化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3270-3286.DOI: 10.16085/j.issn.1000-6613.2020-1321
收稿日期:
2020-07-13
修回日期:
2020-08-31
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
冯东
作者简介:
王博(1996—),男,硕士研究生,研究方向为高分子发泡。E-mail:基金资助:
Received:
2020-07-13
Revised:
2020-08-31
Online:
2021-06-06
Published:
2021-06-22
Contact:
FENG Dong
摘要:
国民经济和高科技领域的飞速发展,对高分子泡沫材料的高强度及耐高低温性能、无毒无烟及本征阻燃、易加工成型等方面的要求进一步提高,通用高分子泡沫材料,如聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等难以满足使用要求。因此,聚醚酰亚胺(PEI)、聚酰亚胺(PI)、聚醚砜(PES)、聚芳砜(PPSU)、聚苯硫醚(PPS)、聚醚醚酮(PEEK)等高性能热塑性高分子泡沫材料和制品的研究成为新的热点。本文对超临界流体发泡原理和超临界流体发泡技术进行了系统介绍,重点综述了超临界流体(supercritical fluid),如scCO2或scN2作物理发泡剂,结合各种发泡技术,如釜压发泡、注塑发泡、挤出发泡和珠粒发泡,在高性能热塑性高分子发泡领域中的应用及取得的研究成果,以期为高性能高分子材料的研究及应用提供借鉴。最后,对开发操作简单、所得泡沫制品尺寸精确的发泡技术作了展望。
中图分类号:
王博, 冯东. 超临界发泡法制备高性能热塑性高分子微/纳孔泡沫材料研究进展[J]. 化工进展, 2021, 40(6): 3270-3286.
WANG Bo, FENG Dong. Review of supercritical foaming high-performance micro/nano-cellular thermoplastic polymer foams[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3270-3286.
1 | OKOLIEOCHA C, RAPS D, SUBRAMANIAM K, et al. Microcellular to nanocellular polymer foams: progress (2004—2015) and future directions: a review[J]. European Polymer Journal, 2015, 73: 500-519. |
2 | COSTEUX S. CO2-blown nanocellular foams[J]. Journal of Applied Polymer Science, 2014, 131(23): 41293. |
3 | LING J Q, ZHAI W T, FENG W W, et al. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding[J]. ACS Appl. Mater. Interfaces, 2013, 5(7): 2677-2684. |
4 | MURPHY J. Modifying specific properties resistance to heat-heat stabilizers[M]. Additives for Plastics Handbook, Amsterdam: Elsevier, 2001: 93-106. |
5 | EAVES David. Handbook of polymer foams[M]. Shawbury: Rapra Technology Limited, 2004. |
6 | PRATHER M, MIDGLEY P, ROWLAND F S, et al. The ozone layer: the road not taken [J]. Nature, 1996, 381(6583): 551-554. |
7 | ALTAN M. Thermoplastic foams: processing, manufacturing, and characterization[M]. Recent Research in Polymerization, 2018. |
8 | DI MAIO E, KIRAN E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges[J]. The Journal of Supercritical Fluids, 2018, 134:157-166. |
9 | 刘鹏举. 聚乙烯醇珠粒发泡材料的制备及机理研究[D]. 成都: 四川大学, 2018. |
LIU Pengju. Study on preparation and mechanism of polyvinyl alcohol bead foaming material[D]. Chengdu: Sichuan University, 2018. | |
10 | PUTTA S, NEMAT-NASSER S. Molecularly-based numerical evaluation of free volume in amorphous polymers[J]. Materials Science and Engineering: A, 2001, 317(1/2): 70-76. |
11 | WANG D, GAO H, JIANG W, et al. Effect of supercritical carbon dioxide on the crystallization behavior of poly(ether ether ketone)[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(21): 2927-2936. |
12 | TOMASKO D L, LI H B, LIU D H, et al. A review of CO2 applications in the processing of polymers[J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6431-6456. |
13 | KAZARIAN SERGEI G. Polymers and supercritical fluids: opportunities for vibrational spectroscopy[J]. Macromolecular Symposia, 2002, 184(1): 215-228. |
14 | TANG M, HUANG W H, CHEN Y P. Comparisons of the sorption and diffusion of supercritical carbon dioxide into polycarbonate and polysulfone[J]. Journal of the Chinese Institute of Chemical Engineers, 2007, 38(5/6): 419-424. |
15 | TANG M, DU T B, CHEN Y P. Sorption and diffusion of supercritical carbon dioxide in polycarbonate[J]. The Journal of Supercritical Fluids, 2004, 28(2/3): 207-218. |
16 | MILLER D, CHATCHAISUCHA P, KUMAR V. Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide Ⅰ. Processing and structure[J]. Polymer, 2009, 50(23): 5576-5584. |
17 | CAFIERO L, ALFANO O, IANNONE M, et al. Microcellular foams from PEEK/PEI miscible blends[J]. AIP conference proceedings, 2016, 1779(1): 090009. |
18 | WRIGHT C T, PAUL D R. Gas sorption and transport in poly (tertiary-butyl methacrylate)[J]. Polymer, 1997, 38(8): 1871-1878. |
19 | 蒋亚静, 向帮龙, 肖兆新, 等. 微孔发泡中气溶阶段的研究进展[J]. 现代塑料加工应用, 2006, 18(4): 66-69. |
JIANG Yajing, XIANG Banglong, XIAO Zhaoxin, et al. Research progress of air-soluble stage in microcellular foaming[J]. Modern Plastic Processing Applications, 2006, 18(4): 66-69. | |
20 | 高长云, 周南桥, 何丹超. 微孔发泡过程中脉动剪切对聚合物/超临界CO2均相体系形成的影响[J]. 塑料工业, 2004, 32(12): 25-26, 45. |
GAO Changyun, ZHOU Nanqiao, HE Danchao. Effect of pulsating shear on the formation of polymer/supercritical CO2 homogeneous system during microcellular foaming[J]. Plastic Industry, 2004, 32(12): 25-26, 45. | |
21 | KIM Y, PARK C B, CHEN P, et al. Origins of the failure of classical nucleation theory for nanocellular polymer foams[J]. Soft Matter, 2011, 7(16): 7351-7358. |
22 | TSIVINTZELIS I, ANGELOPOULOU A G, PANAYIOTOU C J P. Foaming of polymers with supercritical CO2: an experimental and theoretical study[J]. Polymer, 2007, 48(20): 5928-5939. |
23 | COLTON J S, SUH N P. Nucleation of microcellular thermoplastic foam with additives: Part Ⅰ: Theoretical considerations[J]. Polymer Engineering and Science, 2010, 27(7): 485-492. |
24 | 廖若谷. 超临界二氧化碳发泡过程中聚合物泡孔结构的控制[D]. 上海: 上海交通大学, 2010. |
LIAO Ruogu. Control of polymer cell structure during supercritical carbon dioxide foaming[D]. Shanghai: Shanghai Jiaotong University, 2010. | |
25 | COLTON J S, SUH N. Nucleation of microcellular foam: theory and practice[J]. Polymer Engineering and Science, 1987, 27(7): 500-503. |
26 | MATUANA L M, DIAZ C A J I, RESEARCH E C. Study of cell nucleation in microcellular poly(lactic acid) foamed with supercritical CO2 through a continuous-extrusion process[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2186-2193. |
27 | FOREST C, CHAUMONT P, CASSAGNAU P, et al. Polymer nano-foams for insulating applications prepared from CO2 foaming[J]. Progress in Polymer Science, 2015, 41: 122-145. |
28 | 何继敏. 新型聚合物发泡材料及技术[M]. 北京: 化学工业出版社, 2008. |
HE Jimin. New polymer foam materials and technology[M]. Beijing: Chemical Industry Press, 2008. | |
29 | TAKI K, TABATA K, KIHARA S I, et al. Bubble coalescence in foaming process of polymers[J]. Polymer Engineering & Science, 2006, 46(5): 680-690. |
30 | URBANCZYK L, CALBERG C, DETREMBLEUR C, et al. Batch foaming of SAN/clay nanocomposites with scCO2: a very tunable way of controlling the cellular morphology[J]. Polymer, 2010, 51(15): 3520-3531. |
31 | NAGUIB H E, PARK C B, REICHELT N. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams[J]. Journal of Applied Polymer Science, 2004, 91(4): 2661-2668. |
32 | TOMASKO D L, BURLEY A, FENG L, et al. Development of CO2 for polymer foam applications[J]. The Journal of Supercritical Fluids, 2009, 47(3): 493-499. |
33 | FENG D, LIU P J, LI L. Fabrication and cell morphology of a microcellular poly(ether imide)-carbon nanotube composite foam with a three-dimensional shape[J]. Journal of Applied Polymer Science, 2019, 136(21): 47501. |
34 | JIA Y B, BAI S B, PARK C B, et al. Effect of boric acid on the foaming properties and cell structure of poly(vinyl alcohol) foam prepared by supercritical-CO2 thermoplastic extrusion foaming[J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6655-6663. |
35 | LI Z K, JIA Y B, BAI S. Polysulfone foam with high expansion ratio prepared by supercritical carbon dioxide assisted molding foaming method[J]. RSC Advances, 2018, 8(6): 2880-2886. |
36 | JIANG W, SUNDARRAM S S, WONG D, et al. Polyetherimide nanocomposite foams as an ablative for thermal protection applications[J]. Composites Part B: Engineering, 2014, 58(3): 559-565. |
37 | ITOH M, KABUMOTO A. Effects of crystallization on cell morphology in microcellular polyphenylene sulfide[J]. Furukawa Review, 2005, 28: 32-38. |
38 | KRAUSE B, METTINKHOF R, VEGT N F A VAN DER, et al. Microcellular foaming of amorphous high-Tg polymers using carbon dioxide[J]. Macromolecules, 2001, 34(4): 874-884. |
39 | GUO H M, NICOLAE A, KUMAR V. Solid-state microcellular and nanocellular polysulfone foams[J]. Journal of Polymer Science Part B: Polymer Physics, 2015, 53(14): 975-985. |
40 | BERNARDO V, MARTÍN-DE LEÓN J, Rodríguez-Pérez M A. Production and characterization of nanocellular polyphenylsulfone foams[J]. Materials Letters, 2016, 178:155-158. |
41 | MILLER D, KUMAR V. Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide Ⅱ. Tensile and impact properties[J]. Polymer, 2011, 52(13): 2910-2919. |
42 | SUN H L, MARK J E. Preparation, characterization, and mechanical Properties of some microcellular polysulfone foams[J]. Journal of Applied Polymer Science, 2002, 86(7): 1692-1701. |
43 | SORRENTINO L, AURILIA M, IANNACE S. Polymeric foams from high-performance thermoplastics[J]. Advances in Polymer Technology, 2011, 30(3): 234-243. |
44 | ZHAO J Y, WANG Z P, WANG H H, et al. Preparation of low density amorphous poly(aryletherketone) foams and the study of influence factors of the cell morphology[J]. RSC Advances, 2017, 7(58): 36662-36669. |
45 | HU D D, GU Y, LIU T, et al. Microcellular foaming of polysulfones in supercritical CO2 and the effect of co-blowing agent[J]. The Journal of Suppercritical Fluids, 2018, 140: 21-31. |
46 | MA Z L, ZHANG G, YANG Q C, et al. Microcellular foams of glass-fiber reinforced poly(phenylene sulfide) composites generated using supercritical carbon dioxide[J]. Polymer Composites, 2016, 37(8): 2527-2540. |
47 | YANG Q, ZHANG G C, MA Z L, et al. Effects of processing parameters and thermal history on microcellular foaming behaviors of PEEK using supercritical CO2[J]. Journal of Applied Polymer Science, 2015, 132(39): 42576. |
48 | KRAUSE B, DIEKMANN K, DERVEGT N F A V D VAN, et al. Open nanoporous morphologies from polymeric blends by carbon dioxide foaming[J]. Macromolecules, 2002, 35(5): 1738-1745. |
49 | SUNDARRAM S S, LI W. On thermal conductivity of micro- and nanocellular polymer foams[J]. Polymer Engineering & Science, 2013, 53(9): 1901-1909. |
50 | BEHRENDT N, GREINER C, FISCHER F, et al. Morphology and electret behaviour of microcellular high glass temperature films[J]. Applied Physics A, 2006, 85(1): 87-93. |
51 | SUN H L, MARK J E, TAN S C, et al. Microcellular foams from some high-performance composites[J]. Polymer, 2005, 46(17): 6623-6632. |
52 | NEMOTO T, TAKAGI J, OHSHIMA M. Nanocellular foams—cell structure difference between immiscible and miscible PEEK/PEI polymer blends[J]. Polymer Engineering & Science, 2010, 50(12): 2408-2416. |
53 | CAFIERO L, IANNACE S, SORRENTINO L. Microcellular foams from high performance miscible blends based on PEEK and PEI[J]. European Polymer Journal, 2016, 78:116-128. |
54 | 马忠雷. 多相/多组分高性能热塑性聚合物的微孔发泡与性能研究[D]. 西安: 西北工业大学, 2015. |
MA Zhonglei. Study on microcellular foaming and properties of multiphase/multicomponent high performance thermoplastic polymer[D]. Xi’an: Northwestern Polytechnical University, 2015. | |
55 | AURILIA M, SORRENTINO L, SANGUIGNO L, et al. Nanofilled polyethersulfone as matrix for continuous glass fibers composites: mechanical properties and solvent resistance[J]. Advances in Polymer Technology, 2010, 29(3): 146-160. |
56 | SORRENTINO L, AURILIA M, CAFIERO L, et al. Nanocomposite foams from high-performance thermoplastics[J]. Journal of Applied Polymer Science, 2011, 122(6): 3701-3710. |
57 | YU H T, LEI Y J, YU X J, et al. Batch foaming of carboxylated multiwalled carbon nanotube/poly(ether imide) nanocomposites: the influence of the carbon nanotube aspect ratio on the cellular morphology[J]. Journal of Applied Polymer Science, 2015, 132(30): 42325. |
58 | YU H I, LEI Y J, YU X, et al. Solid-state polyetherimide (PEI) nanofoams: the influence of the compatibility of nucleation agent on the cellular morphology[J]. Journal of Polymer Research, 2016, 23(6): 1-12. |
59 | FENG D, LIU P, WANG Q. Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124:105463. |
60 | AHER B, OLSON N M, KUMAR V. Production of bulk solid-state PEI nanofoams using supercritical CO2[J]. Journal of Materials Research, 2013, 28(17): 2366-2373. |
61 | ZHOU C C, VACCARO N, SUNDARRAM S S, et al. Fabrication and characterization of polyetherimide nanofoams using supercritical CO2[J]. Journal of Cellular Plastics, 2012, 48(3): 239-255. |
62 | CHANDRA A, GONG S Q, YUAN M J, et al. Microstructure and crystallography in microcellular injection-molded polyamide-6 nanocomposite and neat resin[J]. Polymer Engineering & Science, 2005, 45(1): 52-61. |
63 | LI J L, CHEN Z L, WANG X Z, et al. Cell morphology and mechanical properties of microcellular mucell® injection molded polyetherimide and polyetherimide/fillers composite foams[J]. Journal of Applied Polymer Science, 2013, 130(6): 4171-4181. |
64 | LEI Y J, LIU T, CHEN Z L, et al. Morphology, mechanical and dielectric properties, and rheological behavior of EAGMA toughened microcellular PEI-EAGMA foam[J]. RSC Advances, 2014, 4(37): 19103-19110. |
65 | LIU T, ZHOU S Y, LEI Y J, et al. Morphology and properties of injection molded microcellular poly(ether imide) (PEI)/polypropylene (PP) foams[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 19934-19942. |
66 | LIU T, LEI Y J, CHEN Z L, et al. Effects of processing conditions on foaming behaviors of polyetherimide (PEI) and PEI/polypropylene blends in microcellular injection molding process[J]. Journal of Applied Polymer Science, 2015, 132(7): 41443. |
67 | PILLA S, KIM S G, AUER G K, et al. Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends[J]. Materials Science and Engineering C, 2010, 30(2): 255-262. |
68 | PARK C B, SUN N P. Extrusion of microcellular filament: a case study of axiomatic design[J]. Cellular Polymers, 1992, 38: 69-91. |
69 | PARK C B, BEHRAVESH A H, VENTER R D. Low density microcellular foam processing in extrusion using CO2[J]. Polymer Engineering and Science, 1998, 38(11): 1812-1823. |
70 | SAUCEAU M, FAGES J, COMMON A, et al. New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide[J]. Progress in Polymer Science, 2011, 36(6): 749-766. |
71 | CHAUVET M, SAUCEAU M, FAGES J. Extrusion assisted by supercritical CO2: a review on its application to biopolymers[J]. The Journal of Supercritical Fluids, 2017, 120:408-420. |
72 | 韦建召. 聚合物电磁动态塑化挤出机驱动系统动态特性研究[D]. 广州: 华南理工大学, 2004. |
WEI Jianzhao. Research on dynamic characteristics of driving system of electromagnetic dynamic plasticizing extruder for polymer[D]. Guangzhou: South China University of Technology, 2004. | |
73 | SIRIPURAPU S, GAY Y J, ROYER J R, et al. Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process[J]. Polymer, 2002, 43(20): 5511-5520. |
74 | ZHENG W G, LEE Y H, PARK C B. The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon[J]. Journal of Cellular Plastics, 2006, 42(4): 271-288. |
75 | RAPS D, HOSSIENY N, PARK C B, et al. Past and present developments in polymer bead foams and bead foaming technology[J]. Polymer, 2015, 56: 5-19. |
76 | GE C B, REN Q, WANG S P, et al. Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties[J]. Chemical Engineering Science, 2017, 174:337-346. |
77 | FENG D, LI L, WANG Q. Fabrication of three-dimensional polyetherimide bead foams via supercritical CO2/ethanol co-foaming technology[J]. RSC Advances, 2019, 9(7): 4072-4081. |
78 | XU D W, ZHANG H L, PU L, et al. Fabrication of poly(vinylidene fluoride)/multiwalled carbon nanotube nanocomposite foam via supercritical fluid carbon dioxide: synergistic enhancement of piezoelectric and mechanical properties[J]. Composites Science and Technology, 2020,192: 108108. |
79 | ZHAI W T, FENG W W, LING J Q, et al. Fabrication of lightweight microcellular polyimide foams with three-dimensional shape by CO2 foaming and compression molding[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12827-12834. |
80 | FENG D, LIU P J, WANG Q. Selective microwave sintering to prepare multifunctional poly(ether imide) bead foams based on segregated carbon nanotube conductive network[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5838-5847. |
[1] | 张畅, 谢荣建, 孙琦, 张添, 吴亦农, 洪芳军. 液氮温区Ω形轴向槽道热管的启动特性与传热性能[J]. 化工进展, 2019, 38(06): 2610-2617. |
[2] | 廖玮婷, 解新安, 李璐, 李雁, 樊荻, 孙娇, 王鑫. 木质素在超临界甲醇和乙醇溶剂中液化过程分析[J]. 化工进展, 2019, 38(05): 2205-2211. |
[3] | 郝俊辉, 田原宇, 张金弘, 乔英云, 车远军. 油砂沥青分离技术研究进展[J]. 化工进展, 2018, 37(09): 3337-3345. |
[4] | 马依文, 包桂蓉, 王青青, 李法社. La改性Cu/Zn/Al催化剂的制备及其催化纤维素液化性能[J]. 化工进展, 2016, 35(S1): 179-187. |
[5] | 李贵贤, 曹彦伟, 李昱, 刘珍珍. 超临界流体技术在煤焦油加工中的研究进展[J]. 化工进展, 2015, 34(10): 3623-3629. |
[6] | 王倩倩, 张登峰, 王浩浩, 顾丽莉, 杨劲, 杨荣, 陶军. 封存过程中二氧化碳对煤体理化性质的作用规律[J]. 化工进展, 2015, 34(1): 258-265. |
[7] | 丁巍, 陈畅, 赵德智, 宋官龙, 李鑫宇. 渣油分离方法的研究进展[J]. 化工进展, 2015, 34(02): 549-553. |
[8] | 熊道陵,杨金鑫,张团结,许光辉,陈超,王庚亮,罗序燕. 废润滑油再生工艺的研究进展[J]. 化工进展, 2014, 33(10): 2778-2784. |
[9] | 邓爱华1,陈爱政1,2,王士斌1,2,王明宗1. SEDS工艺制备丝素纳米颗粒及其表征[J]. 化工进展, 2014, 33(06): 1506-1512. |
[10] | 张以敏1,2,姜浩锡1,2. 超临界流体沉积技术制备负载型金属催化剂的研究进展[J]. 化工进展, 2013, 32(08): 1825-1831. |
[11] | 刘同举,杜志国,郭 莹,杨晓红,张永刚,王国清. 超临界流体技术在石油化工中的应用 [J]. 化工进展, 2011, 30(8): 1676-. |
[12] | 王丽萍,唐韶坤. 应用超临界流体技术制备纳米磁性氧化铁的研究进展 [J]. 化工进展, 2011, 30(2): 339-. |
[13] | 黄 盼1,2,姜浩锡1,2,3,4,李仕昌4,张敏华1,2. 超临界流体抗溶剂技术及微粒成形机理的研究进展[J]. 化工进展, 2011, 30(10): 2120-. |
[14] | 孙宏伟1,陈建峰2. 我国化工过程强化技术理论与应用研究进展 [J]. 化工进展, 2011, 30(1): 1-. |
[15] | 张发兴,刘亚青,卫晓利,徐 峥. 超临界流体快速膨胀法制备红磷微胶囊阻燃剂 [J]. 化工进展, 2007, 26(5): 690-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |