化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3693-3702.DOI: 10.16085/j.issn.1000-6613.2020-1725
张玉洁1(), 王焦飞1(), 白永辉1, 宋旭东1, 苏暐光1, 于广锁1,2()
收稿日期:
2020-08-28
修回日期:
2020-09-16
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
王焦飞,于广锁
作者简介:
张玉洁(1997—),女,硕士研究生,研究方向为煤与生物质共热解。E-mail:基金资助:
ZHANG Yujie1(), WANG Jiaofei1(), BAI Yonghui1, SONG Xudong1, SU Weiguang1, YU Guangsuo1,2()
Received:
2020-08-28
Revised:
2020-09-16
Online:
2021-07-06
Published:
2021-07-19
Contact:
WANG Jiaofei,YU Guangsuo
摘要:
煤炭与生物质共热解是实现煤炭高效清洁利用的重要途径之一。共热解可改善煤炭单独热解产生的污染问题和生物质单独利用时能源密度低、季节性供应不平衡的问题,不仅能提高煤炭转化效率,还能获得更高品质油品。本文从煤与生物质共热解的影响因素、研究方法和共热解过程中组分间相互作用等方面出发,对近期国内外煤与生物质共热解的研究进行综述。总结了生物质种类、热解工艺参数和热解反应器的类型对煤与生物质共热解过程的影响规律以及煤与生物质在共热解过程中的相互作用过程,即半焦与挥发分间的相互作用、挥发分间的相互作用、生物质中碱金属对共热解的催化作用,并针对如何进一步认识煤与生物质相互作用机理、提高共热解效率等问题和发展方向作了展望。
中图分类号:
张玉洁, 王焦飞, 白永辉, 宋旭东, 苏暐光, 于广锁. 共热解过程中煤与生物质相互作用的研究进展[J]. 化工进展, 2021, 40(7): 3693-3702.
ZHANG Yujie, WANG Jiaofei, BAI Yonghui, SONG Xudong, SU Weiguang, YU Guangsuo. Investigation progress on the interaction between coal and biomass during co-pyrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3693-3702.
1 | BP. Statistical review of world energy 2020[EB/OL].. |
2 | 王燕杰, 应浩, 孙云娟, 等. 烘焙稻壳与不同煤化程度的煤共热解特性[J]. 化工进展, 2014, 33(3): 643-650. |
WANG Yanjie, YING Hao, SUN Yunjuan, et al. Pyrolysis characteristics of torrefied rice husk with different coalification degree coals[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 643-650. | |
3 | 程晓晗, 何选明, 柴军, 等. 石莼与褐煤低温共热解产物的特性[J]. 化工进展, 2016, 35(1): 105-109. |
CHENG Xiaohan, HE Xuanming, CHAI Jun, et al. Characteristics of low-temperature co-pyrolysis products of ulva and lignite[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 105-109. | |
4 | 程晓晗, 何选明, 戴丹, 等. 石莼与褐煤低温共热解热重分析及动力学[J]. 化工进展, 2015, 34(12): 4385-4390. |
CHENG Xiaohan, HE Xuanming, DAI Dan, et al. Thermogravimetric analysis and pyrolytic kinetic study on co-pyrolysis of brown coal and ulva[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4385-4390. | |
5 | 王春霞, 何选明, 敖福禄, 等. 低阶煤与浒苔低温共热解过程分析及动力学[J]. 化工进展, 2014, 33(11): 2899-2904. |
WANG Chunxia, HE Xuanming, AO Fulu, et al. Process analysis and kinetics during co-pyrolysis of low rank coal and enteromorpha[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2899-2904. | |
6 | 易霜, 何选明, 郑辉, 等. 甘蔗渣与褐煤共热解半焦的特性[J]. 化工进展, 2016, 35(10): 3149-3154. |
YI Shuang, HE Xuanming, ZHENG Hui, et al. Characteristics of co-pyrolysis char of sugarcane bagasse and lignite[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3149-3154. | |
7 | SONCINI R M, MEANS N C, WEILAND N T. Co-pyrolysis of low rank coals and biomass: Product distributions[J]. Fuel, 2013, 112: 74-82. |
8 | HAYKIRI-ACMA H, YAMAN S. Interaction between biomass and different rank coals during co-pyrolysis[J]. Renewable Energy, 2010, 35(1): 288-292. |
9 | KRERKKAIWAN S, FUSHIMI C, TSUTSUMI A, et al. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal[J]. Fuel Processing Technology, 2013, 115: 11-18. |
10 | MOGHTADERI B, MEESRI C, WALL T F. Pyrolytic characteristics of blended coal and woody biomass[J]. Fuel, 2004, 83(6): 745-750. |
11 | EVANS R J, MILNE T A. Molecular characterization of the pyrolysis of biomass[J]. Energy & Fuels, 1987, 1(2): 123-137. |
12 | YUAN S, DAI Z, ZHOU Z, et al. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char[J]. Bioresource Technology, 2012, 109: 188-197. |
13 | ABOYADE A O, CARRUER M, MEYER E L, et al. Slow and pressurized co-pyrolysis of coal and agricultural residues[J]. Energy Conversion and Management, 2013, 65: 198-207. |
14 | WU Z, YANG W, YANG B. Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass: effects of nannochloropsis and chlorella[J]. Bioresource Technology, 2018, 249: 501-509. |
15 | WU Z, YANG W, LI Y, et al. Co-pyrolysis behavior of microalgae biomass and low-quality coal: products distributions, char-surface morphology, and synergistic effects[J]. Bioresource Technology, 2018, 255: 238-245. |
16 | 贺越. 原生及烘焙生物质与煤共热解过程氮的转化规律研究[D]. 北京: 华北电力大学, 2019. |
HE Yue. Research on nitrogen conversion in co-pyrolysis of raw and torrefied biomass with coal[D]. Beijing: North China Electric Power University, 2019. | |
17 | 唐初阳. 影响生物质和煤共热解油产率和品质的机理研究[D]. 上海: 华东理工大学, 2017. |
TANG Chuyang. Mechanism research on the influence on yield and quality of tar derived from co-pyrolysis of biomass and coal[D]. Shanghai: East China University of Science and Technology, 2017. | |
18 | DING L, ZHANG Y, WANG Z, et al. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresource Technology, 2014, 173: 11-20. |
19 | MEESRI C, MOGHTADERI B. Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes[J]. Biomass and Bioenergy, 2002, 23(1): 55-66. |
20 | GUO F, LI X, WANG Y, et al. Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor[J]. Energy, 2017, 141: 2154-2163. |
21 | KABIR G, HAMEED B H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 945-967. |
22 | JONES J M, KUBACKI M, KUBICA K, et al. Devolatilisation characteristics of coal and biomass blends[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1/2): 502-511. |
23 | LI J, ZHU J, HU H, et al. Co-pyrolysis of Baiyinhua lignite and pine in an infrared-heated fixed bed to improve tar yield[J]. Fuel, 2020, 272: 117739. |
24 | 柯萍, 何选明, 刘靖, 等. 低阶煤与玉米芯低温共热解的产物特性分析[J]. 生物质化学工程, 2019, 53(4): 26-30. |
KE Ping, HE Xuanming, LIU Jing, et al. Characteristics of low temperature co-pyrolysis products of low-rank coal and corncob[J]. Biomass Chemical Engineering, 2019, 53(4): 26-30. | |
25 | 黄冠华, 任要鑫, 万若兰, 等. 高低阶煤和小球藻的共热解特性研究[J]. 环境科学与技术, 2019, 42(12): 14-22. |
HUANG Guanhua, REN Yaoxin, WAN Ruolanet, et al. Co-pyrolysis characteristics of Chlorella sp. and coals with high and low rank[J]. Environmental Science & Technology, 2019, 42(12): 14-22. | |
26 | 王俊丽. 低阶煤热解动力学特性及与生物质共热解、热解产物深加工试验研究[D]. 太原: 太原理工大学, 2017. |
WANG Junli. Kineties of low rank coal pyrolysis and co-pyrolysis with biomass and deep processing of pyrolysis-derived products[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
27 | WANG S, DAI G, YANG H, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
28 | LI C, MADRALI E S, WU F, et al. Comparison of thermal breakdown in coal pyrolysis and liquefaction[J]. Fuel, 1994, 73(6): 851-865. |
29 | LI C. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels—A review[J]. Fuel, 2013, 112: 609-623. |
30 | HASSAN H, LIM J K, HAMEED B H. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil[J]. Bioresource Technology, 2016, 221: 645-655. |
31 | 何玉远, 常春, 方书起, 等. 煤与生物质共热解工艺的研究进展[J]. 可再生能源, 2018, 36(2): 159-166. |
HE Yuyuan, CHANG Chun, FANG Shuqi, et al. Research process of co-pyrolysis technology of coal and biomass[J]. Renewable Energy Resources, 2018, 36(2): 159-166. | |
32 | PAN Y G, VELO E, PUIGJANER L. Pyrolysis of blends of biomass with poor coals[J]. Fuel, 1996, 75(4): 412-418. |
33 | VUTHALURU H B. Thermal behaviour of coal/biomass blends during co-pyrolysis[J]. Fuel Processing Technology, 2004, 85(2/3): 141-155. |
34 | WEILAND N T, MEANS N C, MORREALE B D. Product distributions from isothermal co-pyrolysis of coal and biomass[J]. Fuel, 2012, 94: 563-570. |
35 | BIAGINI E, LIPPI F, PETARCA L, et al. Devolatilization rate of biomasses and coal-biomass blends: an experimental investigation[J]. Fuel, 2002, 81(8): 1041-1050. |
36 | CHEN C, MA X, HE Y. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA[J]. Bioresource Technology, 2012, 117: 264-273. |
37 | SONG Y, LI Q, LI F, et al. Pathway of biomass-potassium migration in co-gasification of coal and biomass[J]. Fuel, 2019, 239: 365-372. |
38 | QUYN D M, WU H, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅰ. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002, 81(2): 143-149. |
39 | QUYN D M,WU H, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003, 82: 587-593. |
40 | ZHAO H, SONG Q, LIU S, et al. Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism[J]. Energy Conversion and Management, 2018, 161: 13-26. |
41 | OKUNO T, SONOYAMA N, HAYASHI J, et al. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass[J]. Energy & Fuels, 2005, 19(5): 2164-2171. |
42 | 李晓明, 张红, 刘梦杰, 等. 采用焦分离方法研究共热解时煤与生物质的相互作用及对焦结构和CO2气化反应性的影响[J]. 燃料化学学报, 2020, 48(8): 897-907. |
LI Xiaoming, ZHANG Hong, LIU Mengjie, et al. Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 897-907. | |
43 | 钱亚平, 李伟锋, 陈雪莉, 等. 煤和蓝藻的共热解特性研究[J]. 华东理工大学学报(自然科学版), 2013, 39(1): 35-41. |
QIAN Yaping, LI Weifeng, CHEN Xueli, et al. Co-pyrolysis of coal and algae[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2013, 39(1): 35-41. | |
44 | WU Z, YANG W C, CHEN L, et al. Catalytic effects of the typical alkali metal on gaseous products distribution and char structure during co-pyrolysis of low rank coal and lignocellulosic biomass[J]. Energy Procedia, 2017, 105: 102-107. |
45 | LIU P, ZHAO Y, GUO Y, et al. Effects of volatile-char interactions on char during pyrolysis of rice husk at mild temperatures[J]. Bioresource Technology, 2016, 219: 702-709. |
46 | SONG Y, WANG Y, HU X, et al. Effects of volatile-char interactions on in-situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part Ⅱ. Roles of steam[J]. Fuel, 2015, 143: 555-562. |
47 | ZHU X, LI K, ZHANG L, et al. Synergistic effects on thermochemical behaviors of co-pyrolysis between bio-oil distillation residue and bituminous coal[J]. Energy Conversion and Management, 2017, 151: 209-215. |
48 | HU J, SI Y, YANG H, et al. Influence of volatiles-char interactions between coal and biomass on the volatiles released, resulting char structure and reactivity during co-pyrolysis[J]. Energy Conversion and Management, 2017, 152: 229-238. |
49 | WU H, QUYN D M, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅲ. The importance of the interactions between volatiles and char at high temperature[J]. Fuel, 2002, 81(8): 1033-1039. |
50 | SHI L, CHENG X, LIU Q, et al. Reaction of volatiles from a coal and various organic compounds during co-pyrolysis in a TG-MS system. Part 1. Reaction of volatiles in the void space between particles[J]. Fuel, 2018, 213: 37-47. |
51 | SHI L, CHENG X, LIU Q, et al. Reaction of volatiles from a coal and various organic compounds during co-pyrolysis in a TG-MS system. Part 2. Reaction of volatiles in the free gas phase in crucibles[J]. Fuel, 2018, 213: 22-36. |
52 | YUAN S, DAI Z, ZHOU Z, et al. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char[J]. Bioresource Technology, 2012, 109: 188-197. |
53 | LI X, WU H, HAYASHI J, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅵ. Further investigation into the effects of volatile-char interactions[J]. Fuel, 2004, 83(10): 1273-1279. |
54 | WU H, QUYN D M, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003, 82: 587-593. |
55 | HU J, CHEN Y, QIAN K, et al. Evolution of char structure during Mengdongcoal pyrolysis: influence of temperature and K2CO3[J]. Fuel Processing Technology, 2017, 159: 178-186. |
56 | ZHOU B, LIU Q, SHI L, et al. A novel vacuumed hermetic reactor and its application in coal pyrolysis[J]. Fuel, 2019, 255: 115774. |
57 | SHI Z, JIN L, ZHOU Y, et al. In-situ analysis of catalytic pyrolysis of Baiyinhua coal with pyrolysis time-of-flight mass spectrometry[J]. Fuel, 2018, 227: 386-393. |
58 | ZHOU Y, LI L, JIN L, et al. Effect of functional groups on volatile evolution in coal pyrolysis process with in-situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Fuel, 2020, 260: 116322. |
59 | JIN L, BAI X, LI Y, et al. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Processing Technology, 2016, 147: 41-46. |
60 | WANG J, MA M, BAI Y, et al. Effect of CaO additive on co-pyrolysis behavior of bituminous coal and cow dung[J]. Fuel, 2020, 265: 116911. |
[1] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[2] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[3] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
[6] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[7] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[8] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[9] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[10] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[11] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[12] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[13] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[14] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[15] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |