化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2206-2214.DOI: 10.16085/j.issn.1000-6613.2020-1048
收稿日期:
2020-06-10
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
程芳琴
作者简介:
程芳琴(1964—),教授,博士生导师,研究方向为盐湖资源综合利用、固废资源综合利用。E-mail:基金资助:
CHENG Fangqin(), JIAO Yuhua, LI Enze, KANG Jin, WANG Xuming
Received:
2020-06-10
Online:
2021-04-05
Published:
2021-04-14
Contact:
CHENG Fangqin
摘要:
Pickering乳液是指由微纳米固体粒子代替传统表面活性剂作为乳化剂而稳定的乳液,具有较强的稳定性和超高油/水界面,能够为多相界面反应和物质传输提供高效稳定的场所。Pickering乳液的乳滴结构和性质与固体颗粒的尺寸形貌及表面性质密不可分,通过调控固体颗粒本身或表面的性质可以赋予Pickering乳液特定的响应性功能,拓宽其应用领域。本文对近年来不同响应型(磁性、CO2、pH、光、温度等响应型)的Pickering乳液的主要研究成果进行了综述,重点介绍了Pickering乳液的稳定性原理、响应型Pickering乳液的制备方法和结构调控策略,以及近年来Pickering乳液在物质分离提取中的应用研究进展,最后对智能响应型Pickering乳液应用研究的发展趋势进行了展望。
中图分类号:
程芳琴, 焦玉花, 李恩泽, 康锦, 王旭明. 智能响应型Pickering乳液的制备及在物质分离中的应用进展[J]. 化工进展, 2021, 40(4): 2206-2214.
CHENG Fangqin, JIAO Yuhua, LI Enze, KANG Jin, WANG Xuming. Progress on the preparation of intelligent responsive Pickering emulsions and their applications in matter separation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2206-2214.
1 | 周君, 乔秀颖, 孙康. Pickering乳液的制备和应用研究进展[J]. 化学通报, 2012, 75(2): 99-105. |
ZHOU Jun, QIAO Xiuying, SUN Kang. Advance in the investigations of the preparation and application of Pickering emulsion[J]. Chemistry Bulletin, 2012, 75(2): 99-105. | |
2 | McCLEMENTS D J, JAFARI S M. Improving emulsion formation, stability and performance using mixed emulsifiers: a review[J]. Advances in Colloid and Interface Science, 2018, 251: 55-79. |
3 | PICKERING Spencer Umfrev. CXCⅥ.—Emulsions[J]. Journal of the Chemical Society Transactions, 1907, 91: 2001-2021. |
4 | 易成林, 杨逸群, 江金强, 等. 颗粒乳化剂的研究及应用[J]. 化学进展, 2011, 23(1): 65-79. |
YI Chenglin, YANG Yiqun, JIANG Jinqiang, et al. Research and application of particle emulsifiers[J]. Progress in Chemistry, 2011, 23(1): 65-79. | |
5 | ORTIZ Danae Gonzalez, Celine POCHAT-BOHATIER, CAMBEDOUZOU Julien, et al. Current trends in Pickering emulsions: particle morphology and applications[J]. Engineering, 2019, 6(4): 375-489. |
6 | ALBERT Claire, BELADJINE Mohamed, TSAPIS Nicolas, et al. Pickering emulsions: preparation processes, key parameters governing their properties and potential for pharmaceutical applications[J]. Journal of Controlled Release, 2019, 309: 302-332. |
7 | BINKS Bernard P. Particles as surfactants-similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1/2): 21-41. |
8 | BINKS B P, LUMSDON S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23): 8622-8631. |
9 | AVEYARD R, BINKS B P, CLINT J H. Emulsions stabilized solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100/102: 503-546. |
10 | LAGALY G, REESE M, ABEND S. Smectites as colloidal stabilizers of emulsions[J]. Applied Clay Science, 1999, 14(1): 83-103. |
11 | LOPETINSKY, ROBERT J G, MASLIYAH. Colloidal particles at liquid interface. Chapter6: Solids-stabilized emulsions: a review[M]. Cambridge: Cambridge University Press, 2006. |
12 | DICKINSON Eric. Food emulsions and foams: stabilization by particles[J]. Current Opinion in Colloid & Interface Science, 2010, 15(1/2): 40-49. |
13 | BINKS B P, KIRKLAND M. Interfacial structure of solid-stabilised emulsions studied by scanning electron microscopy[J]. Physical Chemistry Chemical Physics, 2002, 4(15): 3727-3733. |
14 | 刘登卫. Pickering乳液的制备及应用研究[D]. 西安: 西安科技大学, 2011. |
LIU Dengwei. Study on the preparation and application of Pickering emulsions[D]. Xi’an: Xi’an University of Science and Technology, 2011. | |
15 | 田梅娟. Pickering乳液的制备及稳定性研究[J]. 化学与生物工程, 2016, 33(5): 62-64. |
TIAN Meijuan. Preparation of Pickering emulsion and its stability[J]. Chemistry&Bioengineering, 2016, 33(5): 62-64. | |
16 | 林兆云, 于得海, 李友明. 纳米Fe3O4稳定的Pickering型ASA乳液[J]. 化工学报, 2014, 65(2): 641-646. |
LIN Zhaoyun, YU Dehai, LI Youming. Pickering-type ASA emulsions stabilized by Fe3O4 nanoparticles[J]. CIESC Journal, 2014, 65(2): 641-646. | |
17 | XUE Wei, YANG Hengquan, DU Zhiping. Synthesis of pH-responsive inorganic Janus nanoparticles and experimental investigation of the stability of their Pickering emulsions[J]. Langmuir, 2017, 33: 10283-10290. |
18 | NOBLE P F, CAYRE O J, ALARGOVA R J, et al. Fabrication of “hairy” colloidosomes with shells of polymeric microrods[J]. Journal of the American Chemical Society, 2004, 126(26): 8092-8093. |
19 | MADIVAL Basavaraj, FRANSARE Jan, VERMANT Jan. Self-assembly and rheology of ellipsoidal particles at interfaces[J]. Langmuir, 2009, 25(5): 2718-2728. |
20 | LEWANDOWSKI E P, CAVALLARO M, BOTTO L, et al. Orientation and self-assembly of cylindrical particles by anisotropic capillary interactions[J]. Langmuir, 2010, 26(19): 15142-15154. |
21 | THICKETT S C, ZETTERLUND P B. Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: influence of oil phase polarity[J]. Journal of Colloid and Interface Science, 2015, 442: 67-74. |
22 | OWOSENI Olasehinde, ZHANG Yueheng, SU Yang, et al. Tuning the wettability of halloysite clay nanotubes by surface carbonization for optimal emulsion stabilization[J]. Langmuir, 2015, 31(51): 13700-13707. |
23 | ZHANG Nana, ZHANG Li, SUN Dejun. Influence of emulsification process on the properties of Pickering emulsions stabilized by layered double hydroxide particles[J]. Langmuir, 2015, 31(16): 4619-4626. |
24 | 杨海, 黄新, 林子增, 等. 油包水型原油乳状液破乳技术研究进展[J]. 应用化工, 2018, 47(12): 2734-2738. |
YANG Hai, HUANG Xin, LIN Zizeng, et al. Research progress in the demulsification technology for water-in-crude oil emulsion[J]. Applied Chemical Industry, 2018, 47(12): 2734-2738. | |
25 | 薛芬, 彭莲花, 郝雅娟, 等. 磁响应界面活性复合材料制备及乳化性能研究[J]. 山西大学学报(自然科学版), 2014, 37(2): 257-263. |
XUE Fen, PENG Lianhua, HAO Yajuan. et al. Preparation and emulsifying properties of magnetically responsive and interfacial active composites[J]. Journal of Shanxi University (Natural Science Edition), 2014, 37(2): 257-263. | |
26 | YANG Huirong, ZHANG Hongxia, PENG Junxia, et al. Smart magnetic ionic liquid-based Pickering emulsions stabilized by amphiphilic Fe3O4 nanoparticles: highly efficient extraction systems for water purification[J]. Journal of Colloid and Interface Science, 2017, 485: 213-222. |
27 | LIN Zhaoyun, ZHANG Zhe, LI Youming, et al. Magnetic nano-Fe3O4 stabilized Pickering emulsion liquid membrane for selective extraction and separation[J]. Chemical Engineering Journal, 2016, 288: 305-311. |
28 | SONIA Melle, MAURICIO Lask, Fuller GERALD G. Pickering emulsions with controllable stability[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2005, 21(6): 2158-2162. |
29 | LOW L E, TEY B T, ONG B H, et al. Unravelling pH-responsive behaviour of Fe3O4 @CNCs-stabilized Pickering emulsions under the influence of magnetic field[J]. Polymer, 2018, 141: 93-101. |
30 | Liangee LOW, Chienwei OOI, CHAN Engseng, et al. Dual (magnetic and pH) stimuli-reversible Pickering emulsions based on poly(2-(dimethylamino)ethyl methacrylate)-bonded Fe3O4 nanocomposites for oil recovery application[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103715. |
31 | SHI Yunlei, XIONG Dazhen, CHEN Yongkui, et al. CO2-responsive Pickering emulsions stabilized by in-situ generated ionic liquids and silica nanoparticles[J]. Journal of Molecular Liquids, 2019, 274: 239-245. |
32 | 李溪溪, 韩霞, 刘洪来. CO2响应性颗粒乳化剂的制备及其乳化性能研究[J]. 中国胶粘剂, 2019, 28(6): 1-4. |
LI Xixi, HAN Xia, LIU Honglai. CO2 responsive particle emulsifiers and their Pickering emulsions[J]. China Adhesives, 2019, 28(6): 1-4. | |
33 | QIAN Yong, ZHANG Qi, QIU Xueqing, et al. CO2-responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO2/N2-switchable Pickering emulsions[J]. Green Chemistry, 2014, 16(12): 4963-4968. |
34 | JIANG Jianzhong, ZHU Yue, CUI Zhenggang, et al. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant[J]. Angewandte Chemie: International Edition, 2013, 52: 12373-12376. |
35 | ZHANG Yongmin, REN Xiaofei, GUO Shuang, et al. CO2-switchable Pickering emulsion using functionalized silica nanoparticles decorated by amine oxide-based surfactantst[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 2641-2650. |
36 | RONG Xia, ETTELAIE Rammile, LISHCHUK Sergey V, et al. Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture[J]. Nature Communications, 2019, 10(1): 1647-1652. |
37 | XIAO Zhigang, WANG Lishuang, Chunyue LYU, et al. Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles[J]. International Journal of Biological Macromolecules, 2020, 143: 401-412. |
38 | LU Shuo, YANG Dongjie, WANG Miao, et al. Pickering emulsions synergistic-stabilized by amphoteric lignin and SiO2 nanoparticles: stability and pH-responsive mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124158. |
39 | LAN Qiang, LIU Chao, YANG Fei, et al. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J]. Journal of Colloid and Interface Science, 2007, 310(1): 260-269. |
40 | YANG Hengquan, ZHOU Ting, ZHANG Wenjuan. A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion[J]. Angewandte Chemie International Edition, 2013, 52: 7455-7459. |
41 | HUANG Jianping, YANG Hengquan. A pH-switched Pickering emulsion catalytic system: high reaction efficiency and facile catalyst recycling[J]. Chemical Communications, 2015, 51: 7333-7336. |
42 | HUANG Jianping, CHENG Fangqin, BINKS Bernard P, et al. pH-responsive gas-water-solid interface for multiphase catalysis[J]. Journal of the American Chemical Society, 2015, 137: 15015-15025. |
43 | REN Gaihuan, WANH Maoxin, WANG Lei, et al. Dynamic covalent silica nanoparticles for pH-switchable Pickering emulsions[J]. Langmuir, 2018, 34: 5798-5806. |
44 | 张青. 光磁双响应型Pickering乳液微反应器研究[D]. 成都:西南交通大学, 2015. |
ZHANG Qing. The research for Pickering emulsion droplets as microreactor with light and magnetic responses[D]. Chengdu: Southwest Jiaotong University, 2015. | |
45 | CHEN Zhaowei, ZHOU Li, BING Wei, et al. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis[J]. Journal of the American Chemical Society, 2014, 136(20): 7498-7504. |
46 | WANG Yuxian, ZHU Liying, ZHANG Hongman, et al. Formulation of pH and temperature dual-responsive Pickering emulsion stabilized by chitosan-based microgel for recyclable biocatalysis[J]. Carbohydrate Polymers, 2020, 241: 116373. |
47 | WANG Chao, PEI Xiaopeng, TAN Junling, et al. Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release[J]. International Journal of Biological Macromolecules, 2020, 146: 171-178. |
48 | NGAI To, AUWETER Helmut, BEHRENS Sven Holger. Environmental responsiveness of microgel particles and particle-stabilized emulsions[J]. Macromolecules, 2006, 39(23): 8171-8177. |
49 | PERUMAL Murugan, SOUNDARAJAN Bhuvaneshwari, VENHARA Nihal Thazhathuveettil. Extraction of Cr(Ⅵ) by Pickering emulsion liquid membrane using amphiphilic silica nanowires (ASNWs) as a surfactant[J]. Journal of Dispersion Science and Technology, 2019, 40(7): 1046-1055. |
50 | 刘登卫, 贺拥军, 郭晓滨, 等. 基于Pickering乳液介质萃取苯胺的研究[J]. 高校化学工程学报, 2012, 26(3): 418-423. |
LIU Dengwei, HE Yongjun, GUO Xiaobin, et al. Study on the aniline extraction process based on Pickering emulsion medium[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(3): 418-423. | |
51 | HE Jingxing, MA Zhenzhen, YANG Yuhong, et al. Extraction of tetracycline in food samples using biochar microspheres prepared by a Pickering emulsion method[J]. Food Chemistry, 2020, 329:127162. |
52 | BAI Xue, LIU Jinxin, XU Yuhu, et al. CO2 Pickering emulsion in water templated hollow porous sorbents for fast and highly selective uranium extraction[J]. Chemical Engineering Journal, 2020, 387: 124096. |
53 | ZHANG Xinxue, SUN Xiaoli, WANG Muhua, et al. Dummy molecularly imprinted microspheres prepared by Pickering emulsion polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples[J]. Journal of Chromatography A, 2020, 1620: 461013. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[3] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[4] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[5] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[6] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[7] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[8] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[9] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[12] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[13] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[14] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[15] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |