化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2070-2081.DOI: 10.16085/j.issn.1000-6613.2020-2443
收稿日期:
2020-12-03
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
纪红兵
作者简介:
周贤太(1974—),男,副教授,研究方向为仿生催化。E-mail:基金资助:
ZHOU Xiantai1(), XUE Can1, JI Hongbing2,3()
Received:
2020-12-03
Online:
2021-04-05
Published:
2021-04-14
Contact:
JI Hongbing
摘要:
催化烃类氧化是提供合成树脂、合成纤维和合成橡胶等大宗化学品以及各类精细化学品的基本工艺,在化学工业中具有重要的地位。目前工业上的烃类氧化工艺普遍需要高温高压条件,苛刻条件可以使氧气活化及碳氢键断裂产生自由基。本文从均相催化、非均相催化、仿生催化等方面对近年来催化氧化反应的研究进展进行了回顾,梳理了催化氧化中的自由基机理。总结了仿生催化体系中自由基稳定性和定向性调控机制等方面的研究现状,提出了高效催化剂的设计、自由基的传递及调控机制等方面将是催化氧化领域的重要研究方向。
中图分类号:
周贤太, 薛灿, 纪红兵. 烃类选择氧化过程中自由基的调控策略与工业氧化应用研究进展[J]. 化工进展, 2021, 40(4): 2070-2081.
ZHOU Xiantai, XUE Can, JI Hongbing. Progress on the regulation strategy of free radicals in the selective oxidation of hydrocarbons and its industrial application[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2070-2081.
原料 | 产物 | 反应条件 | 转化率/% | 选择性/% | 典型工艺 | ||
---|---|---|---|---|---|---|---|
温度/℃ | 压力/MPa | 催化剂 | |||||
异丁烷 | 叔丁基过氧化氢 | 140 | 3.5 | 引发剂 | 25 | 60 | Oxirane |
环己烷 | 环己醇和环己酮 | 165 | 1.5 | Co和Mn盐 | 5 | 85 | DuPont |
甲苯 | 苯甲酸 | 165 | 1.0 | Co和Mn盐 | 90 | 95 | Amoco |
对二甲苯 | 对二苯甲酸 | 200 | 3.0 | Co和Mn盐 | 95 | 90 | Amoco |
异丙苯 | 异丙苯过氧化氢 | 140 | 0.5 | 引发剂 | 30 | 95 | Oxirane |
表1 典型的烃类液相选择性氧化工艺及反应条件
原料 | 产物 | 反应条件 | 转化率/% | 选择性/% | 典型工艺 | ||
---|---|---|---|---|---|---|---|
温度/℃ | 压力/MPa | 催化剂 | |||||
异丁烷 | 叔丁基过氧化氢 | 140 | 3.5 | 引发剂 | 25 | 60 | Oxirane |
环己烷 | 环己醇和环己酮 | 165 | 1.5 | Co和Mn盐 | 5 | 85 | DuPont |
甲苯 | 苯甲酸 | 165 | 1.0 | Co和Mn盐 | 90 | 95 | Amoco |
对二甲苯 | 对二苯甲酸 | 200 | 3.0 | Co和Mn盐 | 95 | 90 | Amoco |
异丙苯 | 异丙苯过氧化氢 | 140 | 0.5 | 引发剂 | 30 | 95 | Oxirane |
1 | 纪红兵, 佘远斌. 绿色氧化与还原[M]. 北京: 中国石化出版社, 2005: 205. |
JI H B, SHE Y B. Green oxidation & reduction[M]. Beijing: China Petrochemical Press, 2005: 205. | |
2 | STAHL S S, JIAO N. Green oxidation in organic synthesis[M]. Hoboken: John Wiley & Sons Inc., 2019: 156. |
3 | 金中豪, 周海波, 王仰东, 等. 由烃加工到烃合成:催化技术进展[J]. 科学通报, 2018, 63(19): 1852-1861. |
JIN Zhonghao, ZHOU Haibo, WANG Yangdong, et al. From hydrocarbon processing to hydrocarbon synthesis: advances in catalytic technology[J]. Chinese Science Bulletin, 2018, 63(19): 1852-1861. | |
4 | HONG C, MA J Q, LI M C, et al. Ferric nitrate-catalyzed aerobic oxidation of benzylic sp(3) C—H bonds of ethers and alkylarenes[J]. Tetrahedron, 2017, 73 (21): 3002-3009. |
5 | YU J W, MAO, S, WANG Y Q. Copper-catalyzed base-accelerated direct oxidation of C—H bond to synthesize benzils, isatins, and quinoxalines with molecular oxygen as terminal oxidant[J]. Tetrahedron Letters, 2015, 56(12): 1575-1580. |
6 | PAMIN K, POZZI G, TABOR E, et al. Oxidation of cycloalkanes with molecular oxygen in the presence of salen metallocomplexes in thermomorphic conditions[J]. Catalysis Communications, 2013, 39: 102-105. |
7 | ZHANG Q, GORDEN J D, GOLDSMITH C R. C—H oxidation by H2O2 and O2 catalyzed by a non-heme iron complex with a sterically encumbered tetradentate N-donor ligand[J]. Inorganic Chemistry, 2013, 52(23): 13546-13554. |
8 | HAYASHI Y, KOMIYA N, SUZUKI K, et al. Copper-catalyzed aerobic oxidative functionalization of C—H bonds of alkanes in the presence of acetaldehyde under mild conditions[J]. Tetrahedron Letters, 2013, 54(21): 2706-2709. |
9 | KANTAM M L, SREEKANTH P, RAO K K, et al. An improved process for selective liquid-phase air oxidation of toluene[J]. Catalysis Letters, 2002, 81 (3/4): 223-232. |
10 | SHULPIN G B, LACHTER E R. Aerobic hydroxylation of hydrocarbons catalysed by vanadate ion[J]. Journal of Molecular Catalysis A, 2003, 197(1/2): 65-71. |
11 | BARTON D H R, GASTIGER M J, MOTHERWELL W B. A new procedure for the oxidation of saturated hydrocarbons[J]. Journal of the Chemical Society, Chemical Communications, 1983(1): 41-43. |
12 | BALVONINE G, BARTON D H R, BOIVIN J, et al. An efficient electrochemical process for the oxidation of saturated hydrocarbons: the Gif-Orsay system[J]. Jounral of the Chemical Soceity: Chemical Communications, 1986, 23: 1727-1729. |
13 | BARTON D H R, BEVIERE S D, CHAVASIRI W, et al. The functionalization of saturated hydrocarbons. Part 20. Alkyl hydroperoxides: reaction intermediates in the oxidation of saturated hydrocarbons by Gif-Type reactions and mechanistic studies on their formation[J]. Journal of the American Chemical Society, 1992,114: 2147-2156. |
14 | ISHII Y. A novel catalysis of N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n=2 or 3) in the oxidation of organic substrates with molecular oxygen[J]. Journal of Molecular Catalysis A, 1997, 117: 123-137. |
15 | PATIL R D, FUCHS B, TAHA N, et al. Solvent-free and selective autooxidation of alkylbenzenes catalyzed by Co/NHPI under phase transfer conditions[J]. Chemistry Select, 2016, 1(13): 3791-3796. |
16 | DENG W, LUO W P, TAN Z, et al. Remarkable effect of simple aliphatic alcohols on the controlled aerobic oxidation of toluene catalyzed by (T(p-Cl)PP)MnF/NHPI[J]. Journal of Molecular Catalysis A, 2013, 372: 84-89. |
17 | TNAY Y L, CHIBA S. Copper-catalyzed aerobic C—C bond cleavage of lactols with N-hydroxy phthalimide for synthesis of lactones[J]. Chemistry: an Asian Journal, 2015, 10(4): 873-877. |
18 | MIAO C X, ZHAO H Q, ZHAO Q Y, et al. NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenes[J]. Catalysis Science and Technology, 2016, 6(5): 1378-1383. |
19 | HABIBI D, FARAJI A R, ARSHADI M, et al. Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and oximes in the presence of N-hydroxyphthalimide[J]. Applied Catalysis A, 2013, 466: 282-292. |
20 | BLANDEZ J F, NAVALÓN S, ÁLVARO M, et al. N-Hydroxyphthalimide anchored on diamond nanoparticles as a selective heterogeneous metal-free oxidation catalyst of benzylic hydrocarbons and cyclic alkenes by molecular O2[J]. ChemCatChem, 2018, 10(1): 198-205. |
21 | MAJUMDAR B, BHATTACHARYA T, SARMA T K. Gold nanoparticle-polydopamine-reduced graphene oxide ternary nanocomposite as an efficient catalyst for selective oxidation of benzylic C(sp3) —H bonds under mild conditions[J]. ChemCatChem, 2016, 8(10): 1825-1835. |
22 | GAO B, MENG S, YANG X. Synchronously synthesizing and immobilizing N-hydroxyphthalimide on polymer microspheres and catalytic performance of solid catalyst in oxidation of ethylbenzene by molecular oxygen[J]. Organic Process Research & Development, 2015, 19(10): 1374-1382. |
23 | ORLIŃSKA B, ZAWADIAK J. Aerobic oxidation of isopropylaromatic hydrocarbons to hydroperoxides catalyzed by N-hydroxyphthalimide[J]. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(1): 15-30. |
24 | LIU X F, LIN L, YE X Y, et al. Aerobic oxidation of benzylic sp3 C—H bonds through cooperative visible-light photoredox catalysis of N-hydroxyimide and dicyanopyrazine[J]. Asian Journal of Organic Chemistry, 2017, 6(4): 422-425. |
25 | MELONE L, FRANCHI P, LUCARINI M, et al. Sunlight induced oxidative photoactivation of N-hydroxyphthalimide mediated by naphthalene imides[J]. Advanced Synthesis & Catalysis, 2013, 355 (16): 3210-3220. |
26 | ZHAO Q M, CHEN K X, ZHANG W S, et al. Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues[J]. Journal of Molecular Catalysis A, 2015, 402: 79-82. |
27 | LIU G Y, TANG R R, WANG Z. Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide[J]. Catalysis Letters, 2014, 144(4): 717-722. |
28 | AMORATI R, LUCARINI M, MUGNAINI V, et al. Hydroxylamines as oxidation catalysts: thermochemical and kinetic studies[J]. The Journal of Organic Chemistry, 2003, 68(5): 1747-1754. |
29 | ZHANG Z G, GAO Y, LIU Y, et al. Organocatalytic aerobic oxidation of benzylic sp3 C—H bonds of ethers and alkylarenes promoted by a recyclable TEMPO catalyst[J]. Organic Letters, 2015, 17(21): 5492-5495. |
30 | GASTER E, KOZUCH S, PAPPO D. Selective aerobic oxidation of methylarenes to benzaldehydes catalyzed by N-hydroxyphthalimide and cobalt(Ⅱ) acetate in hexafluoropropan-2-ol[J]. Angewante Chemie: International Edition, 2017, 56(21): 5912-5915. |
31 | COLOMER I, CHAMBERLAIN A E R, HAUGHEY M B, et al. Hexafluoroisopropanol as a highly versatile solvent[J]. Nature Reviews Chemistry, 2017, 1(11): 0088. |
32 | DANTIGNANA V, MILAN M, CUSSÓ O, et al. Chemoselective aliphatic C—H bond oxidation enabled by polarity reversal[J]. ACS Central Science, 2017, 3(12): 1350-1358. |
33 | TAHA N, SASSON Y. Superior performance of NHPI cocatalyst in the autoxidation of methylbenzenes under solvent-free phase transfer conditions[J]. Organic Process Research & Development, 2010, 14(3): 701-704. |
34 | BACIOCCHI E, GERINI M F, LANZALUNGA O. Reactivity of phthalimide N-oxyl radical (PINO) toward the phenolic O—H bond. A kinetic study[J]. The Journal of Organic Chemistry, 2004, 69(25): 8963-8966. |
35 | GRANT J T., VENEGAS J M, MCDERMOTT W P, et al. Aerobic oxidations of light alkanes over solid metal oxide catalysts[J]. Chemical Reviews, 2018, 118(5): 2769-2815. |
36 | GONG Y T, LI M M, LI H R, et al. Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation[J]. Green Chemistry, 2015, 17(2): 715-736. |
37 | LIU P, LI G, CHANG W T, et al. Highly dispersed Pd nanoparticles supported on nitrogen-doped graphene with enhanced hydrogenation activity[J]. RSC Advances, 2015, 5(89): 72785-72792. |
38 | FU L L, ZHAO S F, CHEN Y, al et, One-pot synthesis of mesoporous silica hollow spheres with Mn-N-C integrated into the framework for ethylbenzene oxidation[J]. Chemical Communications, 2016, 52(32): 5577-5580. |
39 | MORI K, HARA T, MIZUGAKI T, et al. Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen[J]. Journal of the American Chemical Society, 2004, 126(34): 10657-10666. |
40 | DHAKSHINAMOORTHY A, ASIRI A M, HERANCE J R, et al. Metal organic frameworks as solid promoters for aerobic autoxidations[J]. Catalysis Today, 2018, 306: 2-8. |
41 | DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H. Metal-organic frameworks as catalysts for oxidation reactions[J]. Chemistry: a European Journal, 2016, 22(24): 8012-8024. |
42 | LONG J L, LIU H L, WU S J, et al. Selective oxidation of saturated hydrocarbons using Au-Pd alloy nanoparticles supported on metal-organic frameworks[J]. ACS Catalysis, 2013, 3(4): 647-654. |
43 | FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
44 | UNNARKAT A P, SRIDHAR T, WANG H T, et al. Cobalt molybdenum oxide catalysts for selective oxidation of cyclohexane[J]. AIChE Journal, 2016, 62(12): 4384-4402. |
45 | MISTRI R, MAITI S, LLORCA J, et al. Copper ion substituted hercynite (Cu0.03Fe0.97Al2O4): a highly active catalyst for liquid phase oxidation of cyclohexane[J]. Applied Catlysis A, 2014, 485: 40-50. |
46 | 周贤太, 纪红兵. 金属卟啉仿生催化氧化合成有机化工产品[J]. 精细化工, 2013, 30(4): 425-432. |
ZHOU Xiantai, JI Hongbing. Synthesis of organic chemical products by metalloporphyrins-based biomimetic catalytic oxidation[J]. Fine Chemicals, 2013, 30(4): 425-432. | |
47 | CHE C M, LO V K Y, ZHOU C Y, et al. Selective functionalisation of saturated C—H bonds with metalloporphyrin catalysts[J]. Chemical Society Reviews, 2011, 40(4): 1950-1975. |
48 | JI H B, ZHOU X T. Biomimetic epoxidation of olefins catalyzed by metalloporphyrins with molecular oxygen, in Biomimetics based applications[M]. Vienna: In-Tech publishing, 2011. |
49 | JI H B, ZHOU X T. Biomimetic homogeneous oxidation catalyzed by metalloporphyrins with green oxidants[M]//Biomimetics, learning from natur. Vienna: In-Tech publishing, 2010. |
50 | MARIMUTHU A, ZHANG J W, LINIC S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state[J]. Science, 2013, 339(6127): 1590-1593. |
51 | WANG Z Y, GAO A L, CHEN P, et al. The construction of Mo6-δO3-x supported catalyst for low-temperature propylene gas-phase epoxidation by Cu modification[J]. Journal of Catalysis, 2018, 368: 120-133. |
52 | PANOV G I, STAROKON E V, PARFENOV M V, et al. Single turnover epoxidation of propylene by α-complexes (FeⅢ-O.)α on the surface of FeZSM-5 zeolite[J]. ACS Catalysis, 2016, 6(6): 3875-3879. |
53 | LI Y, ZHOU X T, CHEN S Y, et al. Direct aerobic liquid phase epoxidation of propylene catalyzed by Mn() porphyrin under mild conditions: evidence for the existence of both peroxide and Mn(Ⅳ)-oxo species from in situ characterizations[J]. RSC Advances, 2015, 5(38): 30014-30020. |
54 | ELLIS P E, LYONS J E. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins—The search for a suprabiotic system[J]. Coordination Chemistry Reviews, 1990, 105: 181-193. |
55 | LYONS J E, ELLIS P E, MYERS H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen[J]. Journal of Catalysis, 1995, 155(1): 59-73. |
56 | GUO C C, LIU X Q, LIU Y, et al. Studies of simple μ-oxo-bisiron(Ⅲ)porphyrin as catalyst of cyclohexane oxidation with air in absence of cocatalysts or coreductants[J]. Journal of Molecular Catalysis A, 2003, 192 (1/2): 289-294. |
57 | GUO C C, CHU M F, LIU Q, et al. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents[J]. Applied Catalysis A, 2003, 246(2): 303-309. |
58 | YUAN Y, JI H B, CHEN Y X, et al. Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst[J]. Organic Process Research & Development, 2004, 8(3): 418-420. |
59 | WANG T, SHE Y B, FU H Y, et al. Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts[J]. Catalysis Today, 2016, 264: 185-190. |
60 | SHEN H M, WANG X, GUO A B, et al. Catalytic oxidation of cycloalkanes by porphyrin cobalt() through efficient utilization of oxidation intermediates[J]. Journal of Porphyrins and Phthalocyanines, 2020, 24(10): 1166-1173. |
61 | POŁTOWICZ J, HABER J. The oxyfunctionalization of cycloalkanes with dioxygen catalyzed by soluble and supported metalloporphyrins[J]. Journal of Molecular Catalysis A, 2004, 220(1): 43-51. |
62 | HABER J, MATACHOWSKI L, PAMIN K, et al. Manganese porphyrins as catalysts for oxidation of cyclooctane in Lyons system[J]. Journal of Molecular Catalysis A, 2000, 162(1/2): 105-109. |
63 | HUANG G, WANG A P, LIU S Y, et al. An efficient oxidation of toluene over Co()TPP supported on chitosan using air[J]. Catalysis Letters, 2007, 114 (3/4): 174-177. |
64 | HUANG G, LUO J, DENG C C, et al. Catalytic oxidation of toluene with molecular oxygen over manganese tetraphenylporphyrin supported on chitosan[J]. Applied Catlysis A, 2008, 338(1/2): 83-86. |
65 | SHEN H M, QI B, HU M Y, et al. Selective solvent-free and additive-free oxidation of primary benzylic C—H bonds with O2 catalyzed by the combination of metalloporphyrin with N-hydroxyphthalimide[J]. Catalysis Letters, 2020, 150(11): 3096-3111. |
66 | SHEN H M, LIU L, QI B, et al. Efficient and selective oxidation of secondary benzylic C—H bonds to ketones with O2 catalyzed by metalloporphyrins under solvent-free and additive-free conditions[J]. Molecular Catalysis, 2020, 493: 111102. |
67 | SHEN H M, HU M Y, LIU L, et al. Efficient and selective oxidation of tertiary benzylic C—H bonds with O2 catalyzed by metalloporphyrins under mild and solvent-free conditions[J]. Applied Catlysis A, 2020, 599: 117599. |
68 | HONG Y, FANG Y X, ZHOU X T, et al. Ionic liquid-modified Co/ZSM-5 catalyzed the aerobic oxidation of cyclohexane: toward improving the activity and selectivity[J]. Industrial & Engineering Chemistry Research, 2019, 58(43): 19832-19838. |
69 | PUNNIYAMURTHY T, VELUSAMY S, IQBAL J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen[J]. Chemical Reviews, 2005, 105(6): 2329-2363. |
70 | PAMIN K, TABOR E, GORECKA S, et al. Three generations of cobalt porphyrins as catalysts in the oxidation of cycloalkanes[J]. ChemSusChem, 2019, 12(3): 684-691. |
71 | LIU K X, LEI Y K, WANG G F. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes[J]. The Journal of Chemical Physcis, 2013, 139(20): 204306. |
72 | RUTKOWSKA-ZBIK D, TOKARZ-SOBIERAJ R, WITKO M. Quantum chemical description of oxygen activation process on Co, Mn, and Mo porphyrins[J]. Journal of Chemical Theory and Computation, 2007, 3(3): 914-920. |
73 | MEUNIER B, DE VISSER S P, SHAIK S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes[J]. Chemical Reviews, 2004, 104(9): 3947-3980. |
74 | JIANG J, WANG J X, ZHOU X T, et al. Mechanistic understanding towards the role of cyclohexene in enhancing the efficiency of manganese porphyrin-catalyzed aerobic oxidation of diphenylmethane[J]. European Journal of Inorganic Chemistry, 2018(23): 2666-2674. |
75 | CHEN H Y, LV M, ZHOU X Tet al. A novel system comprising metalloporphyrins and cyclohexene for the biomimetic aerobic oxidation of toluene[J]. Catalysis Communications, 2018, 109: 76-79. |
76 | JIANG J, LUO R C, ZHOU X T, et al. Metalloporphyrin-mediated aerobic oxidation of hydrocarbons in cumene: Co-substrate specificity and mechanistic consideration[J]. Molecular Catalysis, 2017, 440: 36-42. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[11] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[12] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[13] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[14] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[15] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |