化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3258-3269.DOI: 10.16085/j.issn.1000-6613.2020-1487
收稿日期:
2020-07-29
修回日期:
2020-10-05
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
张建华
作者简介:
刘超(1997—),男,硕士研究生,研究方向为聚乙烯醇膜的纳米复合改性。E-mail:基金资助:
LIU Chao1(), DONG Anjie1, ZHANG Jianhua1,2(
)
Received:
2020-07-29
Revised:
2020-10-05
Online:
2021-06-06
Published:
2021-06-22
Contact:
ZHANG Jianhua
摘要:
聚乙烯醇(PVA)因其良好的化学稳定性、耐酸碱、耐有机溶剂性以及优异的成膜性和生物安全性,成为应用最广泛的亲水性膜材料之一。但亲水性PVA膜力学性能弱和耐水性能差等缺点严重限制其实际应用。近些年,人们通过共混、纳米复合、热处理、化学交联以及协同改性等方法对PVA膜进行了大量的改性研究工作并取得了众多成果。本文总结了不同PVA膜改性方法的特点及存在的问题,重点阐述了性能优异的填料在纳米复合改进PVA膜力学性能上的研究现状,简述了共混、热处理、化学交联对改性PVA膜的作用,强调了协同改性对提高PVA膜综合性能的重要意义,为设计和制备高性能的PVA膜提供一定的参考。指出改性后的PVA膜在水处理和食品包装领域具有良好的应用前景。
中图分类号:
刘超, 董岸杰, 张建华. 改性聚乙烯醇膜的研究进展[J]. 化工进展, 2021, 40(6): 3258-3269.
LIU Chao, DONG Anjie, ZHANG Jianhua. Research progress of modified polyvinyl alcohol membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3258-3269.
1 | YANG E L, QIN X H, WANG S Y. Electrospun crosslinked polyvinyl alcohol membrane[J]. Mater. Lett., 2008, 62(20): 3555-3557. |
2 | GOHIL J M, BHATTACHARYA A, RAY P. Studies on the crosslinking of poly (vinyl alcohol)[J]. J. Polym. Res., 2006, 13(2): 161-169. |
3 | DONG Y Q, ZHANG L, SHEN J N, et al. Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures[J]. Desalination, 2006, 193(1/2/3): 202-210. |
4 | ABDULLAH Z W, DONG Y, DAVIES I J, et al. PVA, PVA blends, and their nanocomposites for biodegradable packaging application[J]. Polym. Plast. Technol. Eng., 2017, 56(12): 1307-1344. |
5 | BONILLA J, FORTUNATI E, ATARÉS L, et al. Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films[J]. Food Hydrocolloids, 2014, 35: 463-470. |
6 | WANG C R, FAN J, XU R, et al. Quaternary ammonium chitosan/polyvinyl alcohol composites prepared by electrospinning with high antibacterial properties and filtration efficiency[J]. J. Mater. Sci., 2019, 54(19): 12522-12532. |
7 | YIN M L, WANG Y F, ZHANG Y, et al. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties[J]. Carbohydr. Polym., 2020, 232: 115823. |
8 | ZHENG F Y, LI R S, HU J D, et al. Chitin and waste shrimp shells liquefaction and liquefied products/polyvinyl alcohol blend membranes[J]. Carbohydr. Polym., 2019, 205: 550-558. |
9 | WANG Z, YAN F, PEI H C, et al. Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration[J]. Carbohydr. Polym., 2018, 198: 241-248. |
10 | GRISHKEWICH N, MOHAMMED N, TANG J, et al. Recent advances in the application of cellulose nanocrystals[J]. Current. Opinion. Colloid & Interface Science, 2017, 29: 32-45. |
11 | JAHAN Z, NIAZI M B K, GREGERSEN ϕ W. Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes[J]. J. Ind. Eng. Chem., 2018, 57: 113-124. |
12 | CAI J Y, CHEN J, ZHANG Q, et al. Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties[J]. Carbohydr. Polym., 2016, 140: 238-245. |
13 | NIAZI M B K, JAHAN Z, BERG S S, et al. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes[J]. Carbohydr. Polym., 2017, 177: 258-268. |
14 | BEISL S, FRIEDL A, MILTNER A. Lignin from micro- to nanosize: applications[J]. Int. J. Mol. Sci., 2017, 18(11): UNSP 2367. |
15 | GILLET S, AGUEDO M, PETITJEAN L, et al. Lignin transformations for high value applications: towards targeted modifications using green chemistry[J]. Green Chem., 2017, 19(18): 4200-4233. |
16 | ZHANG X, LIU W F, YANG D, et al. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance[J]. Adv. Funct. Mater., 2019, 29(4): 1806912. |
17 | ZHANG X, LIU W F, LIU W Q, et al. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties[J]. Int. J. Biol. Macromol., 2020, 142: 551-558. |
18 | ZHAO F L, YAO D, GUO R W, et al. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications[J]. Nanomaterials, 2015, 5(4): 2054-2130. |
19 | CHUNG C, KIM Y K, SHIN D, et al. Biomedical applications of graphene and graphene oxide[J]. Acc. Chem. Res., 2013, 46(10): 2211-2224. |
20 | GOENKA S, SANT V, SANT S. Graphene-based nanomaterials for drug delivery and tissue engineering[J]. J. Control. Release, 2014, 173: 75-88. |
21 | HUANG X, QI X Y, BOEY F, et al. Graphene-based composites[J]. Chem. Soc. Rev., 2012, 41(2): 666-686. |
22 | WANG J C, WANG X B, XU C H, et al. Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance[J]. Polym. Int., 2011, 60(5): 816-822. |
23 | TAO C A, ZHANG H, WANG F, et al. Mechanical properties of graphene oxide/polyvinyl alcohol composite film[J]. Polymers and Polymer Composites, 2017, 25(1): 11-16. |
24 | LIU Y C, WU K, LUO F B, et al. Significantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modified graphene nanoplatelets[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 134-143. |
25 | ZHOU T N, CHEN F, TANG C Y, et al. The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite[J]. Compos. Sci. Technol., 2011, 71(9): 1266-1270. |
26 | BHATTACHARYA M. Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers[J]. Materials, 2016, 9(4): 262. |
27 | LUAN X, YOUNSE H, HONG H, et al. Improving mechanical properties of PVA based nano composite using aligned single-wall carbon nanotubes[J]. Mater. Res. Express, 2019, 6(10): 1050a6. |
28 | SHIRAZI Y, TOFIGHY M A, MOHAMMADI T. Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol[J]. J. Membrane Sci., 2011, 378(1/2): 551-561. |
29 | WANG Y L, MA H M, WANG X D, et al. Novel signal amplification strategy for ultrasensitive sandwich-type electrochemical immunosensor employing Pd-Fe3O4-GS as the matrix and SiO2 as the label[J]. Biosens. Bioelectron., 2015, 74: 59-65. |
30 | ARIF Z, SETHY N K, MISHRA P K, et al. Investigating the influence of sol gel derived PVA/SiO2 nano composite membrane on pervaporation separation of azeotropic mixture I. Effect of operating condition[J]. J. Porous Mater., 2018, 25(4): 1203-1211. |
31 | MALLAKPOUR S, NAZARI H Y. The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique[J]. Ultrason. Sonochem., 2018, 41: 1-10. |
32 | GUO R L, MA X C, HU C L, et al. Novel PVA-silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution[J]. Polymer, 2007, 48(10): 2939-2945. |
33 | GAIDUKOV S, DANILENKO I, GAIDUKOVA G. Characterization of strong and crystalline polyvinyl alcohol/montmorillonite films prepared by layer-by-layer deposition method[J]. Int. J. Polym. Sci., 2015, 2015: 123469. |
34 | JOSE T, GEORGE S C, GM M, et al. Effect of bentonite clay on the mechanical, thermal, and pervaporation performance of the poly(vinyl alcohol) nanocomposite membranes[J]. Ind. Eng. Chem. Res., 2014, 53(43): 16820-16831. |
35 | WANG B, WANG Q, LI L. Morphology and properties of poly(vinyl alcohol)/MMT nanocomposite prepared by solid-state shear milling (S3M)[J]. J. Macromol. Sci., 2014, 53(1): 78-92. |
36 | OUN A A, SHANKAR S, J-W RHIM. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(3): 435-460. |
37 | EL-SHAMY A G, ATTIA W, EL-KADER K M ABD. The optical and mechanical properties of PVA-Ag nanocomposite films[J]. J. Alloys. Compdounds, 2014, 590: 309-312. |
38 | DAS R K, DAS M. Study of silver nanoparticle/polyvinyl alcohol nanocomposite[J]. Int. J. Plastics Tech., 2019, 23(1): 101-109. |
39 | SIROHI S, MITTAL A, NAIN R, et al. Effect of nanoparticle shape on the conductivity of Ag nanoparticle poly(vinyl alcohol) composite films[J]. Polym. Int., 2019, 68(12): 1961-1967. |
40 | CHEN X, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. ChemInform, 2007, 107(7): 2891-2959. |
41 | LEI P, WANG F, ZHANG S M, et al. Conjugation-grafted-TiO2 nanohybrid for high photocatalytic efficiency under visible light[J]. ACS Appl. Mater. Interfaces, 2014, 6(4): 2370-2376. |
42 | YAN W W, CHEN Q R, DU M F, et al. Highly transparent poly(vinyl alcohol)(PVA)/TiO2 nanocomposite films with remarkable photocatalytic performance and recyclability[J]. J. Nanosci. Nanotechno., 2018, 18(8): 5660-5667. |
43 | AHMAD J, DESHMUKH K, HABIB M, et al. Influence of TiO2 nanoparticles on the morphological, thermal and solution properties of PVA/TiO2 nanocomposite membranes[J]. Arabian. J. Sci. Eng., 2014, 39(10): 6805-6814. |
44 | AMANDA A, KULPRATHIPANJA A, TOENNESEN M, et al. Semicrystalline poly(vinyl alcohol) ultrafiltration membranes for bioseparations[J]. J. Membrane Sci., 2000, 176(1): 87-95. |
45 | AKSAKAL B, YARGı Ö, ŞAHINTURK U. Uniaxial tensile and structural properties of poly(vinyl alcohol) films: the influence of heating and film thickness[J]. J. Appl. Polym. Sci., 2017, 134(23): 44915. |
46 | HICKEY A S, PEPPAS N A. Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques[J]. J. Membrane Sci., 1995, 107(3): 229-237. |
47 | FUKUMORI T, NAKAOKI T. High-tensile-strength polyvinyl alcohol films prepared from freeze/thaw cycled gels[J]. J. Appl. Polym. Sci., 2014, 131(15): 40578. |
48 | SUGANTHI S, MOHANAPRIYA S, RAJ V, et al. Tunable physicochemical and bactericidal activity of multicarboxylic-acids-crosslinked polyvinyl alcohol membrane for food packaging applications[J]. ChemistrySelect, 2018, 3(40): 11167-11176. |
49 | SONKER A K, WAGNER H D, BAJPAI R, et al. Effects of tungsten disulphide nanotubes and glutaric acid on the thermal and mechanical properties of polyvinyl alcohol[J]. Composites Science and Technology, 2016, 127: 47-53. |
50 | GOHIL J M, RAY P. Studies on oxalic acid as a crosslinker of polyvinyl alcohol[J]. Polymers and Polymer Composites, 2009, 17(7): 403-410. |
51 | IŞIKLAN N, ŞANLI O. Separation characteristics of acetic acid-water mixtures by pervaporation using poly(vinyl alcohol) membranes modified with malic acid[J]. Chem. Eng. Process., 2005, 44(9): 1019-1027. |
52 | ZHANG R, WANG Y H, MA D H, et al. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites[J]. Ultrason. Sonochem., 2019, 59: 104731. |
53 | SONKER A K, TIWARI N, NAGARALE R K, et al. Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties[J]. J. Polym. Sci A: Polym. Chem., 2016, 54(16): 2515-2525. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[5] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[6] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[7] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[8] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[9] | 殷成阳, 侯铭, 杨爽, 毛迪, 刘俊言. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974. |
[10] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[11] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[12] | 田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876. |
[13] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[14] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
[15] | 赵重阳, 赵磊, 石详文, 黄俊, 李治尧, 沈凯, 张亚平. O2/H2O/SO2 对改性富铁凹凸棒石高温吸附PbCl2 的影响[J]. 化工进展, 2023, 42(4): 2190-2200. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1262
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |