHSV=0.19~2.88g·g-1·h-1 | [ |
Co/Al2O3 | 浸渍法 | 15 | 100 | 80 | T=873K、S/E=5、 | [ |
Na-Co/Al2O3 | 100 | 90 | ||||
K-Co/Al2O3 | 100 | 90 | ||||
Ce-Co/Al2O3 | 100 | 86 | ||||
Ni-Co/Al2O3 | 15Co 5Ni | 100 | 88 | |||
Co/CaO-Al2O3 | 浸渍法 | 15 | 100 | 74.6 | T=723K、S/E=3、 GHSV=23139mL·g-1·h-1 | [ |
Co-Ce/海泡石 | 表面活性剂辅助 共沉淀法 | 10 | 96.2 | 77.9 | T=873K、S/E=3、 WHSV=21h-1 | [ |
Co-Ce/海泡石 | 共沉淀法 | 10 | 90.8 | 69.1 | T=873K、S/E=3、 WHSV=21.5h-1 | [ |
Ru-Co/活性炭 | 一步法 | 1 | 99 | 77 | T=823K、S/E=3、 GHSV=89.4h-1 | [ |
Ni-Co/CeO2 | 浸渍法 | 10Ni 10Co | 95 | 59 | T=773K、S/E=6、 W/F=0.12g·h·mol-1 | [ |
反相微乳液 共沉淀法 | 85 | 56 | ||||
Ni-Co/MCM-41 | 浸渍法 | 9Ni 1Co | 90 | 80 | T=763K、S/E=5、 | [ |
MC-Ni-Co/Zr | 软模板水热法及 浸渍法 | — | 95 | 65 | T=648K、S/E=12、 GHSV=15L·g-1·h-1 | [ |
OMC-Ni-Co/Zr | 软模板水热法及 浸渍法 | — | 83 | 68.2 | T=648K、S/E=12、 GHSV=15L·g-1·h-1 | [ |
Co/Al2O3 | 浸渍法 | 10 | 99.5 | 86.1 | T=823K、S/E=3、 WHSV=8.0h-1 | [ |
Co/CeO2 | 共沉淀法 | 29 | 100 | 96 | T=773K、S/E=12、 GHSV=60000mL·g-1·h-1 | [ |
Co/CeO2 | 浸渍法 | 10 | 100 | 84.6 | T=693K、S/E=3、 | [ |
K-Co/CeO2 | 100 | 98.5 | ||||
Ce-Co/CeO2 | 浸渍法 | 10 | 100 | 86 | T=813K、S/E=4、 GHSV=60000mL·g-1·h-1 | [ |
Co/La2O3–CeO2 | 浸渍法 | 10 | 100 | 94 | T=773K、S/E=12、 GHSV=60000mL·g-1·h-1 | [ |
Co/Y2O3-ZrO2 | 浸渍法 | 3 | 100 | 70 | T=773K、S/E=13、 GHSV=4500h-1 | [ |
La-Co/Y2O3-ZrO2 | 99 | 73 | ||||
Co/Zn-Al水滑石 衍生物 | 共沉淀法 | 20 | 100 | 73.7 | T=773K、S/E=10、 GHSV=4700h-1 | [ |
La-Co/Zn-Al水滑石衍生物 | 100 | 75.5 | ||||
Ni-Co/Al2O3 | 浸渍法 | 7.5Ni 7.5Co | 97.2 | 88.9 | T=823K、S/E=13、 LHSV①=7.5h -1 | [ |
Ni-Co/SBA-15 | 共沉淀法 | 8Ni 2Co | 85.6 | 62.4 | T=773K、S/E=3.7、 | [ |
LaNi0.7Co0.3O3/ZrO2 | 柠檬酸盐络合法 | — | 100 | 75 | T=673K、S/E=3、 GHSV=66000mL·g-1·h-1 | [ |
表3 Co基催化剂催化乙醇水蒸气重整的活性
催化剂 | 制备方法 | 金属负载量 (质量分数)/% | 乙醇转化率/% | H2产率/% | 反应条件 | 参考文献 |
---|---|---|---|---|---|---|
Co/SiO2 | 浸渍法 | 20 | 100 | 75 | T=873K、S/E=6、 GHSV=51700h-1 | [ |
Co/CeO2 | 浸渍法 | 10 | 97.1 | 93.3 | T=723K、S/E=10、 WHSV=0.19~2.88g·g-1·h-1 | [ |
Co/Al2O3 | 浸渍法 | 15 | 100 | 80 | T=873K、S/E=5、 | [ |
Na-Co/Al2O3 | 100 | 90 | ||||
K-Co/Al2O3 | 100 | 90 | ||||
Ce-Co/Al2O3 | 100 | 86 | ||||
Ni-Co/Al2O3 | 15Co 5Ni | 100 | 88 | |||
Co/CaO-Al2O3 | 浸渍法 | 15 | 100 | 74.6 | T=723K、S/E=3、 GHSV=23139mL·g-1·h-1 | [ |
Co-Ce/海泡石 | 表面活性剂辅助 共沉淀法 | 10 | 96.2 | 77.9 | T=873K、S/E=3、 WHSV=21h-1 | [ |
Co-Ce/海泡石 | 共沉淀法 | 10 | 90.8 | 69.1 | T=873K、S/E=3、 WHSV=21.5h-1 | [ |
Ru-Co/活性炭 | 一步法 | 1 | 99 | 77 | T=823K、S/E=3、 GHSV=89.4h-1 | [ |
Ni-Co/CeO2 | 浸渍法 | 10Ni 10Co | 95 | 59 | T=773K、S/E=6、 W/F=0.12g·h·mol-1 | [ |
反相微乳液 共沉淀法 | 85 | 56 | ||||
Ni-Co/MCM-41 | 浸渍法 | 9Ni 1Co | 90 | 80 | T=763K、S/E=5、 | [ |
MC-Ni-Co/Zr | 软模板水热法及 浸渍法 | — | 95 | 65 | T=648K、S/E=12、 GHSV=15L·g-1·h-1 | [ |
OMC-Ni-Co/Zr | 软模板水热法及 浸渍法 | — | 83 | 68.2 | T=648K、S/E=12、 GHSV=15L·g-1·h-1 | [ |
Co/Al2O3 | 浸渍法 | 10 | 99.5 | 86.1 | T=823K、S/E=3、 WHSV=8.0h-1 | [ |
Co/CeO2 | 共沉淀法 | 29 | 100 | 96 | T=773K、S/E=12、 GHSV=60000mL·g-1·h-1 | [ |
Co/CeO2 | 浸渍法 | 10 | 100 | 84.6 | T=693K、S/E=3、 | [ |
K-Co/CeO2 | 100 | 98.5 | ||||
Ce-Co/CeO2 | 浸渍法 | 10 | 100 | 86 | T=813K、S/E=4、 GHSV=60000mL·g-1·h-1 | [ |
Co/La2O3–CeO2 | 浸渍法 | 10 | 100 | 94 | T=773K、S/E=12、 GHSV=60000mL·g-1·h-1 | [ |
Co/Y2O3-ZrO2 | 浸渍法 | 3 | 100 | 70 | T=773K、S/E=13、 GHSV=4500h-1 | [ |
La-Co/Y2O3-ZrO2 | 99 | 73 | ||||
Co/Zn-Al水滑石 衍生物 | 共沉淀法 | 20 | 100 | 73.7 | T=773K、S/E=10、 GHSV=4700h-1 | [ |
La-Co/Zn-Al水滑石衍生物 | 100 | 75.5 | ||||
Ni-Co/Al2O3 | 浸渍法 | 7.5Ni 7.5Co | 97.2 | 88.9 | T=823K、S/E=13、 LHSV①=7.5h -1 | [ |
Ni-Co/SBA-15 | 共沉淀法 | 8Ni 2Co | 85.6 | 62.4 | T=773K、S/E=3.7、 | [ |
LaNi0.7Co0.3O3/ZrO2 | 柠檬酸盐络合法 | — | 100 | 75 | T=673K、S/E=3、 GHSV=66000mL·g-1·h-1 | [ |
1 | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 5217-5224. |
HUANG G S, LI J S, WEI S X, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224. | |
2 | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
ZHAO Y Z, MENG B, CHEN L X, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255. | |
3 | 谢欣烁, 杨卫娟, 施伟, 等. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. |
XIE X S, YANG W J, SHI W, et al. Life cycle assessment of technologies for hydrogen production—A review[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2147-2158. | |
4 | ZANCHET D, SANTOS J B O, DAMYANOVA S, et al. Toward understanding metal-catalyzed ethanol reforming[J]. ACS Catalysis, 2015, 5(6): 3841-3863. |
5 | HUANG L, CHOONG C, CHEN L, et al. Oxide-supported Rh catalysts for H2 generation from low-temperature ethanol steam reforming: effects of support, Rh precursor and Rh loading on catalytic performance[J]. RSC Advances, 2015, 5(120): 99461-99482. |
6 | SENGODAN S, LAN R, HUMPHREYS J, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82(1): 761-780. |
7 | VIZCAÍNO A J, CARRERO A, CALLES J A. Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg[J]. Fuel Processing Technology, 2016, 146(1): 99-109. |
8 | OGO S, SEKINE Y. Recent progress in ethanol steam reforming using non-noble transition metal catalysts: a review[J]. Fuel Processing Technology, 2020, 199: 106238. |
9 | PIREZ C, FANG W, CAPRON M, et al. Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst[J]. Applied Catalysis A, 2016, 518: 78-86. |
10 | FANG W, ROMANI Y, WEI Y, et al. Steam reforming and oxidative steam reforming for hydrogen production from bioethanol over Mg2AlNixHzOy nano-oxyhydride catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17643-17655. |
11 | NANDA S, RANA R, ZHENG Y, et al. Insights on pathways for hydrogen generation from ethanol[J]. Sustainable Energy & Fuels, 2017, 1(6): 1232-1245. |
12 | 陈俊, 舒红飞, 阮祝华, 等. 乙醇催化重整产氢催化剂及催化反应机制[J]. 化工进展, 2019, 38(5): 2320-2328. |
CHEN J, SHU H F, RUAN Z H, et al. Catalysts and catalytic mechanism for hydrogen production from ethanol steam reforming (ESR)[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2320-2328. | |
13 | 赵华博, 李民, 罗刚. 镍基乙醇水汽重整催化剂:机理、失活与构效关系[J]. 化工进展, 2018, 37(2): 419-428. |
ZHAO H B, LI M, LUO G. Nickel based ethanol steam reforming catalysts: mechanism, deactivation and structure-activity relationship[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 419-428. | |
14 | MHADMHAN S, NATEWONG P, PRASONGTHUM N, et al. Investigation of Ni/SiO2 fiber catalysts prepared by different methods on hydrogen production from ethanol steam reforming[J]. Catalysts, 2018, 8(8): 319. |
15 | HE S, MEI Z, LIU N, et al. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: effect of nickel precursor[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14429-14438. |
16 | WANG S, HE B, TIAN R, et al. Ni-hierarchical beta zeolite catalysts were applied to ethanol steam reforming: effect of sol-gel method on loading Ni and the role of hierarchical structure[J]. Molecular Catalysis, 2018, 453: 64-73. |
17 | GONÇALVES A A S, FAUSTINO P B, ASSAF J M, et al. One-pot synthesis of mesoporous Ni-Ti-Al ternary oxides: highly active and selective catalysts for steam reforming of ethanol[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6079-6092. |
18 | MONTERO C, REMIRO A, BENITO P L, et al. Optimum operating conditions in ethanol steam reforming over a Ni/La2O3-α-Al2O3 catalyst in a fluidized bed reactor[J]. Fuel Processing Technology, 2018, 169: 207-216. |
19 | SONG J H, YOO S, YOO J, et al. Hydrogen production by steam reforming of ethanol over Ni/Al2O3-La2O3 xerogel catalysts[J]. Molecular Catalysis, 2017, 434: 123-133. |
20 | PIZZOLITTO C, MENEGAZZO F, GHEDINI E, et al. Increase of ceria redox ability by lanthanum addition on Ni based catalysts for hydrogen production[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13867-13876. |
21 | ZHURKA M D, LEMONIDOU A A, KECHAGIOPOULOS P N. Elucidation of metal and support effects during ethanol steam reforming over Ni and Rh based catalysts supported on (CeO2)-ZrO2-La2O3[J]. Catalysis Today, 2020, 20: 12733. |
22 | WANG Y, WANG C, CHEN M, et al. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts — Part Ⅰ: Effect of nickel content[J]. Fuel Processing Technology, 2019, 192: 227-238. |
23 | CHEN M, WANG Y, YANG Z, et al. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming[J]. Fuel, 2018, 220: 32-46. |
24 | MENEGAZZO F, PIZZOLITTO C, ZANARDO D, et al. Hydrogen production by ethanol steam reforming on Ni-based catalysts: effect of the support and of CaO and Au doping[J]. Chemistryselect, 2017, 2(29): 9523-9531. |
25 | SHEJALE A D, YADAV G D. Cu promoted Ni-Co/hydrotalcite catalyst for improved hydrogen production in comparison with several modified Ni-based catalysts via steam reforming of ethanol[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11321-11332. |
26 | ARAIZA D G, GÓMEZ-CORTÉS A, DÍAZ G. Effect of ceria morphology on the carbon deposition during steam reforming of ethanol over Ni/CeO2 catalysts[J]. Catalysis Today, 2020, 349: 235-243. |
27 | SŁOWIK G, GRELUK M, ROTKO M, et al. Evolution of the structure of unpromoted and potassium-promoted ceria-supported nickel catalysts in the steam reforming of ethanol[J]. Applied Catalysis B, 2018, 221: 490-509. |
28 | NIAZI Z, IRANKHAH A, WANG Y, et al. Cu, Mg and Co effect on nickel-ceria supported catalysts for ethanol steam reforming reaction[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21512-21522. |
29 | GRELUK M, ROTKO M, TURCZYNIAK-SURDACKA S. Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming[J]. Renewable Energy, 2020, 155: 378-395. |
30 | WU R C, TANG C W, HUANG H H, et al. Effect of boron doping and preparation method of Ni/Ce0.5Zr0.5O2 catalysts on the performance for steam reforming of ethanol[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14279-14289. |
31 | SANG S, ZHAO Z J, TIAN H, et al. Promotional role of MgO on sorption‐enhanced steam reforming of ethanol over Ni/CaO catalysts[J]. AIChE Journal, 2019, 66(4): 16877. |
32 | GAC W, GRELUK M, SŁOWIK G, et al. Effects of dealumination on the performance of Ni-containing BEA catalysts in bioethanol steam reforming[J]. Applied Catalysis B, 2018, 237: 94-109. |
33 | LI D, ZENG L, LI X, et al. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation[J]. Applied Catalysis B, 2015, 176/177: 532-541. |
34 | LI L, TANG D, SONG Y, et al. Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts[J]. Energy, 2018, 149: 937-943. |
35 | ZHENG Z, SUN C, DAI R, et al. Ethanol steam reforming on Ni-based catalysts: effect of Cu and Fe addition on the catalytic activity and resistance to deactivation[J]. Energy & Fuels, 2017, 31(3): 3091-3100. |
36 | CAMPOS C H, PECCHI G, FIERRO J L G, et al. Enhanced bimetallic Rh-Ni supported catalysts on alumina doped with mixed lanthanum-cerium oxides for ethanol steam reforming[J]. Molecular Catalysis, 2019, 469: 87-97. |
37 | PRASONGTHUM N, XIAO R, ZHANG H, et al. Highly active and stable Ni supported on CNTs-SiO2 fiber catalysts for steam reforming of ethanol[J]. Fuel Processing Technology, 2017, 160: 185-195. |
38 | WU C, DUPONT V, NAHIL M A, et al. Investigation of Ni/SiO2 catalysts prepared at different conditions for hydrogen production from ethanol steam reforming[J]. Journal of the Energy Institute, 2017, 90(2): 276-284. |
39 | PRASONGTHUM N, CHAIYA C, SAMART C, et al. Co-production of hydrogen and carbon nanotube-silica fiber composites from ethanol steam reforming over an Ni-silica fiber catalyst[J]. Monatshefte für Chemie: Chemical Monthly, 2017, 148(7): 1311-1321. |
40 | MULEWA W, TAHIR M, AMIN N A S. MMT-supported Ni/TiO2 nanocomposite for low temperature ethanol steam reforming toward hydrogen production[J]. Chemical Engineering Journal, 2017, 326: 956-969. |
41 | LI T, ZHANG J, XIE X, et al. Montmorillonite-supported Ni nanoparticles for efficient hydrogen production from ethanol steam reforming[J]. Fuel, 2015, 143: 55-62. |
42 | MOOGI S, LEE I G, PARK J Y. Effect of La2O3 and CeO2 loadings on formation of nickel-phyllosilicate precursor during preparation of Ni/SBA-15 for hydrogen-rich gas production from ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29537-29546. |
43 | MONTERO C, REMIRO A, ARANDIA A, et al. Reproducible performance of a Ni/La2O3-α-Al2O3 catalyst in ethanol steam reforming under reaction-regeneration cycles[J]. Fuel Processing Technology, 2016, 152: 215-222. |
44 | MONDAL T, PANT K K, DALAI A K. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2529-2544. |
45 | RUOCCO C, PALMA V, RICCA A. Hydrogen production by oxidative reforming of ethanol in a fluidized bed reactor using a Pt-Ni/CeO2-SiO2 catalyst[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12661-12670. |
46 | RUOCCO C, PALMA V, RICCA A. Experimental and kinetic study of oxidative steam reforming of ethanol over fresh and spent bimetallic catalysts[J]. Chemical Engineering Journal, 2019, 377: 119778. |
47 | 赵燕凌, 代蓉, 郑子良, 等. Cu/Ni负载型Beta分子筛催化剂的乙醇水蒸气重整制氢催化性能研究[J]. 燃料化学学报, 2017, 45(11): 1392-1400. |
ZHAO Y L, DAI R, ZHENG Z L, et al. Beta zeolite supported Cu/Ni catalyst for hydrogen production through ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1392-1400. | |
48 | 连晨帅, 代蓉, 田韧, 等. Ni-Cu双金属催化剂上乙醇水蒸气重整制氢研究——制备方法对催化性能的影响[J]. 分子催化, 2019, 33(4): 297-308. |
LIAN C S, DAI R, TIAN R, et al. The effect of preparation method on catalytic properties over Ni-Cu bimetallic catalysts for steam reforming of ethanol[J]. Journal of Molecular Catalysis, 2019, 33(4): 297-308. | |
49 | RIANI P, GARBARINO G, CAVATTONI T, et al. CO2 hydrogenation and ethanol steam reforming over Co/SiO2 catalysts: deactivation and selectivity switches[J]. Catalysis Today, 2020. DOI: 10.1016/j.cattod. 2020.05.002. |
50 | SOHN H, CELIK G, GUNDUZ S, et al. Oxygen mobility in pre-reduced nano- and macro-ceria with CO loading: an AP-XPS, in-situ DRIFTS and TPR study[J]. Catalysis Letters, 2017, 147(11): 2863-2876. |
51 | YUHANG L, ZHANMING Z, PENG J, et al. Ethanol steam reforming over cobalt catalysts: effect of a range of additives on the catalytic behaviors[J]. Journal of the Energy Institute, 2020, 93(1): 165-184. |
52 | HAN S J, SONG J H, YOO J, et al. Sorption-enhanced hydrogen production by steam reforming of ethanol over mesoporous Co/CaO-Al2O3 xerogel catalysts: effect of Ca/Al molar ratio[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5886-5898. |
53 | WANG C, WANG Y, CHEN M, et al. Hydrogen production from ethanol steam reforming over Co-Ce/sepiolite catalysts prepared by a surfactant assisted coprecipitation method[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26888-26904. |
54 | CHEN M, WANG C, WANG Y, et al. Hydrogen production from ethanol steam reforming: effect of Ce content on catalytic performance of Co/sepiolite catalyst[J]. Fuel, 2019, 247: 344-355. |
55 | EFIMOV M N, MIRONOVA E Y, PAVLOV A A, et al. Novel polyacrylonitrile-based C/Co-Ru metal-carbon nanocomposites as effective catalysts for ethanol steam reforming[J]. International Journal of Nanoscience, 2020, 19(4): 1950031. |
56 | PINTON N, VIDAL M V, SIGNORETTO M, et al. Ethanol steam reforming on nanostructured catalysts of Ni, Co and CeO2: influence of synthesis method on activity, deactivation and regenerability[J]. Catalysis Today, 2017, 296: 135-143. |
57 | NEJAT T, JALALINEZHAD P, HORMOZI F, et al. Hydrogen production from steam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 216-226. |
58 | SHAHED GHARAHSHIRAN V, YOUSEFPOUR M, AMINI V. A comparative study of zirconia and yttria promoted mesoporous carbon-nickel-cobalt catalysts in steam reforming of ethanol for hydrogen production[J]. Molecular Catalysis, 2020, 484: 110767. |
59 | GHARAHSHIRAN V S, YOUSEFPOUR M. Synthesis and characterization of Zr-promoted Ni-Co bimetallic catalyst supported OMC and investigation of its catalytic performance in steam reforming of ethanol[J]. International Journal of Hydrogen Energy, 2018, 43(14): 7020-7037. |
60 | FERENCZ Z, VARGA E, PUSKÁS R, et al. Reforming of ethanol on Co/Al2O3 catalysts reduced at different temperatures[J]. Journal of Catalysis, 2018, 358: 118-130. |
61 | GRELUK M, ROTKO M, SŁOWIK G, et al. Hydrogen production by steam reforming of ethanol over Co/CeO2 catalysts: effect of cobalt content[J]. Journal of the Energy Institute, 2019, 92(2): 222-238. |
62 | TURCZYNIAK S, GRELUK M, SŁOWIK G, et al. Surface state and catalytic performance of ceria-supported cobalt catalysts in the steam reforming of ethanol[J]. ChemCatChem, 2017, 9(5): 782-797. |
63 | GRELUK M, ROTKO M, TURCZYNIAK-SURDACKA S. Comparison of catalytic performance and coking resistant behaviors of cobalt- and nickel based catalyst with different Co/Ce and Ni/Ce molar ratio under SRE conditions[J]. Applied Catalysis A, 2020, 590: 117334. |
64 | GAUDILLERE C, GONZÁLEZ J J, CHICA A, et al. YSZ monoliths promoted with Co as catalysts for the production of H2 by steam reforming of ethanol[J]. Applied Catalysis A, 2017, 538: 165-173. |
65 | CERDÁ-MORENO C, COSTA-SERRA J F DA, CHICA A. Co and La supported on Zn-hydrotalcite-derived material as efficient catalyst for ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12685-12692. |
66 | ZHAO X, LU G. Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3349-3362. |
67 | RODRIGUEZ-GOMEZ A, CABALLERO A. Bimetallic Ni-Co/SBA-15 catalysts for reforming of ethanol: how cobalt modifies the nickel metal phase and product distribution[J]. Molecular Catalysis, 2018, 449: 122-130. |
68 | ZHAO L, HAN T, WANG H, et al. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Applied Catalysis B, 2016, 187: 19-29. |
69 | SOHN H, OZKAN U S. Cobalt-based catalysts for ethanol steam reforming: an overview[J]. Energy & Fuels, 2016, 30(7): 5309-5322. |
70 | OGO S, SHIMIZU T, NAKAZAWA Y, et al. Steam reforming of ethanol over K promoted Co catalyst[J]. Applied Catalysis A, 2015, 495: 30-38. |
71 | 王云珠, 泮子恒, 赵燚, 等. 吸附强化蒸汽重整制氢中CO2固体吸附剂的研究进展[J]. 化工进展, 2019, 38(11): 5103-5113. |
WANG Y Z, PAN Z H, ZHAO Y, et al. Research progress in CO2 solid sorbents for hydrogen production by sorption-enhanced steam reforming: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5103-5113. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |