化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1893-1916.DOI: 10.16085/j.issn.1000-6613.2020-1990
徐志康(), 黄佳露, 王廷海, 岳源源, 白正帅, 鲍晓军, 朱海波()
收稿日期:
2020-09-30
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
朱海波
作者简介:
徐志康(1993—),男,博士研究生,研究方向为丙烷脱氢。E-mail:基金资助:
XU Zhikang(), HUANG Jialu, WANG Tinghai, YUE Yuanyuan, BAI Zhengshuai, BAO Xiaojun, ZHU Haibo()
Received:
2020-09-30
Online:
2021-04-05
Published:
2021-04-14
Contact:
ZHU Haibo
摘要:
丙烷脱氢产业的迅猛发展亟需研发新一代高性能催化剂。本综述阐述了近年来新型负载型Pt纳米簇、金属氧化物和碳材料在丙烷脱氢反应中的研究进展。文章指出:Pt纳米簇的分散性和稳定性是决定其脱氢性能的关键因素;通过发展新合成技术和调节载体性质能改进其催化活性。金属氧化物中不饱和金属阳离子是脱氢反应的活性位点;调节载体的性质、优化制备方法以及结构掺杂都可显著提高其催化活性。碳材料中的含氧官能团被认为是丙烷脱氢反应的活性中心;对碳材料的比表面积、孔道性质及含氧官能团的数量等参数进行合理调控,能改善其催化性能。最后,文章提出未来的研究将重点解决Pt纳米簇的抗烧结性能弱、氧化物的本征活性低、碳材料高温稳定性差的问题,实现该领域的重大突破。
中图分类号:
徐志康, 黄佳露, 王廷海, 岳源源, 白正帅, 鲍晓军, 朱海波. 丙烷脱氢制丙烯催化剂的研究进展[J]. 化工进展, 2021, 40(4): 1893-1916.
XU Zhikang, HUANG Jialu, WANG Tinghai, YUE Yuanyuan, BAI Zhengshuai, BAO Xiaojun, ZHU Haibo. Advances in catalysts for propane dehydrogenation to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1893-1916.
催化剂 | 反应温度 /℃ | 反应原料比 | 总流速 /mL·min-1 | 质量空速WHSV | 丙烷始-末 转化率/% | 丙烯始-末 选择性/% | 反应时间 TOS/h | 失活速率Kd/h-1 | 制备方法 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
Pt0Gaδ+/SiO2 | 550 | C3H8/Ar=1∶4 | 50 | 98.3 | 31.9~18.2 | 约99 | 20 | 0.04 | 表面化学法 | [ |
PtSn/TS-1 | 590 | C3H8∶H2∶N2=1∶1∶4 | — | 3 | 53~47.5 | 92.5~93 | 7 | 0.03 | 水热+浸渍法 | [ |
Pt/Al2O3 | 520 | C3H8/H2/N2=4∶4∶17 | 50 | 4.0 | 5.8~2.6 | 70~68 | 12 | 0.070 | 浸渍法 | [ |
PtCu/Al2O3 | 520 | C3H8/H2/N2=4∶4∶17 | 50 | 4.0 | 13.1~12.4 | 87~89 | 120 | 0.0005 | 浸渍法 | [ |
PtGa-Pb/SiO2 | 600 | C3H8/H2/He=5∶3.9∶40 | — | 30.6 | 27~31 | >99.6 | 50 | 0.0038 | 共沉淀法 | [ |
PtSn/Mg(Al)O-sv | 550 | C3H8=20 | — | 1.13 | 27.7~27.8 | >96.6 | 5 | 0.001 | 浸渍法 | [ |
PtIn/Mg(Al)O-4 | 620 | C3H8/H2/Ar=8∶7∶35 | — | 3.3 | 45~61.3 | 95.3~96.2 | 12 | — | 浸渍法 | [ |
PtSn3/Al2O3 | 550 | C3H8/H2/N2=1∶1∶8 | 80 | 11.8 | 40~38 | >99.5 | 72 | 0.0012 | 表面化学法 | [ |
Pt0Znδ+/SiO2 | 550 | C3H8/Ar=1∶4 | 50 | 32 | 35.3~26.6 | 97.6~96.3 | 30 | 0.014 | 表面化学法 | [ |
Pt0Znδ+/SiO2 | 550 | C3H8/Ar=1∶4 | 50 | 75 | 30.2~16.2 | 98.1~95 | 30 | 0.027 | 表面化学法 | [ |
PtSn/Al2O3片 | 590 | C3H8/H2/N2=1∶1.25∶8 | — | 9.4 | 48.7~44.6 | 约99.1 | 24 | 0.007 | 浸渍法 | [ |
Pt-Sn/SiO2(1073K H2) | 500 | C3H8/N2=4∶1 | 100 | 47 | 27~12 | 90.9~99.5 | 3 | 0.33 | 浸渍法 | [ |
Pt/Mg(In)(Al)O | 550 | C3H8=20 | — | 1.57 | 24.2~17.5 | >98.2 | 5 | 0.081 | 共沉淀法 | [ |
Pt/Mg(Sn)(Al)O | 550 | C3H8/H2/N2=1∶0.5∶2 | — | 14 | 29.4~27.8 | 93.7~99.2 | 240 | 0.0067 | 浸渍法 | [ |
Pt/Mg(Sn)(Al)O | 600 | C3H8/H2/N2=1∶0.5∶2 | — | 14 | 48.3~43.0 | 86.4~98.1 | 48 | 0.11 | 浸渍法 | [ |
Pt/Sn2-Beta | 580 | C3H8/H2/N2=1∶1∶8 | 60 | 141 | 50~44 | 95~98 | 48 | 0.006 | 表面化学法 | [ |
PtZnx@S-1-H | 550 | C3H8/N2=10∶30 | 40 | 3.6 | 47.4~40.4 | 93.2~99.2 | 217 | 0.001 | 原位合成法 | [ |
PtZn@S-1 | 550 | C3H8/N2=11∶19 | 30 | 6.5 | 45.3~41.5 | >99 | 60 | 0.002 | 原位合成法 | [ |
K-PtSn@MFI | 650 | C3H8/N2=5∶16 | 21 | 29.5 | 54~37 | >99 | 70 | 0.099 | 原位合成法 | [ |
K-PtSn@MFI-(600H2-22h) | 600 | C3H8/N2=5∶16.5 | 21.5 | 29.5 | 38.7~31.9 | >97 | 25 | 0.012 | 原位合成法 | [ |
表1 贵金属Pt基催化剂丙烷脱氢制丙烯催化性能的比较
催化剂 | 反应温度 /℃ | 反应原料比 | 总流速 /mL·min-1 | 质量空速WHSV | 丙烷始-末 转化率/% | 丙烯始-末 选择性/% | 反应时间 TOS/h | 失活速率Kd/h-1 | 制备方法 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
Pt0Gaδ+/SiO2 | 550 | C3H8/Ar=1∶4 | 50 | 98.3 | 31.9~18.2 | 约99 | 20 | 0.04 | 表面化学法 | [ |
PtSn/TS-1 | 590 | C3H8∶H2∶N2=1∶1∶4 | — | 3 | 53~47.5 | 92.5~93 | 7 | 0.03 | 水热+浸渍法 | [ |
Pt/Al2O3 | 520 | C3H8/H2/N2=4∶4∶17 | 50 | 4.0 | 5.8~2.6 | 70~68 | 12 | 0.070 | 浸渍法 | [ |
PtCu/Al2O3 | 520 | C3H8/H2/N2=4∶4∶17 | 50 | 4.0 | 13.1~12.4 | 87~89 | 120 | 0.0005 | 浸渍法 | [ |
PtGa-Pb/SiO2 | 600 | C3H8/H2/He=5∶3.9∶40 | — | 30.6 | 27~31 | >99.6 | 50 | 0.0038 | 共沉淀法 | [ |
PtSn/Mg(Al)O-sv | 550 | C3H8=20 | — | 1.13 | 27.7~27.8 | >96.6 | 5 | 0.001 | 浸渍法 | [ |
PtIn/Mg(Al)O-4 | 620 | C3H8/H2/Ar=8∶7∶35 | — | 3.3 | 45~61.3 | 95.3~96.2 | 12 | — | 浸渍法 | [ |
PtSn3/Al2O3 | 550 | C3H8/H2/N2=1∶1∶8 | 80 | 11.8 | 40~38 | >99.5 | 72 | 0.0012 | 表面化学法 | [ |
Pt0Znδ+/SiO2 | 550 | C3H8/Ar=1∶4 | 50 | 32 | 35.3~26.6 | 97.6~96.3 | 30 | 0.014 | 表面化学法 | [ |
Pt0Znδ+/SiO2 | 550 | C3H8/Ar=1∶4 | 50 | 75 | 30.2~16.2 | 98.1~95 | 30 | 0.027 | 表面化学法 | [ |
PtSn/Al2O3片 | 590 | C3H8/H2/N2=1∶1.25∶8 | — | 9.4 | 48.7~44.6 | 约99.1 | 24 | 0.007 | 浸渍法 | [ |
Pt-Sn/SiO2(1073K H2) | 500 | C3H8/N2=4∶1 | 100 | 47 | 27~12 | 90.9~99.5 | 3 | 0.33 | 浸渍法 | [ |
Pt/Mg(In)(Al)O | 550 | C3H8=20 | — | 1.57 | 24.2~17.5 | >98.2 | 5 | 0.081 | 共沉淀法 | [ |
Pt/Mg(Sn)(Al)O | 550 | C3H8/H2/N2=1∶0.5∶2 | — | 14 | 29.4~27.8 | 93.7~99.2 | 240 | 0.0067 | 浸渍法 | [ |
Pt/Mg(Sn)(Al)O | 600 | C3H8/H2/N2=1∶0.5∶2 | — | 14 | 48.3~43.0 | 86.4~98.1 | 48 | 0.11 | 浸渍法 | [ |
Pt/Sn2-Beta | 580 | C3H8/H2/N2=1∶1∶8 | 60 | 141 | 50~44 | 95~98 | 48 | 0.006 | 表面化学法 | [ |
PtZnx@S-1-H | 550 | C3H8/N2=10∶30 | 40 | 3.6 | 47.4~40.4 | 93.2~99.2 | 217 | 0.001 | 原位合成法 | [ |
PtZn@S-1 | 550 | C3H8/N2=11∶19 | 30 | 6.5 | 45.3~41.5 | >99 | 60 | 0.002 | 原位合成法 | [ |
K-PtSn@MFI | 650 | C3H8/N2=5∶16 | 21 | 29.5 | 54~37 | >99 | 70 | 0.099 | 原位合成法 | [ |
K-PtSn@MFI-(600H2-22h) | 600 | C3H8/N2=5∶16.5 | 21.5 | 29.5 | 38.7~31.9 | >97 | 25 | 0.012 | 原位合成法 | [ |
催化剂 | 反应温度 /℃ | 反应原料比 | 总流速 /mL·min-1 | 质量空速WHSV | 丙烷始-末 转化率/% | 丙烯始-末选择性/% | 反应时间TOS/h | 失活速率Kd /h-1 | 制备方法 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
VOx/ZrO2 | 550 | C3H8/H2/N2=7∶36∶7 | 50 | 2.1 | 25~10 | 85~88 | 2 | 0.549 | 浸渍法 | [ |
VOx/Al2O3 | 600 | C3H8/H2/N2=7∶7∶11 | 25 | 3 | 32~15 | 约94 | 4 | 0.245 | 浸渍法 | [ |
VOx/Al2O3 | 600 | C3H8/N2=7∶18 | 25 | 8 | 25~15 | 70~75 | 约1.5 | 0.423 | 浸渍法 | [ |
Ga8Al2O15 | 500 | C3H8/N2=1∶39 | — | — | 49.7~33.1 | 91.7~98 | 8 | 0.086 | 共沉淀法 | [ |
[Fe]ZSM-5(MFI) | 530 | — | — | — | 约7.2 | 约78 | 3 | — | 原位合成法 | [ |
Co/Si-Beta | 600 | C3H8/N2=5∶95 | 20 | 0.4 | 85~40 | 1~97 | 6 | 0.344 | 浸渍法 | [ |
Sn-HMS | 600 | C3H8=5 | — | 0.4 | 约40 | 约90 | 170 | — | 水热法 | [ |
SnO2/SiO2(ws) | 600 | C3H8=5 | — | 0.65 | 约30 | 约85 | 5 | — | 浸渍法 | [ |
FeⅡ/SiO2 | 650 | C3H8/Ar=3∶97 | 55 | 0.38 | 4.9~6.3 | >99 | 18 | — | 表面化学法 | [ |
Co-Al2O3-HT | 590 | C3H8/H2/N2=1∶0.8∶3.2 | — | 2.9 | 23~22 | 约97 | 5 | 0.011 | 水热法 | [ |
VOx/meso-Al2O3 | 510 | C3H8/N2=4∶1 | 30 | 2.8 | 70~30 | 约85 | 10 | 0.169 | 浸渍法 | [ |
GaOx/SiO2 | 580 | C3H8/N2=1∶10 | 16.5 | 0.59 | 65~45 | 约90 | 6 | 0.136 | 原位合成法 | [ |
ZnO/Beta | 600 | C3H8/N2=5∶95 | 20 | 0.4 | 52~38 | 约93 | 6 | 0.095 | 离子交换法 | [ |
表2 金属氧化物催化剂在丙烷脱氢制丙烯中的催化性能比较
催化剂 | 反应温度 /℃ | 反应原料比 | 总流速 /mL·min-1 | 质量空速WHSV | 丙烷始-末 转化率/% | 丙烯始-末选择性/% | 反应时间TOS/h | 失活速率Kd /h-1 | 制备方法 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
VOx/ZrO2 | 550 | C3H8/H2/N2=7∶36∶7 | 50 | 2.1 | 25~10 | 85~88 | 2 | 0.549 | 浸渍法 | [ |
VOx/Al2O3 | 600 | C3H8/H2/N2=7∶7∶11 | 25 | 3 | 32~15 | 约94 | 4 | 0.245 | 浸渍法 | [ |
VOx/Al2O3 | 600 | C3H8/N2=7∶18 | 25 | 8 | 25~15 | 70~75 | 约1.5 | 0.423 | 浸渍法 | [ |
Ga8Al2O15 | 500 | C3H8/N2=1∶39 | — | — | 49.7~33.1 | 91.7~98 | 8 | 0.086 | 共沉淀法 | [ |
[Fe]ZSM-5(MFI) | 530 | — | — | — | 约7.2 | 约78 | 3 | — | 原位合成法 | [ |
Co/Si-Beta | 600 | C3H8/N2=5∶95 | 20 | 0.4 | 85~40 | 1~97 | 6 | 0.344 | 浸渍法 | [ |
Sn-HMS | 600 | C3H8=5 | — | 0.4 | 约40 | 约90 | 170 | — | 水热法 | [ |
SnO2/SiO2(ws) | 600 | C3H8=5 | — | 0.65 | 约30 | 约85 | 5 | — | 浸渍法 | [ |
FeⅡ/SiO2 | 650 | C3H8/Ar=3∶97 | 55 | 0.38 | 4.9~6.3 | >99 | 18 | — | 表面化学法 | [ |
Co-Al2O3-HT | 590 | C3H8/H2/N2=1∶0.8∶3.2 | — | 2.9 | 23~22 | 约97 | 5 | 0.011 | 水热法 | [ |
VOx/meso-Al2O3 | 510 | C3H8/N2=4∶1 | 30 | 2.8 | 70~30 | 约85 | 10 | 0.169 | 浸渍法 | [ |
GaOx/SiO2 | 580 | C3H8/N2=1∶10 | 16.5 | 0.59 | 65~45 | 约90 | 6 | 0.136 | 原位合成法 | [ |
ZnO/Beta | 600 | C3H8/N2=5∶95 | 20 | 0.4 | 52~38 | 约93 | 6 | 0.095 | 离子交换法 | [ |
催化剂 | 反应温度 /℃ | 反应原料比 | 总流速 /mL·min-1 | 质量空速WHSV | 丙烷始-末转化率 /% | 丙烯始-末选择性 /% | 反应时间TOS/h | 失活速率Kd /h-1 | 制备方法 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
OMC-1 | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 69.3~44.5 | 62.2~85.1 | 100 | 0.01 | 有机自组装法 | [ |
OMC-2 | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 65.7~39.3 | 70.6~88.6 | 100 | 0.01 | 有机自组装法 | [ |
CMK-3 | 550 | C3H8/N2=1∶19 | 40 | 0.59 | 54.3~49.8 | 27.6~68.0 | 100 | 0.018 | 硬膜版法 | [ |
MCO | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 32.9~21.2 | 66.3~86.6 | 50 | 0.012 | 酸洗法 | [ |
P/CMK-3 | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 约28 | 约88 | 24 | — | 杂原子掺杂法 | [ |
ND-1000 | 550 | C3H8/He=1∶49 | 15 | — | 约10.6 | 约90 | 8 | — | 高温退火法 | [ |
HOMC | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 20.1~10.3 | 66.1~78.5 | 50 | 0.016 | 水热法 | [ |
COMC | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 22.6~12.1 | 89~95.1 | 50 | 0.015 | 酸洗法 | [ |
MC-2-600 | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 37~31 | 85~89 | 10 | 0.027 | 水热法 | [ |
so-MWCNTs | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 11.2~5.8 | 92.1~87.9 | 4 | 0.179 | 酸洗+热处理法 | [ |
BDAC-700 | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 41.3~24.7 | 88.6~93.5 | 50 | 0.015 | 碱洗法 | [ |
BDAC-800 | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 42.5~29 | 89.2~91.3 | 50 | 0.012 | 碱洗法 | [ |
PT-MCNs | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 32.3~18 | 约90 | 10 | 0.077 | 水热法 | [ |
PMCNs | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 26~16 | 约88 | 10 | 0.061 | 水热法 | [ |
表3 非金属碳材料催化剂丙烷脱氢制丙烯催化性能比较
催化剂 | 反应温度 /℃ | 反应原料比 | 总流速 /mL·min-1 | 质量空速WHSV | 丙烷始-末转化率 /% | 丙烯始-末选择性 /% | 反应时间TOS/h | 失活速率Kd /h-1 | 制备方法 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
OMC-1 | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 69.3~44.5 | 62.2~85.1 | 100 | 0.01 | 有机自组装法 | [ |
OMC-2 | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 65.7~39.3 | 70.6~88.6 | 100 | 0.01 | 有机自组装法 | [ |
CMK-3 | 550 | C3H8/N2=1∶19 | 40 | 0.59 | 54.3~49.8 | 27.6~68.0 | 100 | 0.018 | 硬膜版法 | [ |
MCO | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 32.9~21.2 | 66.3~86.6 | 50 | 0.012 | 酸洗法 | [ |
P/CMK-3 | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 约28 | 约88 | 24 | — | 杂原子掺杂法 | [ |
ND-1000 | 550 | C3H8/He=1∶49 | 15 | — | 约10.6 | 约90 | 8 | — | 高温退火法 | [ |
HOMC | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 20.1~10.3 | 66.1~78.5 | 50 | 0.016 | 水热法 | [ |
COMC | 600 | C3H8/N2=1∶19 | 40 | 0.59 | 22.6~12.1 | 89~95.1 | 50 | 0.015 | 酸洗法 | [ |
MC-2-600 | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 37~31 | 85~89 | 10 | 0.027 | 水热法 | [ |
so-MWCNTs | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 11.2~5.8 | 92.1~87.9 | 4 | 0.179 | 酸洗+热处理法 | [ |
BDAC-700 | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 41.3~24.7 | 88.6~93.5 | 50 | 0.015 | 碱洗法 | [ |
BDAC-800 | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 42.5~29 | 89.2~91.3 | 50 | 0.012 | 碱洗法 | [ |
PT-MCNs | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 32.3~18 | 约90 | 10 | 0.077 | 水热法 | [ |
PMCNs | 600 | C3H8/N2=1∶19 | 20 | 0.59 | 26~16 | 约88 | 10 | 0.061 | 水热法 | [ |
1 | SU D S, PERATHONER S, CENTI G. ChemInform abstract: nanocarbons for the development of advanced catalysts[J]. Chemical Reviews, 2013, 113(8): 5782-5816. |
2 | RAZAVIAN M, FATEMI S. Synthesis and application of ZSM-5/SAPO-34 and SAPO-34/ZSM-5 composite systems for propylene yield enhancement in propane dehydrogenation process[J]. Microporous & Mesoporous Materials, 2015, 201: 176-189. |
3 | QI Wei, YAN Pengqiang, SU Dangsheng. Oxidative dehydrogenation on nanocarbon: insights into the reaction mechanism and kinetics viain situ experimental methods[J]. Accounts of Chemical Research, 2018, 51(3): 640-648. |
4 | FAN Zeyun, ZHANG Zhixiang, FANG Wenjian, et al. Low-temperature catalytic oxidation of formaldehyde over Co3O4 catalysts prepared using various precipitants[J]. Chinese Journal of Catalysis, 2016, 37(6): 947-954. |
5 | 中国产业信息网.中国丙烯市场供需现状分析及预测[EB/OL]. . |
Web of China Industry Information. The analysis and forecast of China’s propylene market supply and demand status[EB/OL]. . | |
6 | SERRANO-RUIZ J C, SEPÚLVEDA-ESCRIBANO A, RODRÍGUEZ-REINOSO F. Bimetallic PtSn/C catalysts promoted by ceria: application in the nonoxidative dehydrogenation of isobutane[J]. Journal of Catalysis, 2007, 246(1): 158-165. |
7 | ZHANG J, LIU X, BLUME R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-Butane[J]. Science, 2008, 322(5898): 73-77. |
8 | ZHAO Huahua, SONG Huanling, XU Leilei, et al. Isobutane dehydrogenation over the mesoporous Cr2O3/Al2O3 catalysts synthesized from a metal-organic framework MIL-101[J]. Applied Catalysis A: General, 2013, 456: 188-196. |
9 | YARULINA I, DE WISPELAERE K, BAILLEUL S, et al. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process[J]. Nature Chemistry, 2018, 10(8): 804-812. |
10 | TASBIHI M, FEYZI F, AMLASHI M A, et al. Effect of the addition of potassium and lithium in Pt-Sn/Al2O3 catalysts for the dehydrogenation of isobutane[J]. Fuel Processing Technology, 2007, 88(9): 883-889. |
11 | ATANGA M A, REZAEI F, JAWAD A, et al. Oxidative dehydrogenation of propane to propylene with carbon dioxide[J]. Applied Catalysis B: Environmental, 2018, 220: 429-445. |
12 | CAVANI F, BALLARINI N, CERICOLA A. Oxidative dehydrogenation of ethane and propane: how far from commercial implementation?[J]. Catalysis Today, 2007, 127(1/2/3/4): 113-131. |
13 | 盖希坤, 田原宇, 夏道宏. 丙烷催化脱氢制丙烯工艺分析[J]. 炼油技术与工程, 2012, 40(12): 27-32. |
GAI Xikun, TIAN Yuanyu, XIA Daohong. Study on technology of propane dehydrogenation for propylene production[J]. Petroleum Refinery Engineering, 2012, 40(12): 27-32. | |
14 | STEPHANIE S, SABBE M K, GALVITA V V. Positive effect of Ga-promoting on the catalytic dehydrogenation of propane over a Pt catalyst[C]//18th Netherlands’ Catalysis and Chemistry Conference (NCCC), 2017. |
15 | JIANG Guiyuan, ZHANG Li, ZHAO Zhen, et al. Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins[J]. Applied Catalysis A: General, 2008, 340(2): 176-182. |
16 | CHEN De, HOLMEN A, Zhijun SUI, et al. Carbon mediated catalysis: a review on oxidative dehydrogenation[J]. Chinese Journal of Catalysis, 2014, 35(6): 824-841. |
17 | KAINTHLA I, BHANUSHALI J T, KERI R, et al. Activity studies of vanadium, iron, carbon and mixed oxides based catalysts for the oxidative dehydrogenation of ethylbenzene to styrene: a review[J]. Catalysis Science & Technology, 2015, 5(12): 5062-5076. |
18 | FENG Jing, ZHANG Mingsen, KE Li, et al. Research progress in propane dehydrogenation catalysts[J]. Industrial Catalysis, 2011, 19(3): 8-14. |
19 | ZHANG Lingfeng, LIU Yalu, HU Zhongpan, et al. Advance in catalysts for propane dehydrogenation to propylene[J]. Acta Petrol Sinica, 2015, 31(2): 400-417. |
20 | GRUNERT W. Principles and practice of heterogeneous catalysis[J]. Focus on Catalysts, 2015, 7: 7. |
21 | ZHOU Shijian, ZHOU Yuming, ZHANG Yiwei, et al. The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(4): 1072-1081. |
22 | YU Changlin, XU Hengyong, GE Qingjie, et al. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2007, 266(1/2): 80-87. |
23 | SATTLER J J, GONZALEZ-JIMENEZ I D, MENS A M, et al. Operando UV-vis spectroscopy of a catalytic solid in a pilot-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst[J]. Chemical Communications, 2013, 49(15): 1518-1520. |
24 | SEARLES K, CHAN Kawing, BURAK J A M, et al. Highly productive propane dehydrogenation catalyst using silica-supported Ga-Pt nanoparticles generated from single-sites[J]. Journal of the American Chemical Society, 2018, 140(37): 11674-11679. |
25 | LI Jiacheng, LI Jianmei, ZHAO Zhen, et al. Size effect of TS-1 supports on the catalytic performance of PtSn/TS-1 catalysts for propane dehydrogenation[J]. Journal of Catalysis, 2017, 352: 361-370. |
26 | SOKOLOV S, STOYANOVA M, RODEMERCK U, et al. Comparative study of propane dehydrogenation over V-, Cr-, and Pt-based catalysts: time on-stream behavior and origins of deactivation[J]. Journal of Catalysis, 2012, 293: 67-75. |
27 | XIONG Haifeng, LIN Sen, GOETZE J, et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria[J]. Angewandte Chemie International Edition, 2017, 56(31): 8986-8991. |
28 | ZHOU Shijian, ZHOU Yuming, ZHANG Yiwei, et al. The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(4): 1072-1081. |
29 | ZHANG Yiwei, ZHOU Yuming, QIU Anding, et al. Propane dehydrogenation on PtSn/ZSM-5 catalyst: effect of tin as a promoter[J]. Catalysis Communications, 2006, 7(11): 860-866. |
30 | SATTLWER J J H B, MENS A M, WECKHUYSEN B M. Real-time quantitative operando raman spectroscopy of a CrOx/Al2O3 propane dehydrogenation catalyst in a pilot-scale reactor[J]. ChemCatChem, 2014, 6(11): 3139-3145. |
31 | MCGREGOR J, HUANG Zhenyu, PARROTT E P J, et al. Active coke: carbonaceous materials as catalysts for alkane dehydrogenation[J]. Journal of Catalysis, 2010, 269(2): 329-339. |
32 | LIAN Zan, ALI S, LIU Tianfu, et al. Revealing Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation[J]. ACS Catalysis, 2018, 8(5): 4694-4704. |
33 | AIRAKSINEN S M K, KRAUSE A O I. In situ characterisation of carbon-containing species formed on chromia/alumina during propane dehydrogenation[J]. Journal of Catalysis, 2005, 230(2): 507-513. |
34 | CASPARY K J, GEHRKE H, HEINRITZ-ADRIAN M. Handbook of heterogeneous catalysis[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. |
35 | LI Qing, Zhijun SUI, ZHOU Xinggui, et al. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study[J]. Topics in Catalysis, 2011, 54(13/14/15): 888-896. |
36 | SHAN Yuling, WANG Ting, Zhijun SUI, et al. Hierarchical MgAl2O4 supported Pt-Sn as a highly thermostable catalyst for propane dehydrogenation[J]. Catalysis Communications, 2016, 84(5): 85-88. |
37 | SHAN Yuling, ZHU Yian, SUN Zhijun, et al. Insights into the effects of steam on propane dehydrogenation over a Pt/Al2O3 catalyst[J]. Catalysis Science & Technology, 2015, 5(8): 3991-4000. |
38 | HAUSRE A W, HORN P R, HEAD-GORDON M, et al. A systematic study on Pt based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction[J]. Physical Chemistry Chemical Physics, 2016, 18(16): 10906-109017. |
39 | YANG Minglei, ZHU Yian, FAN Chen, et al. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites[J]. Physical Chemistry Chemical Physics, 2011, 13(8): 3257-3267. |
40 | ZHU Jun, YANG Minglei, ZHU Yian. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts[J]. ACS Catalysis, 2015, 5(11): 6310-6319. |
41 | SUN Guodong, ZHAO Zhi Jian, MU Rentao, et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation[J]. Nature Communications, 2018, 9(1): 4454-4462. |
42 | NAKAYA Y, HIRAYAMA J, YAMAZOE S, et al. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation[J]. Nature Communications, 2020, 11(1):2838-2845. |
43 | VU B K, SONG M B, AHN I Y, et al. Propane dehydrogenation over Pt-Sn/rare-earth-doped Al2O3: influence of La, Ce, or Y on the formation and stability of Pt-Sn alloys[J]. Catalysis Today, 2011, 164(1): 214-220. |
44 | SRISAKWATTANA T, SURIYE K, PRASERTHDAM P, et al. Preparation of aluminum magnesium oxide by different methods for use as PtSn catalyst supports in propane dehydrogenation[J]. Catalysis Today, 2020, 358: 90-99. |
45 | XIA Ke, LANG Wanzhong, LI Peipei, et al. The influences of Mg/Al molar ratio on the properties of PtIn/Mg(Al)O-x catalysts for propane dehydrogenation reaction[J]. Chemical Engineering Journal, 2016, 284(15): 1068-1079. |
46 | XU Zhikang, XU Rui, YUE Yuanyuan, et al. Bimetallic Pt-Sn nanocluster from the hydrogenolysis of a well-defined surface compound consisting of [(Al≡O)Pt(COD)Me] and [(Al≡O)SnPh3] fragments for propane dehydrogenation[J]. Journal of Catalysis, 2019, 374: 391-400. |
47 | ROCHLITZ L, SEARLES K, ALFKE J, et al. Silica-supported, narrowly distributed, subnanometric Pt-Zn particles from single sites with high propane dehydrogenation performance[J]. Chemical Science, 2020, 11(6): 1549-1555. |
48 | NANDA K, SAHU S, BEHERA S. Liquid-drop model for the size-dependent melting of low-dimensional systems[J]. Physical Review A, 66(1): 013208. |
49 | MORGAN K, GOGUET A, HARDACRE C. Metal redispersion strategies for recycling of supported metal catalysts: a perspective[J]. ACS Catalysis, 2015, 5(6): 3430-3445. |
50 | BARTHOLOMEW C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212(1): 17-60. |
51 | HATANAKA M, TAKAHASHI N, TAKAHASHI N, et al. Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt[J]. Journal of Catalysis, 2009, 266(2): 182-190. |
52 | TAUSTER S J, FUNG S C. Strong metal-support interactions: occurrence among the binary oxides of groups ⅡA—VB[J]. Journal of Catalysis, 1978, 55(1): 29-35. |
53 | TAUSTER S J, FUNG S C, GARTEN R L. Strong metal-support interactions. group 8 noble metals supported on TiO2[J]. Chemischer Informationsdienst, 1978, 9(16): 170-175. |
54 | LEE J, JANG E J, OH D G, et al. Morphology and size of Pt on Al2O3: the role of specific metal-support interactions between Pt and Al2O3[J]. Journal of Catalysis, 2020, 385: 204-212. |
55 | KWAK J H, HU Jianzhi, MEI Donghai, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J]. Science, 2009, 325(5948): 1670-1673. |
56 | SHI Lei, DENG Gaoming, LI Wencui, et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angewandte Chemie: International Edition, 2016, 54(47): 13994-13998. |
57 | ZHANG Yiwei, ZHOU Yuming, SHI Junjun, et al. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2014, 381: 138-147. |
58 | DENG Lidan, MIURA H, TETSUYA S, et al. Strong metal-support interaction between Pt and SiO2 following high-temperature reduction: a catalytic interface for propane dehydrogenation[J]. Chemical Communications, 2017, 53(51): 6937-6940. |
59 | TOLEK W, SURIYE K, PRASERTHDAM P, et al. Effect of preparation method on the Pt-In modified Mg(Al)O catalysts over dehydrogenation of propane[J]. Catalysis Today, 2020, 358: 100-108. |
60 | LIU Jie, YUE Yuanyuan, LIU Hongyang, et al. Origin of the robust catalytic performance of nanodiamond-graphene-supported Pt nanoparticles used in the propane dehydrogenation reaction[J]. ACS Catalysis, 2017, 7(5): 3349-3355. |
61 | LIU Jie, LI Jiaquan, RONG Junfeng, et al. Defect-driven unique stability of Pt/carbon nanotubes for propane dehydrogenation[J]. Applied Surface Science, 2019, 464(15): 146-152. |
62 | ZHU Yanru, AN Zhe, SONG Hongyan, et al. Lattice-confined Sn (Ⅳ/Ⅱ) stabilizing raft-like Pt clusters: high selectivity and durability in propane dehydrogenation[J]. ACS Catalysis, 2017, 7(10): 6973-6978. |
63 | XU Zhikang, YUE Yuanyuan, BAO Xiaojun, et al. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework[J]. ACS Catalysis, 2020, 10: 818-828. |
64 | SUN Qiming, WANG Ning, FAN Qiyuan, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie: International Edition, 2020, 59(44): 19450-19459. |
65 | WANG Yansu, HU ZhongPan, YUAN Zhongyong. Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation[J]. Journal of Catalysis, 2020, 385: 61-69. |
66 | LIU Lichen, LOPEZ-HARO M, LOPES C W, et al. Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites[J]. Journal of Catalysis, 2020, 391: 11-24. |
67 | LIU Lichen, LOPEZ-HARO M, LOPES C W, et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites[J]. Nature Catalysis, 2020, 3: 628-638. |
68 | ZHU Jie, RYOTA O, RYO I. Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: catalytic application for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(44): 19669-19674. |
69 | WANG Haizhi, SUN Lili, Zhijun SUI, et al. Coke formation on Pt-Sn/Al2O3 catalyst for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2018, 57(26): 8647-8654. |
70 | ZIMMER H, DOBROVOLSZKY M, TETENY P, et al. Hydrogen control of platinum-catalyzed skeletal reactions of alkanes: selectivity and surface species[J]. The Journal of Physical Chemistry, 1986, 90(20): 4758-4764. |
71 | LARSSON M, MAGNUS H, BLEKKAN E A, et al. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation[J]. Journal of Catalysis, 1996, 164(1): 44-53. |
72 | YANG Minglei, ZHU Yian, FAN Chen, et al. Density functional study of the chemisorption of C1, C2 and C3 intermediates in propane dissociation on Pt(111)[J]. Journal of Molecular Catalysis A: Chemical, 2010, 321(1/2): 42-49. |
73 | SABBE M K, CANDUELA-RODRIGUEZ G, REYNIERS M F, et al. DFT-based modeling of benzene hydrogenation on Pt at industrially relevant coverage[J]. Journal of Catalysis, 2015, 330: 406-422. |
74 | LI Qing, Zhijun SUI, ZHOU Xinggui. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst[J]. Applied Catalysis A: General, 2011, 398(1/2): 18-26. |
75 | SAERENS S, SABBE M, GALVITA V, et al. Positive effect of Ga-promoting on the catalytic dehydrogenation of propane over a Pt catalyst[J]. ACS Cataysis, 2017, 7: 7495-7508. |
76 | ZAERA F, CHRYSOSTOMOU D. Propylene on Pt(111) Ⅱ. Hydrogenation, dehydrogenation, and H-D exchange[J]. Surface Science, 2000, 457(1/2): 71-88. |
77 | SIDDIQI G, SUN Pingping, GALVITA V, et al. Catalyst performance of novel Pt/Mg(Ga)(Al)O catalysts for alkane dehydrogenation[J]. Journal of Catalysis, 2010, 274(2): 200-206. |
78 | ZANGENEH F T, MEHRAZMA S, SAHEBDELFAR S. The influence of solvent on the performance of Pt-Sn/θ-Al2O3 propane dehydrogenation catalyst prepared by co-impregnation method[J]. Fuel Processing Technology, 2013, 109: 118-123. |
79 | JANG E J, LEE J J, JEONG H Y, et al. Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts[J]. Applied Catalysis A: General, 2019, 572: 1-8. |
80 | WANG Tuo, JIANG Feng, LIU Gang. Effects of Ga doping on Pt/CeO2‐Al2O3 catalysts for propane dehydrogenation[J]. AIChE Journal, 2016, 62(12): 4365-4376. |
81 | LONG Liuliu, XIA Ke, LANG Wanzhong, et al. The comparison and optimization of zirconia, alumina, and zirconia-alumina supported PtSnIn trimetallic catalysts for propane dehydrogenation reaction[J]. Journal of Industrial and Engineering Chemistry, 2017, 51(25): 271-280. |
82 | JIANG Feng, ZENG Liang, LI Shuirong, et al. Propane dehydrogenation over Pt/TiO2-Al2O3 catalysts[J]. ACS Catalysis, 2015, 5(1): 438-447. |
83 | ZHOU Hualan, GONG Jingjing, XU Bolian, et al. PtSnNa/SUZ-4: an efficient catalyst for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2017, 38(3): 529-536. |
84 | LEE M H, NAGARAJA B M, NATARAJAN P, et al. Effect of potassium addition on bimetallic PtSn/θ-Al2O3 catalyst for dehydrogenation of propane to propylene[J]. Research on Chemical Intermediates, 2016, 42(1): 123-140. |
85 | DAUN Yongzheng, ZHOU Yuming, ZHANG Yiwei, et al. Effect of sodium addition to PtSn/AlSBA-15 on the catalytic properties in propane dehydrogenation[J]. Catalysis Letters, 2011, 141(1): 120-127. |
86 | LOBERA M P, HERGUIDO J, SCHUUMAN Y, et al. TAP studies of Pt-Sn-K/γ-Al2O3 catalyst for propane dehydrogenation[J]. Chemical Engineering Journal, 2011, 171(3): 1317-1323. |
87 | LI Bing, XU Zhenxin, JING Fangli, et al. Facile one-pot synthesized ordered mesoporous Mg-SBA-15 supported PtSn catalysts for propane dehydrogenation[J]. Applied Catalysis A: General, 2017, 533: 17-27. |
88 | BAI Linyang, ZHOU Yuming, ZHANG Yiwei, et al. Effect of magnesium addition to PtSnNa/ZSM-5 on the catalytic properties in the dehydrogenation of propane[J]. Industrial & Engineering Chemistry Research, 2009, 48(22): 9885-9891. |
89 | BAI Linyang, ZHOU Yuming, ZHANG Yiwei, et al. Influence of calcium addition on catalytic properties of PtSn/ZSM-5 catalyst for propane dehydrogenation[J]. Catalysis Letters, 2009, 129(3/4): 449-456. |
90 | ALY M, FORNERO E L, GALVITA V V, et al. Effect of boron promotion on coke formation during propane dehydrogenation over Pt/γ-Al2O3 catalysts[J]. ACS Catalysis, 2020, 10(9): 5208-5216. |
91 | ZHU Haibo, ANJUM D H, WANG Qingxiao, et al. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation[J]. Journal of Catalysis, 2014, 320: 52-62. |
92 | ZHANG Yiwei, ZHOU Yuming, HUANG Li, et al. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chemical Engineering Journal, 2015, 270: 352-361. |
93 | CAMACHO-BUNQUIN J, FERRANDON M S., SOHN H, et al. Atomically precise strategy to a PtZn alloy nano-cluster catalyst for the deep dehydrogenation of n-butane to 1,3-butadiene[J]. ACS Catalysis, 2018, 8(11): 10058-10063. |
94 | CYBULSKIS V J, BUKOWSKI B C, TSENG H T, et al. Zinc promotion of platinum for catalytic light alkane dehydrogenation: insights into geometric and electronic effects[J]. ACS Catalysis, 2017, 7(6): 4173-4181. |
95 | SUN Pingping, GEORGES S, WILLIAM C V. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation[J]. Journal of Catalysis, 2011, 282(1): 165-174. |
96 | LIU Xue, LANG Wanzhong, LONG Liuliu, et al. Improved catalytic performance in propane dehydrogenation of PtSn/γ-Al2O3 catalysts by doping indium[J]. Chemical Engineering Journal, 2014, 247: 183-192. |
97 | ZHANG Yiwei, ZHOU Yuming, SHI Junjun, et al. Propane dehydrogenation over PtSnNa/La-doped Al2O3 catalyst: effect of La content[J]. Fuel Processing Technology, 2013, 111(3): 94-104. |
98 | HAN Zhiping, LI Shuirong, JIANG Feng, et al. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper[J]. Nanoscale, 2014, 6(17): 10000-10008. |
99 | FREY F E, HUPPKE W F. Equilibrium dehydrogenation of ethane, propane, and the butanes[J]. Industrial & Engineering Chemistry, 1933, 25(1): 54-59. |
100 | WECKHUYSEN B M, SCHOONHEYD T R A. Alkane dehydrogenation over supported chromium oxide catalysts[J]. Catalysis Today, 1967, 51(2): 223-232. |
101 | ADAMS C R. Catalytic oxidations with sulfur dioxide : Ⅰ. Exploratory studies[J]. Journal of Catalysis, 1968, 11(2): 96-112. |
102 | HARDCASTLE F D, WACHS I E. Raman spectroscopy of chromium oxide supported on Al2O3, TiO2 and SiO2: a comparative study[J]. Journal of Molecular Catalysis, 1988, 46(1/2/3): 173-186. |
103 | VUURMAN M A, WACHS I E. In situ Raman spectroscopy of alumina-supported metal oxide catalysts[J]. Journal of Physical Chemistry, 1992, 96(12): 5008-5016. |
104 | DINES T J, INGLIS S. Raman spectroscopic study of supported chromium() oxide catalysts[J]. Physical Chemistry Chemical Physics, 2003, 5(6): 1320-1328. |
105 | WECKHUYSEN B M, VERBERCKMOES A A, DEBAERE J, et al. In-situ UV-vis diffuse reflectance spectroscopy-on line activity measurements of supported chromium oxide catalysts: relating isobutane dehydrogenation activity with Cr-speciation via experimental design[J]. Journal of Molecular Catalysis A: Chemical, 2000, 151(1/2): 115-131. |
106 | PUURUNEN R L, WECKHUYSEN B M. Spectroscopic study on the irreversible deactivation of chromia/alumina dehydrogenation catalysts[J]. Journal of Catalysis, 2002, 210(2): 418-430. |
107 | AIRAKSINEN S M K, OUTI A, KRAUSE I, et al. Reduction of chromia/alumina catalyst monitored by DRIFTS-mass spectrometry and TPR-Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2003, 5(20): 4371-4377. |
108 | CONLEY M P, DELLEY M F, COMAS-VIVES A, et al. Heterolytic activation of C—H bonds on CrⅢ—O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane[J]. Inorganic Chemistry, 2015, 54(11): 5065-5078. |
109 | XIE Yufei, LUO Ran, SUN Guodong, et al. Facilitating the reduction of V—O bonds on VOx/ZrO2 catalysts for non-oxidative propane dehydrogenation[J]. Chemical Science, 2020, 11: 3845-3851. |
110 | LIU Gang, ZHAO Zhijian, WU Tengfang, et al. On the nature of active sites of VOx/Al2O3 catalysts for propane dehydrogenation[J]. ACS Catalysis, 2016, 6(8): 5207-5214. |
111 | GONG Jinlong, ZHAO Zhijian, WU Tengfang, et al. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability[J]. Angewandte Chemie: International Edition, 2018, 57(23): 6791-6795. |
112 | KITAGAWA Hiroyoshi, SENDODA Yoko, Yoshio ONO. Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites[J]. Journal of Catalysis, 1986, 101(1): 12-18. |
113 | CYBULSKIS V J, PRADHAN S U, JUAN J L Q, et al. The nature of the isolated gallium active center for propane dehydrogenation on Ga/SiO2[J]. Catalysis Letters, 2017, 147(5): 1252-1262. |
114 | CHEN Miao, XU Jie, SU Fangzheng, et al. Dehydrogenation of propane over spinel-type gallia-alumina solid solution catalysts[J]. Journal of Catalysis, 2008, 256(2): 293-300. |
115 | WNAG Pengzhao, XU Zhikang, ZHU Haibo. Unmodified bulk alumina as an efficient catalyst for propane dehydrogenation[J]. Catalysis Science & Technology, 2020, 10: 3537-3541. |
116 | YUN Jangho, LOBO R F. Catalytic dehydrogenation of propane over iron-silicate zeolites[J]. Journal of Catalysis, 2014, 312(15): 263-270. |
117 | CHEN Chong, ZHANG Shoumin, WANG Zheng, et al. Ultrasmall Co confined in the silanols of dealuminated beta zeolite: a highly active and selective catalyst for direct dehydrogenation of propane to propylene[J]. Journal of Catalysis, 2020, 383: 77-87. |
118 | OTROSHCHENKO T, KONDRATENKO V A, RODEMERCK U, et al. ZrO2-based unconventional catalysts for non-oxidative propane dehydrogenation: factors determining catalytic activity[J]. Journal of Catalysis, 2017, 348: 282-290. |
119 | WANG Guowei, ZHANG Huanling, ZHU Qingqing, et al. Sn-containing hexagonal mesoporous silica (HMS) for catalytic dehydrogenation of propane: an efficient strategy to enhance stability[J]. Journal of Catalysis, 2017, 351: 90-94. |
120 | WANG Haoren, HUANG Huiwen, BASHIR K, et al. Isolated Sn on mesoporous silica as a highly stable and selective catalyst for the Propane dehydrogenation[J]. Applied Catalysis A: General, 2020, 590: 117291-117299. |
121 | YUE Yuanyuan FU Jing, WANG Chuanming, et al. Propane dehydrogenation catalyzed by single Lewis acid site in Sn-Beta zeolite[J]. Journal of Catalysis, 2021, 395: 155-167. |
122 | HU Bo, SCHWEITZER N M, ZHANG Guanghui, et al. Isolated FeⅡ on silica as a selective propane dehydrogenation catalyst[J]. ACS Catalysis, 2015, 5(6): 3494-3503. |
123 | SCHWEITZER N M, HU Bo, DAS U. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst[J]. ACS Catalysis, 2014, 4(4): 1091-1098. |
124 | HU Bo, GETSOIAN A B, SCHWEITZER N M, et al. Selective propane dehydrogenation with single-site CoⅡ on SiO2 by a non-redox mechanism[J]. Journal of Catalysis, 2015, 322: 24-37. |
125 | DAI Yihu. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation[J]. Journal of Catalysis, 2019, 381: 482-492. |
126 | SHAO Chuntao, LANG Wanzhong, YAN Xi, et al. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: effects of support and loading amount[J]. RSC Advances, 2017, 7(8): 4710-4723. |
127 | BAI Peng, MA Zhipeng, LI Tingting, et al. Relationship between surface chemistry and catalytic performance of mesoporous γ-Al2O3 supported VOx catalyst in catalytic dehydrogenation of propane[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 25979-25990. |
128 | LANG Wanzhong, HU Changlong, CHU Lianfeng, et al. Hydrothermally prepared chromia-alumina (xCr/Al2O3) catalysts with hierarchical structure for propane dehydrogenation[J]. RSC Advances, 2014, 4(70): 37107-37113. |
129 | HU Ping, LANG Wanzhong, YAN Xi, et al. Influence of gelation and calcination temperature on the structure-performance of porous VOx-SiO2 solids in non-oxidative propane dehydrogenation[J]. Journal of Catalysis, 2018, 358: 108-117. |
130 | SEARLES K, GEORGES S, SAFONOVA O, et al. Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts[J]. Chemical Science, 2017, 8(4): 2661-2666. |
131 | HU Bo, KIM W G, SULMONETTI T P, et al. Mesoporous CoAl2O4 spinel catalyst for non-oxidative propane dehydrogenation[J]. Chemcatchem, 2017, 9(17): 3330-3337. |
132 | WU Tengfang, LIU Gang, ZENG Liang, et al. Structure and catalytic consequence of Mg-modified VOx/Al2O3 catalysts for propane dehydrogenation[J]. AIChE Journal, 2017, 63(11): 4911-4919. |
133 | KIM T H, GIM M Y, SONG J H, et al. Deactivation behavior of CrOy/Al2O3-ZrO2 catalysts in the dehydrogenation of propane to propylene by lattice oxygen[J]. Catalysis Communications, 2017, 97(5): 37-41. |
134 | WANG Guowei, SHAN Honghong, GAO Yanan, et al. Effect of sulfate addition on the performance of Co/Al2O3 catalysts in catalytic dehydrogenation of propane[J]. Catalysis Communications, 2015, 60: 42-45. |
135 | SOKOLOV S, STOYANOVA M, RODEMERCK U, et al. Effect of support on selectivity and on-stream stability of surface VOx species in non-oxidative propane dehydrogenation[J]. Catalysis Science & Technology, 2014, 4(5): 1323-1332. |
136 | KUMAR M S, HAMMER N, CHEN D. The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: new insights by a comprehensive spectroscopic study[J]. Journal of Catalysis, 2009, 261(1): 116-128. |
137 | PIOVANO A, GROPPO E, BRAGLIA L, et al. Insights into Cr/SiO2 catalysts during dehydrogenation of propane: an operando XAS investigation[J]. Catalysis Science & Technology, 2017, 7(8): 1690-1700. |
138 | REN Yingjie, WANG Jie, HUA Weiming, et al. Ga2O3/HZSM-48 for dehydrogenation of propane: effect of acidity and pore geometry of support[J]. Journal of Industrial & Engineering Chemistry, 2012, 18(2): 731-736. |
139 | GONG Ting, QIN Lijun, LU Jian, et al. ZnO modified ZSM-5 and Y zeolites fabricated by atomic layer deposition for propane conversion[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 601-614. |
140 | CHEN Chong, HU Zhongpan, REN Jintao, et al. ZnO nanoclusters supported on dealuminated zeolite β as a novel catalyst for direct dehydrogenation of propane to propylene[J]. ChemCatChem, 2019, 11(2): 868-877. |
141 | AUROUX A, MONACI R, ROMBI E, et al. Acid sites investigation of simple and mixed oxides by TPD and microcalorimetric techniques[J]. Thermochimica Acta, 2001, 379(1/2): 227-231. |
142 | ADAM W, ANNA R, BARBARA M, et al. High-performance Cr-Zr-O and Cr-Zr-K-O catalysts prepared by nanocasting for dehydrogenation of propane to propene[J]. Catalysis Science & Technology, 2017, 7(24): 6059-6068. |
143 | ROMBI E, GAZZOLI D, CUTRUFELLO M G, et al. Modifications induced by potassium addition on chromia/alumina catalysts and their influence on the catalytic activity for the oxidative dehydrogenation of propane[J]. Applied Surface Science, 2010, 256(17): 5576-5580. |
144 | CABRERA F, ARDISSONE D, GORRIZ O F. Dehydrogenation of propane on chromia/alumina catalysts promoted by tin[J]. Catalysis Today, 2008, 133: 800-804. |
145 | LIU Lei, DENG Qingfang, YUAN Zhongyong. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene[J]. Catalysis Communications, 2011, 47(29): 8334-8336. |
146 | LIU Lei, DENG Qingfeng, YUAN Zhongyong. HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene[J]. Catalysis Communications, 2011, 16(1): 81-85. |
147 | LI Lina, ZHU Wenliang, LIU Yong, et al. Phosphorous-modified ordered mesoporous carbon for catalytic dehydrogenation of propane to propylene[J]. RSC Advances, 2015, 5(69): 56304-56310. |
148 | WANG Rui, SUN Xiaoyan, ZHANG Bingsen, et al. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core-shell sp2/sp3 nanocomposite structure[J]. Chemistry-A European Journal, 2014, 20(21): 6324-6331. |
149 | LIU Lei, DENG Qingfang, REN Tiezhen, et al. Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene[J]. Catalysis Today, 2012, 186(1): 35-41. |
150 | HU Zhongpan, REN Jintao, YANG Dandan, et al. Mesoporous carbons as metal-free catalysts for propane dehydrogenation: effect of the pore structure and surface property[J]. Chinese Journal of Catalysis, 2019, 40(9): 1385-1394. |
151 | HU Zhongpan, CHEN Chong, REN Jintao, et al. Direct dehydrogenation of propane to propylene on surface-oxidized multiwall carbon nanotubes[J]. Applied Catalysis A: General, 2018, 559: 85-93. |
152 | HU Zhongpan, ZHANG Lingfeng, WANG Zheng, et al. Bean dregs‐derived hierarchical porous carbons as metal‐free catalysts for efficient dehydrogenation of propane to propylene[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3410-3417. |
153 | PAN Shangfa, YIN Jianglong, ZHU Xuelian, et al. P-modified microporous carbon nanospheres for direct propane dehydrogenation reactions[J]. Carbon, 2019, 152: 855-864. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |