1 |
YANG E L, QIN X H, WANG S Y. Electrospun crosslinked polyvinyl alcohol membrane[J]. Mater. Lett., 2008, 62(20): 3555-3557.
|
2 |
GOHIL J M, BHATTACHARYA A, RAY P. Studies on the crosslinking of poly (vinyl alcohol)[J]. J. Polym. Res., 2006, 13(2): 161-169.
|
3 |
DONG Y Q, ZHANG L, SHEN J N, et al. Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures[J]. Desalination, 2006, 193(1/2/3): 202-210.
|
4 |
ABDULLAH Z W, DONG Y, DAVIES I J, et al. PVA, PVA blends, and their nanocomposites for biodegradable packaging application[J]. Polym. Plast. Technol. Eng., 2017, 56(12): 1307-1344.
|
5 |
BONILLA J, FORTUNATI E, ATARÉS L, et al. Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films[J]. Food Hydrocolloids, 2014, 35: 463-470.
|
6 |
WANG C R, FAN J, XU R, et al. Quaternary ammonium chitosan/polyvinyl alcohol composites prepared by electrospinning with high antibacterial properties and filtration efficiency[J]. J. Mater. Sci., 2019, 54(19): 12522-12532.
|
7 |
YIN M L, WANG Y F, ZHANG Y, et al. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties[J]. Carbohydr. Polym., 2020, 232: 115823.
|
8 |
ZHENG F Y, LI R S, HU J D, et al. Chitin and waste shrimp shells liquefaction and liquefied products/polyvinyl alcohol blend membranes[J]. Carbohydr. Polym., 2019, 205: 550-558.
|
9 |
WANG Z, YAN F, PEI H C, et al. Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration[J]. Carbohydr. Polym., 2018, 198: 241-248.
|
10 |
GRISHKEWICH N, MOHAMMED N, TANG J, et al. Recent advances in the application of cellulose nanocrystals[J]. Current. Opinion. Colloid & Interface Science, 2017, 29: 32-45.
|
11 |
JAHAN Z, NIAZI M B K, GREGERSEN ϕ W. Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes[J]. J. Ind. Eng. Chem., 2018, 57: 113-124.
|
12 |
CAI J Y, CHEN J, ZHANG Q, et al. Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties[J]. Carbohydr. Polym., 2016, 140: 238-245.
|
13 |
NIAZI M B K, JAHAN Z, BERG S S, et al. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes[J]. Carbohydr. Polym., 2017, 177: 258-268.
|
14 |
BEISL S, FRIEDL A, MILTNER A. Lignin from micro- to nanosize: applications[J]. Int. J. Mol. Sci., 2017, 18(11): UNSP 2367.
|
15 |
GILLET S, AGUEDO M, PETITJEAN L, et al. Lignin transformations for high value applications: towards targeted modifications using green chemistry[J]. Green Chem., 2017, 19(18): 4200-4233.
|
16 |
ZHANG X, LIU W F, YANG D, et al. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance[J]. Adv. Funct. Mater., 2019, 29(4): 1806912.
|
17 |
ZHANG X, LIU W F, LIU W Q, et al. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties[J]. Int. J. Biol. Macromol., 2020, 142: 551-558.
|
18 |
ZHAO F L, YAO D, GUO R W, et al. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications[J]. Nanomaterials, 2015, 5(4): 2054-2130.
|
19 |
CHUNG C, KIM Y K, SHIN D, et al. Biomedical applications of graphene and graphene oxide[J]. Acc. Chem. Res., 2013, 46(10): 2211-2224.
|
20 |
GOENKA S, SANT V, SANT S. Graphene-based nanomaterials for drug delivery and tissue engineering[J]. J. Control. Release, 2014, 173: 75-88.
|
21 |
HUANG X, QI X Y, BOEY F, et al. Graphene-based composites[J]. Chem. Soc. Rev., 2012, 41(2): 666-686.
|
22 |
WANG J C, WANG X B, XU C H, et al. Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance[J]. Polym. Int., 2011, 60(5): 816-822.
|
23 |
TAO C A, ZHANG H, WANG F, et al. Mechanical properties of graphene oxide/polyvinyl alcohol composite film[J]. Polymers and Polymer Composites, 2017, 25(1): 11-16.
|
24 |
LIU Y C, WU K, LUO F B, et al. Significantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modified graphene nanoplatelets[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 134-143.
|
25 |
ZHOU T N, CHEN F, TANG C Y, et al. The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite[J]. Compos. Sci. Technol., 2011, 71(9): 1266-1270.
|
26 |
BHATTACHARYA M. Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers[J]. Materials, 2016, 9(4): 262.
|
27 |
LUAN X, YOUNSE H, HONG H, et al. Improving mechanical properties of PVA based nano composite using aligned single-wall carbon nanotubes[J]. Mater. Res. Express, 2019, 6(10): 1050a6.
|
28 |
SHIRAZI Y, TOFIGHY M A, MOHAMMADI T. Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol[J]. J. Membrane Sci., 2011, 378(1/2): 551-561.
|
29 |
WANG Y L, MA H M, WANG X D, et al. Novel signal amplification strategy for ultrasensitive sandwich-type electrochemical immunosensor employing Pd-Fe3O4-GS as the matrix and SiO2 as the label[J]. Biosens. Bioelectron., 2015, 74: 59-65.
|
30 |
ARIF Z, SETHY N K, MISHRA P K, et al. Investigating the influence of sol gel derived PVA/SiO2 nano composite membrane on pervaporation separation of azeotropic mixture I. Effect of operating condition[J]. J. Porous Mater., 2018, 25(4): 1203-1211.
|
31 |
MALLAKPOUR S, NAZARI H Y. The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique[J]. Ultrason. Sonochem., 2018, 41: 1-10.
|
32 |
GUO R L, MA X C, HU C L, et al. Novel PVA-silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution[J]. Polymer, 2007, 48(10): 2939-2945.
|
33 |
GAIDUKOV S, DANILENKO I, GAIDUKOVA G. Characterization of strong and crystalline polyvinyl alcohol/montmorillonite films prepared by layer-by-layer deposition method[J]. Int. J. Polym. Sci., 2015, 2015: 123469.
|
34 |
JOSE T, GEORGE S C, GM M, et al. Effect of bentonite clay on the mechanical, thermal, and pervaporation performance of the poly(vinyl alcohol) nanocomposite membranes[J]. Ind. Eng. Chem. Res., 2014, 53(43): 16820-16831.
|
35 |
WANG B, WANG Q, LI L. Morphology and properties of poly(vinyl alcohol)/MMT nanocomposite prepared by solid-state shear milling (S3M)[J]. J. Macromol. Sci., 2014, 53(1): 78-92.
|
36 |
OUN A A, SHANKAR S, J-W RHIM. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(3): 435-460.
|
37 |
EL-SHAMY A G, ATTIA W, EL-KADER K M ABD. The optical and mechanical properties of PVA-Ag nanocomposite films[J]. J. Alloys. Compdounds, 2014, 590: 309-312.
|
38 |
DAS R K, DAS M. Study of silver nanoparticle/polyvinyl alcohol nanocomposite[J]. Int. J. Plastics Tech., 2019, 23(1): 101-109.
|
39 |
SIROHI S, MITTAL A, NAIN R, et al. Effect of nanoparticle shape on the conductivity of Ag nanoparticle poly(vinyl alcohol) composite films[J]. Polym. Int., 2019, 68(12): 1961-1967.
|
40 |
CHEN X, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. ChemInform, 2007, 107(7): 2891-2959.
|
41 |
LEI P, WANG F, ZHANG S M, et al. Conjugation-grafted-TiO2 nanohybrid for high photocatalytic efficiency under visible light[J]. ACS Appl. Mater. Interfaces, 2014, 6(4): 2370-2376.
|
42 |
YAN W W, CHEN Q R, DU M F, et al. Highly transparent poly(vinyl alcohol)(PVA)/TiO2 nanocomposite films with remarkable photocatalytic performance and recyclability[J]. J. Nanosci. Nanotechno., 2018, 18(8): 5660-5667.
|
43 |
AHMAD J, DESHMUKH K, HABIB M, et al. Influence of TiO2 nanoparticles on the morphological, thermal and solution properties of PVA/TiO2 nanocomposite membranes[J]. Arabian. J. Sci. Eng., 2014, 39(10): 6805-6814.
|
44 |
AMANDA A, KULPRATHIPANJA A, TOENNESEN M, et al. Semicrystalline poly(vinyl alcohol) ultrafiltration membranes for bioseparations[J]. J. Membrane Sci., 2000, 176(1): 87-95.
|
45 |
AKSAKAL B, YARGı Ö, ŞAHINTURK U. Uniaxial tensile and structural properties of poly(vinyl alcohol) films: the influence of heating and film thickness[J]. J. Appl. Polym. Sci., 2017, 134(23): 44915.
|
46 |
HICKEY A S, PEPPAS N A. Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques[J]. J. Membrane Sci., 1995, 107(3): 229-237.
|
47 |
FUKUMORI T, NAKAOKI T. High-tensile-strength polyvinyl alcohol films prepared from freeze/thaw cycled gels[J]. J. Appl. Polym. Sci., 2014, 131(15): 40578.
|
48 |
SUGANTHI S, MOHANAPRIYA S, RAJ V, et al. Tunable physicochemical and bactericidal activity of multicarboxylic-acids-crosslinked polyvinyl alcohol membrane for food packaging applications[J]. ChemistrySelect, 2018, 3(40): 11167-11176.
|
49 |
SONKER A K, WAGNER H D, BAJPAI R, et al. Effects of tungsten disulphide nanotubes and glutaric acid on the thermal and mechanical properties of polyvinyl alcohol[J]. Composites Science and Technology, 2016, 127: 47-53.
|
50 |
GOHIL J M, RAY P. Studies on oxalic acid as a crosslinker of polyvinyl alcohol[J]. Polymers and Polymer Composites, 2009, 17(7): 403-410.
|
51 |
IŞIKLAN N, ŞANLI O. Separation characteristics of acetic acid-water mixtures by pervaporation using poly(vinyl alcohol) membranes modified with malic acid[J]. Chem. Eng. Process., 2005, 44(9): 1019-1027.
|
52 |
ZHANG R, WANG Y H, MA D H, et al. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites[J]. Ultrason. Sonochem., 2019, 59: 104731.
|
53 |
SONKER A K, TIWARI N, NAGARALE R K, et al. Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties[J]. J. Polym. Sci A: Polym. Chem., 2016, 54(16): 2515-2525.
|