化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3736-3746.DOI: 10.16085/j.issn.1000-6613.2020-1649
张轩1(), 黄耀桢1, 邵秀丽1, 李晶1(), 李丰1, 岳秦2, 王政1()
收稿日期:
2020-08-18
修回日期:
2020-11-30
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
李晶,王政
作者简介:
张轩(1985—),男,博士研究生,研究方向为能源催化材料。E-mail:基金资助:
ZHANG Xuan1(), HUANG Yaozhen1, SHAO Xiuli1, LI Jing1(), LI Feng1, YUE Qin2, WANG Zheng1()
Received:
2020-08-18
Revised:
2020-11-30
Online:
2021-07-06
Published:
2021-07-19
Contact:
LI Jing,WANG Zheng
摘要:
近年来,随着有关铜基催化剂价态、晶面、微观形态等结构化因素对其催化性能影响的研究不断深入,铜基催化剂电化学还原CO2高选择性制备高附加值多碳(C2+)产物取得长足进展。本文系统综述了近五年来结构化铜基催化剂电化学还原CO2生成C2+产物的研究报道,并分析总结了铜基催化剂表面混合价态、高活性晶面和丰富晶界的存在,以及富含限域空间的形态学结构(纳米线阵列、纳米树突和纳米多孔结构等)的构建与其电化学还原CO2生成C2+产物的活性和选择性之间的构效关系。进一步提出了CO2电化学还原领域发展的新趋势,即充分发挥各个结构化因素的协同作用,原位制备具有混合价态和丰富晶界的纳米多孔结构铜基催化剂,并在流通池中高效还原CO2持续生成C2+产物。
中图分类号:
张轩, 黄耀桢, 邵秀丽, 李晶, 李丰, 岳秦, 王政. 结构化铜基催化剂电化学还原CO2为多碳产物研究进展[J]. 化工进展, 2021, 40(7): 3736-3746.
ZHANG Xuan, HUANG Yaozhen, SHAO Xiuli, LI Jing, LI Feng, YUE Qin, WANG Zheng. Recent progress in structured Cu-based catalysts for electrochemical CO2 reduction to C2+ products[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3736-3746.
催化剂 | 主要结构化调控因素 | 电解池 | C2+产物法拉第效率 | 电位(vs.RHE)/V | 电流密度/mA·cm-2 | 参考文献 |
---|---|---|---|---|---|---|
Cu-Cu3N | 价态 Cu+/Cu0 | H型电解池 | C2H4(39%±2%) C2H5OH(19%±1%) C3H7OH(6%±1%) | -0.95 | 14 | [ |
Cu(B) | 价态 Cuδ+/Cu0 | H型电解池 | C2H4(52%±2%) C2H5OH(27%±1%) | -1.1 | 70 | [ |
Cu-SCP | 价态 Cu+ | H型电解池 | C2H4(19.7%) C2H5OH(33.5%) | -1.34 | — | [ |
Cu | 价态 Cu+/Cu0 | H型电解池 | C2H4(38%) | -1.2 | 22.2 | [ |
Cu2O | 价态 Cu+ | 流通池 | C2H4(38.0%±1.4%) CH3COOH(4.8%±1.1%) C2H5OH(26.9%±2.0%) C3H7OH(5.5%±1.1%) | -0.61 | 267±13 | [ |
Cu2O | 晶面 Cu2O(111) | H型电解池 | C2H4(51%) | -0.76 | 15.7 | [ |
Cu | 晶面 Cu(111) | 流通池 | C2+(73.1%) | -1.2 | 96.62 | [ |
Cu | 晶面 Cu(100)/Cu(110) | 流通池 | C2H4(31.22%) C2H5OH(35.73%) CH3COO-(1.59%) | -1.05 | 240.8 | [ |
Cu2O | 晶面 Cu2O{100}/{111} | H型电解池 | C2H4(59%) | -1.1 | 22 | [ |
Cu2O/Cu | 晶面 Cu2O(110)/Cu(111) | H型电解池 | C2+(64.5%) | -0.9 | 26.2 | [ |
Cu | 晶面 Cu(100)/Cu(111) | H型电解池 | C2+(72.1%) | -1.1 | 25.2 | [ |
Cu | 形态:纳米线阵列 | 隔膜电解池 | C2H4(17.4%) C2H6(2.4%) C2H5OH(3.8%) C3H7OH(7.8%) | -1.1 | — | [ |
Cu | 形态:纳米线阵列 | 隔膜电解池 | C2H4(3.0%) C2H6(6.8%) C2H5OH(15.2%) | -0.695 | — | [ |
Cu3Au | 形态:纳米线阵列 | H型电解池 | C2H5OH(48%) | -0.5 | 0.4 | [ |
Cu2O | 形态:纳米线阵列 | 气密反应器 | C2H4(65%) | -0.8 | — | [ |
Cu | 形态:纳米树突 | 流通池 | C2H4(57%) | — | 170 | [ |
Cu | 形态:纳米树突 | 隔膜电解池 | C2H4(56%) C2H5OH(17%) | -1.4 | 30 | [ |
Cu | 形态:纳米树突 | 常规电解池 | C2H4(22.3%) n-C3H7OH(3.1%) C2H5CHO(2.9%) | -1.2 | — | [ |
Cu-Cu2O/Cu | 形态:纳米树突 | H型电解池 | CH3COOH(48%) C2H5OH(32%) | -0.4 | 11.5 | [ |
Cu | 形态:多孔结构 | H型电解池 | C2H4(35%) | -1.3 | — | [ |
Cu | 形态:多孔结构 | H型电解池 | C2H4(38%) | -1.7(vs.NHE) | — | [ |
Cu | 形态:多孔结构 | H型电解池 | C2H4(30%) C2H5OH(10%) | -0.81 | 4.3+1.43 | [ |
Cu4O | 形态:多孔结构 | H型电解池 | C2H4(45%) | -1.0 | 44.7 | [ |
Cu | 形态:多孔结构 | 微流电解池 | C2+(62%) | -0.67 | 411 | [ |
表1 不同铜基催化剂CO2ER催化性能汇总
催化剂 | 主要结构化调控因素 | 电解池 | C2+产物法拉第效率 | 电位(vs.RHE)/V | 电流密度/mA·cm-2 | 参考文献 |
---|---|---|---|---|---|---|
Cu-Cu3N | 价态 Cu+/Cu0 | H型电解池 | C2H4(39%±2%) C2H5OH(19%±1%) C3H7OH(6%±1%) | -0.95 | 14 | [ |
Cu(B) | 价态 Cuδ+/Cu0 | H型电解池 | C2H4(52%±2%) C2H5OH(27%±1%) | -1.1 | 70 | [ |
Cu-SCP | 价态 Cu+ | H型电解池 | C2H4(19.7%) C2H5OH(33.5%) | -1.34 | — | [ |
Cu | 价态 Cu+/Cu0 | H型电解池 | C2H4(38%) | -1.2 | 22.2 | [ |
Cu2O | 价态 Cu+ | 流通池 | C2H4(38.0%±1.4%) CH3COOH(4.8%±1.1%) C2H5OH(26.9%±2.0%) C3H7OH(5.5%±1.1%) | -0.61 | 267±13 | [ |
Cu2O | 晶面 Cu2O(111) | H型电解池 | C2H4(51%) | -0.76 | 15.7 | [ |
Cu | 晶面 Cu(111) | 流通池 | C2+(73.1%) | -1.2 | 96.62 | [ |
Cu | 晶面 Cu(100)/Cu(110) | 流通池 | C2H4(31.22%) C2H5OH(35.73%) CH3COO-(1.59%) | -1.05 | 240.8 | [ |
Cu2O | 晶面 Cu2O{100}/{111} | H型电解池 | C2H4(59%) | -1.1 | 22 | [ |
Cu2O/Cu | 晶面 Cu2O(110)/Cu(111) | H型电解池 | C2+(64.5%) | -0.9 | 26.2 | [ |
Cu | 晶面 Cu(100)/Cu(111) | H型电解池 | C2+(72.1%) | -1.1 | 25.2 | [ |
Cu | 形态:纳米线阵列 | 隔膜电解池 | C2H4(17.4%) C2H6(2.4%) C2H5OH(3.8%) C3H7OH(7.8%) | -1.1 | — | [ |
Cu | 形态:纳米线阵列 | 隔膜电解池 | C2H4(3.0%) C2H6(6.8%) C2H5OH(15.2%) | -0.695 | — | [ |
Cu3Au | 形态:纳米线阵列 | H型电解池 | C2H5OH(48%) | -0.5 | 0.4 | [ |
Cu2O | 形态:纳米线阵列 | 气密反应器 | C2H4(65%) | -0.8 | — | [ |
Cu | 形态:纳米树突 | 流通池 | C2H4(57%) | — | 170 | [ |
Cu | 形态:纳米树突 | 隔膜电解池 | C2H4(56%) C2H5OH(17%) | -1.4 | 30 | [ |
Cu | 形态:纳米树突 | 常规电解池 | C2H4(22.3%) n-C3H7OH(3.1%) C2H5CHO(2.9%) | -1.2 | — | [ |
Cu-Cu2O/Cu | 形态:纳米树突 | H型电解池 | CH3COOH(48%) C2H5OH(32%) | -0.4 | 11.5 | [ |
Cu | 形态:多孔结构 | H型电解池 | C2H4(35%) | -1.3 | — | [ |
Cu | 形态:多孔结构 | H型电解池 | C2H4(38%) | -1.7(vs.NHE) | — | [ |
Cu | 形态:多孔结构 | H型电解池 | C2H4(30%) C2H5OH(10%) | -0.81 | 4.3+1.43 | [ |
Cu4O | 形态:多孔结构 | H型电解池 | C2H4(45%) | -1.0 | 44.7 | [ |
Cu | 形态:多孔结构 | 微流电解池 | C2+(62%) | -0.67 | 411 | [ |
1 | LIU X Y, XIAO J P, PENG H J, et al. Understanding trends in electrochemical carbon dioxide reduction rates[J]. Nature Communications, 2017, 8: 15438. |
2 | LI J, GUO S X, LI F, et al. Electrohydrogenation of carbon dioxide using a ternary Pd/Cu2O-Cu catalyst[J]. ChemSusChem, 2019, 12(19): 4471-4479. |
3 | YILIGUMA, WANG Z J, YANG C, et al. Sub-5nm SnO2 chemically coupled hollow carbon spheres for efficient electrocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2018, 6(41): 20121-20127. |
4 | LIANG Y, ZHOU W, SHI Y M, et al. Unveiling in situ evolved In/In2O3-xheterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate[J]. Science Bulletin, 2020, 65(18): 1547-1554. |
5 | SONG Y F, WANG S B, CHEN W, et al. Enhanced ethanol production from CO2 electroreduction at micropores in nitrogen-doped mesoporous carbon[J]. ChemSusChem, 2020, 13(2): 293-297. |
6 | ZHENG Y, VASILEFF A, ZHOU X L, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts[J]. Journal of the American Chemical Society, 2019, 141(19): 7646-7659. |
7 | GAO D F, ARÁN-AIS R M, JEON H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nature Catalysis, 2019, 2(3): 198-210. |
8 | BIRDJA Y Y, PÉREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745. |
9 | FAN Q, ZHANG M L, JIA M W, et al. Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies[J]. Materials Today Energy, 2018, 10: 280-301. |
10 | FAN L, XIA C, YANG F Q, et al. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products[J]. Science Advances, 2020, 6(8): eaay3111. |
11 | NITOPI S, BERTHEUSSEN E, SCOTT S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672. |
12 | HOANG T T H, VERMA S, MA S C, et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol[J]. Journal of the American Chemical Society, 2018, 140(17): 5791-5797. |
13 | TOMBOC G M, CHOI S, KWON T, et al. Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs[J]. Advanced Materials, 2020, 32(17): 1908398. |
14 | CHOU T C, CHANG C C, YU H L, et al. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene[J]. Journal of the American Chemical Society, 2020, 142(6): 2857-2867. |
15 | LIN S C, CHANG C C, CHIU S Y, et al. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction[J]. Nature Communications, 2020, 11(1): 3525. |
16 | XIAO H, GODDARD W A, CHENG T, et al. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(26): 6685-6688. |
17 | GROSSE P, GAO D F, SCHOLTEN F, et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects[J]. Angewandte Chemie International Edition, 2018, 57(21): 6192-6197. |
18 | LIANG Z Q, ZHUANG T T, SEIFITOKALDANI A, et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2[J]. Nature Communications, 2018, 9: 3828. |
19 | ZHOU Y S, CHE F L, LIU M, et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons[J]. Nature Chemistry, 2018, 10(9): 974-980. |
20 | SAKAMOTO N, NISHIMURA Y F, NONAKA T, et al. Self-assembled cuprous coordination polymer as a catalyst for CO2 electrochemical reduction into C2 products[J]. ACS Catalysis, 2020, 10(18): 10412-10419. |
21 | BAI X W, LI Q, SHI L, et al. Hybrid Cu0 and Cux+ as atomic interfaces promote high-selectivity conversion of CO2 to C2H5OH at low potential[J]. Small, 2020, 16(12): 1901981. |
22 | VASILEFF A, ZHU Y P, ZHI X, et al. Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate[J]. Angewandte Chemie International Edition, 2020, 59(44): 19649-19653. |
23 | SHAH A H, WANG Y J, HUSSAIN S, et al. New aspects of C2 selectivity in electrochemical CO2 reduction over oxide-derived copper[J]. Physical Chemistry Chemical Physics, 2020, 22(4): 2046-2053. |
24 | ZHAO J, XUE S, BARBER J, et al. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction[J]. Journal of Materials Chemistry A, 2020, 8(9): 4700-4734. |
25 | DE LUNA P, QUINTERO-BERMUDEZ R, DINH C T, et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nature Catalysis, 2018, 1(2): 103-110. |
26 | KAUFFMAN D R, ALFONSO D. Directing CO2 conversion with copper nanoneedles[J]. Nature Catalysis, 2018, 1(2): 99-100. |
27 | YANG P P, ZHANG X L, GAO F Y, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels[J]. Journal of the American Chemical Society, 2020, 142(13): 6400-6408. |
28 | ARÁN-AIS R M, SCHOLTEN F, KUNZE S, et al. The role of in situ generated morphological motifs and Cu(Ⅰ) species in C2+ product selectivity during CO2 pulsed electroreduction[J]. Nature Energy, 2020, 5(4): 317-325. |
29 | DE GREGORIO G L, BURDYNY T, LOIUDICE A, et al. Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities[J]. ACS Catalysis, 2020, 10(9): 4854-4862. |
30 | BAGGER A, JU W, VARELA A S, et al. Electrochemical CO2 reduction: classifying Cu facets[J]. ACS Catalysis, 2019, 9(9): 7894-7899. |
31 | AJMAL S, YANG Y, TAHIR M A, et al. Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates[J]. Catalysis Science & Technology, 2020, 10(14): 4562-4570. |
32 | HORI Y, TAKAHASHI I, KOGA O, et al. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes[J]. The Journal of Physical Chemistry B, 2002, 106(1): 15-17. |
33 | WANG Y H, WANG Z Y, DINH C T, et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis[J]. Nature Catalysis, 2020, 3(2): 98-106. |
34 | ZHANG Y F, ZHAO Y, WANG C Y, et al. Zn-doped Cu(100) facet with efficient catalytic ability for the CO2 electroreduction to ethylene[J]. Physical Chemistry Chemical Physics, 2019, 21(38): 21341-21348. |
35 | REN X N, ZHANG X W, CAO X Z, et al. Efficient electrochemical reduction of carbon dioxide into ethylene boosted by copper vacancies on stepped cuprous oxide[J]. Journal of CO2 Utilization, 2020, 38: 125-131. |
36 | CHANG C C, LI E Y, TSAI M K. A computational exploration of CO2 reduction via CO dimerization on mixed-valence copper oxide surface[J]. Physical Chemistry Chemical Physics, 2018, 20(25): 16906-16909. |
37 | CHEN Z Q, WANG T, LIU B, et al. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol[J]. Journal of the American Chemical Society, 2020, 142(15): 6878-6883. |
38 | YANG C, SHEN H C, GUAN A X, et al. Fast cooling induced grain-boundary-rich copper oxide for electrocatalytic carbon dioxide reduction to ethanol[J]. Journal of Colloid and Interface Science, 2020, 570: 375-381. |
39 | GAO Y G, WU Q, LIANG X Z, et al. Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene[J]. Advanced Science, 2020, 7(6): 1902820. |
40 | CHEN C J, SUN X F, YAN X P, et al. A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products[J]. Green Chemistry, 2020, 22(5): 1572-1576. |
41 | XU Z, WU T C, CAO Y, et al. Dynamic restructuring induced Cu nanoparticles with ideal nanostructure for selective multi-carbon compounds production via carbon dioxide electroreduction[J]. Journal of Catalysis, 2020, 383: 42-50. |
42 | KARAISKAKIS A N, GOLRU S S, BIDDINGER E J. Effect of electrode geometry on selectivity and activity in CO2 electroreduction[J]. Industrial & Engineering Chemistry Research, 2019, 58(50): 22506-22515. |
43 | GU Z X, SHEN H, SHANG L M, et al. Nanostructured copper-based electrocatalysts for CO2 reduction[J]. Small Methods, 2018, 2(11): 1800121. |
44 | KAS R, YANG K L, BOHRA D, et al. Electrochemical CO2 reduction on nanostructured metal electrodes: fact or defect?[J]. Chemical Science, 2020, 11(7): 1738-1749. |
45 | MA M, DJANASHVILI K, SMITH W A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays[J]. Angewandte Chemie International Edition, 2016, 55(23): 6680-6684. |
46 | LE DUFF C S, LAWRENCE M J, RODRIGUEZ P. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO2 to alcohols and carbonyls on copper electrodes[J]. Angewandte Chemie: International Edition, 2017, 56(42): 12919-12924. |
47 | RACITI D, MAO M, WANG C. Mass transport modelling for the electroreduction of CO2 on Cu nanowires[J]. Nanotechnology, 2018, 29(4): 044001. |
48 | ZHU W W, ZHAO K M, LIU S Q, et al. Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays[J]. Journal of Energy Chemistry, 2019, 37: 176-182. |
49 | WANG Y X, NIU C L, ZHU Y C. Copper-silver bimetallic nanowire arrays for electrochemical reduction of carbon dioxide[J]. Nanomaterials, 2019, 9(2): 173. |
50 | WANG Y X, ZHU Y C, NIU C. Surface and length effects for aqueous electrochemical reduction of CO2 as studied over copper nanowire arrays[J]. Journal of Physics and Chemistry of Solids, 2020, 144: 109507. |
51 | LYU Z H, ZHU S Q, XIE M H, et al. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction[J]. Angewandte Chemie International Edition, 2021, 60(4): 1909-1915. |
52 | HOSSAIN M NUR, CHEN S, CHEN A C. Thermal-assisted synthesis of unique Cu nanodendrites for the efficient electrochemical reduction of CO2[J]. Applied Catalysis B: Environmental, 2019, 259: 118096. |
53 | MAREPALLY B C, AMPELLI C, GENOVESE C, et al. Electrocatalytic reduction of CO2 over dendritic-type Cu- and Fe-based electrodes prepared by electrodeposition[J]. Journal of CO2 Utilization, 2020, 35: 194-204. |
54 | RELLER C, KRAUSE R, VOLKOVA E, et al. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density[J]. Advanced Energy Materials, 2017, 7(12): 1602114. |
55 | WAKERLEY D, LAMAISON S, OZANAM F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface[J]. Nature Materials, 2019, 18(11): 1222-1227. |
56 | WU M F, ZHU C, WANG K, et al. Promotion of CO2 electrochemical reduction via Cu nanodendrites[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11562-11569. |
57 | ZHU Q G, SUN X F, YANG D X, et al. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex[J]. Nature Communications, 2019, 10(1): 3851. |
58 | 刘志敏. 铜配合物衍生铜-氧化亚铜催化剂的原位电合成及其对二氧化碳电还原制备C2产物催化性能的研究[J]. 物理化学学报, 2019, 35(12): 1307-1308. |
LIU Z M. Electroreduction of carbon dioxide to C2 products over copper-cuprous oxide prepared from in situ electrosynthesized copper complex[J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1307-1308. | |
59 | HOANG T T H, MA S C, GOLD J I, et al. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis[J]. ACS Catalysis, 2017, 7(5): 3313-3321. |
60 | EBAID M, JIANG K, ZHANG Z M, et al. Production of C2/C3 oxygenates from planar copper nitride-derived mesoporous copper via electrochemical reduction of CO2[J]. Chemistry of Materials, 2020, 32(7): 3304-3311. |
61 | PENG Y C, WU T, SUN L B, et al. Selective electrochemical reduction of CO2 to ethylene on nanopores-modified copper electrodes in aqueous solution[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32782-32789. |
62 | YANG K D, KO W R, LEE J H, et al. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode[J]. Angewandte Chemie International Edition, 2017, 56(3): 796-800. |
63 | SONG H, IM M, SONG J T, et al. Effect of mass transfer and kinetics in ordered Cu-mesostructures for electrochemical CO2 reduction[J]. Applied Catalysis B: Environmental, 2018, 232: 391-396. |
64 | BELL D, RALL D, GROßEHEIDE M, et al. Tubular hollow fibre electrodes for CO2 reduction made from copper aluminum alloy with drastically increased intrinsic porosity[J]. Electrochemistry Communications, 2020, 111: 106645. |
65 | LIU J, FU J J, ZHOU Y, et al. Controlled synthesis of EDTA-modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multicarbon products[J]. Nano Letters, 2020, 20(7): 4823-4828. |
66 | NAM D H, BUSHUYEV O S, LI J, et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction[J]. Journal of the American Chemical Society, 2018, 140(36): 11378-11386. |
67 | TAN X Y, YU C, ZHAO C T, et al. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9904-9910. |
68 | YANG F, DENG P L, WANG Q Y, et al. Metal-organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables[J]. Journal of Materials Chemistry A, 2020, 8(25): 12418-12423. |
69 | YAO K L, XIA Y J, LI J, et al. Metal-organic framework derived copper catalysts for CO2 to ethylene conversion[J]. Journal of Materials Chemistry A, 2020, 8(22): 11117-11123. |
70 | ZHANG W, HUANG C Q, XIAO Q, et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2020, 142(26): 11417-11427. |
71 | ZHANG J, LUO W, ZÜTTEL A. Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction[J]. Journal of Materials Chemistry A, 2019, 7(46): 26285-26292. |
72 | DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787. |
73 | WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4): 910-918. |
74 | ANASTASIADOU D, SCHELLEKENS M, DE HEER M, et al. Electrodeposited Cu2O films on gas diffusion layers for selective CO2 electroreduction to ethylene in an alkaline flow electrolyzer[J]. ChemElectroChem, 2019, 6(15): 3928-3932. |
75 | LYU J J, JOUNY M, LUC W, et al. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Advanced Materials, 2018, 30(49): 1803111. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[12] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[13] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |