化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5554-5576.DOI: 10.16085/j.issn.1000-6613.2020-2165
收稿日期:
2020-10-30
修回日期:
2021-01-06
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
王程遥
作者简介:
公雪(1992—),女,硕士研究生,研究方向为微胶囊相变材料。E-mail:基金资助:
GONG Xue(), WANG Chengyao(), ZHU Qunzhi
Received:
2020-10-30
Revised:
2021-01-06
Online:
2021-10-10
Published:
2021-10-25
Contact:
WANG Chengyao
摘要:
微胶囊相变材料(MCPCM)利用微胶囊技术将相变材料包覆实现功能化,避免其泄漏及团聚问题,拓展了其应用范围,因而具有很大的应用前景。本文从制备方法出发,首先介绍了MCPCM的芯材和壳材,详细阐述了喷雾干燥法、溶胶-凝胶法、复凝聚法、界面聚合法、原位聚合法、悬浮聚合法和微乳液聚合法的原理及方法。围绕上述方法,文中阐述了MCPCM的微观形貌,并分析了粒径分布、包覆率、芯壳比对MCPCM储热和热稳定性等性能的影响。同时,概括了MCPCM在建筑节能、蓄热调温纺织、军事航空、能源利用等领域中的应用。最后,对微胶囊相变材料的研究方向进行了展望。
中图分类号:
公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576.
GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5554-5576.
分类 | 常见化合物 | 特点 |
---|---|---|
醇类[ | 十二醇、十四醇、环己醇、叔丁醇等多元醇 | 无过冷和相分离现象、无毒、腐蚀性小、热效率高、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
酯类[ | 硬脂酸丁酯、硬脂酸辛酯 | 良好的热性能和可靠性,有利于低温传热应用;热导率小、储热密度小、易挥发燃烧、易氧化老化 |
烃类[ | 聚乙烯蜡、液体石蜡、正十六烷、正十八烷 | 无过冷和相分离现象、稳定性好、腐蚀性极小、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
脂肪酸类[ | 月桂酸、癸酸、辛酸、十二烷酸 | 潜热值大、过冷度低、无毒、稳定性好、相容性好、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
无机物[ | 结晶水和盐、熔融盐、金属合金 | 潜热值大、储能密度高、相变体积变化小、廉价易得、过冷度大、易析出分离、有一定腐蚀性 |
表1 MCPCM常见芯材物质
分类 | 常见化合物 | 特点 |
---|---|---|
醇类[ | 十二醇、十四醇、环己醇、叔丁醇等多元醇 | 无过冷和相分离现象、无毒、腐蚀性小、热效率高、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
酯类[ | 硬脂酸丁酯、硬脂酸辛酯 | 良好的热性能和可靠性,有利于低温传热应用;热导率小、储热密度小、易挥发燃烧、易氧化老化 |
烃类[ | 聚乙烯蜡、液体石蜡、正十六烷、正十八烷 | 无过冷和相分离现象、稳定性好、腐蚀性极小、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
脂肪酸类[ | 月桂酸、癸酸、辛酸、十二烷酸 | 潜热值大、过冷度低、无毒、稳定性好、相容性好、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
无机物[ | 结晶水和盐、熔融盐、金属合金 | 潜热值大、储能密度高、相变体积变化小、廉价易得、过冷度大、易析出分离、有一定腐蚀性 |
分类 | 壳材 | 特点 |
---|---|---|
无机高分子材料 | 碳酸钙、石墨烯、硅酸盐、二氧化钛、二氧化硅、黏土、硫化物、铝、铜等 | 成膜性能非常差,具有功能性 |
有机高分子材料 | ||
天然高分子材料[ | 动物蛋白:明胶、乳清蛋白、丝素蛋白 植物蛋白:大豆蛋白、豌豆蛋白 多糖:阿拉伯树胶、果胶、壳聚糖、琼脂、海藻酸钠、卡拉胶、羧甲基纤维素钠 | 良好的生物降解性、无毒,稳定、成膜性好 |
半合成高分子材料 | 甲酸乙酸纤维素、邻苯二甲酸丁酸纤维素、丁酸乙酸纤维素、甲基纤维素、羧甲基纤维素、羧甲基纤维素钠、乙基纤维素、羟丙基纤维素、琥珀酸乙酸纤维素等 | 毒性小,黏度大,成盐后溶解度增大易水解,不宜高温处理,需临时用现制 |
合成高分子材料[ | 酚醛树脂、密胺树脂、脲醛树脂、聚氨酯、聚丁二烯、聚乙烯、环氧树酯、聚酰胺、聚苯乙烯、三聚氰胺-甲醛树脂、氨基树脂类、乙酸树脂类、聚脲、合成橡胶等 | 成膜性好,化学性能稳定,部分材料释放甲醛,不利于环境保护 |
表2 MCPCM常见壳材物质
分类 | 壳材 | 特点 |
---|---|---|
无机高分子材料 | 碳酸钙、石墨烯、硅酸盐、二氧化钛、二氧化硅、黏土、硫化物、铝、铜等 | 成膜性能非常差,具有功能性 |
有机高分子材料 | ||
天然高分子材料[ | 动物蛋白:明胶、乳清蛋白、丝素蛋白 植物蛋白:大豆蛋白、豌豆蛋白 多糖:阿拉伯树胶、果胶、壳聚糖、琼脂、海藻酸钠、卡拉胶、羧甲基纤维素钠 | 良好的生物降解性、无毒,稳定、成膜性好 |
半合成高分子材料 | 甲酸乙酸纤维素、邻苯二甲酸丁酸纤维素、丁酸乙酸纤维素、甲基纤维素、羧甲基纤维素、羧甲基纤维素钠、乙基纤维素、羟丙基纤维素、琥珀酸乙酸纤维素等 | 毒性小,黏度大,成盐后溶解度增大易水解,不宜高温处理,需临时用现制 |
合成高分子材料[ | 酚醛树脂、密胺树脂、脲醛树脂、聚氨酯、聚丁二烯、聚乙烯、环氧树酯、聚酰胺、聚苯乙烯、三聚氰胺-甲醛树脂、氨基树脂类、乙酸树脂类、聚脲、合成橡胶等 | 成膜性好,化学性能稳定,部分材料释放甲醛,不利于环境保护 |
制备方法 | 芯材 | 壳材 | 粒径分布 /μm | 包覆率 /% | 熔点 /℃ | 熔化潜热 /J·g-1 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
喷雾干燥法 | 正十八烷 石蜡(Rubitherm?RT27) 石蜡 | 二氧化钛 低密度聚乙烯和乙酸乙烯酯共聚物 二氧化硅 | 0.1~5 <10 | — 63.0 82.2 | 28.7 28.4 57.9 | 92~97 98.1 156.9 | 操作简便、生产效率高、用途广泛、花费低、适宜工业化生产 | 包埋率低、设备复杂、占地面积大、一次性投资大、耗能大 | [ [ [ |
溶胶-凝胶法 | 硬脂醇 正十二醇 棕榈酸 石蜡 | 二氧化硅 二氧化硅 二氧化硅 二氧化钛 | 62~464 — 386~488 80~90 | 91.1 49.2 53.5 69.4 | 55.9 21.0 62.0 61.8 | 229.7 116.7 109.9 90.4 | 导热快、可靠性高 | 原料价格比较昂贵、部分有机物损害健康 | [ [ [ [ |
复凝聚法 | 石蜡(Rubitherm?RT27) 石腊 辛酸 | 明胶/阿拉伯树胶 明胶/阿拉伯树胶 脲醛,三聚氰胺甲醛 | 12.0 — 0.2~1.5 | 49.0 80.0 59.3 | 62.5 25.0 13.9 | 239.8 144.7 93.9 | 非水溶性芯材高效、高产 | 成本高、易凝聚、保质期短、可靠性低 | [ [ [ |
界面聚合法 | 石蜡 正十八烷 十二酸十二醇 硬脂酸丁酯 硬脂酸丁酯 | 聚甲基丙烯酸甲酯 聚氨酯 聚脲 聚氨酯 聚脲树脂 | 200~400 5~10 10~40 10~35 10~300 | 52.9 40~70 — 78.5 — | 20.3 — 31.7 22.3 17.7 | 122.4 110.0 140.3 81.0 104.4 | 操作方法简单、反应速度快、成本低、可降解、包封率高 | 对壳材要求高、力学性能差 | [ [ [ [ [ |
原位聚合法 | 石蜡 正十八烷 正十九烷 正二十烷 正十八烷 | 三聚氰胺脲甲醛 尿素-三聚氰胺-甲醛 尿素-三聚氰胺-甲醛 尿素-三聚氰胺-甲醛 三聚氰胺甲醛 | 2.7~5.6 0.3~6.4 — — 2.2 | — 72.0 69.0 71.0 59.0 | 27.4 36.5 29.3 45.3 40.6 | 134.3 167.5 161.0 172.0 144.0 | 易形成球形、壳层厚度及包覆的物质含量易控制 | 操作复杂、对壳材和芯材有要求、需要控制反应条件多 | [ [ [ [ [ |
悬浮聚合法 | 正十八烷 正十八烷 PRS?石蜡 石蜡(Rubitherm?RT27) | 甲基丙烯酸正十八烷基共聚物 聚甲基丙烯酸丁酯、聚丙烯酸丁酯 聚苯乙烯 | 0.5~4.0 2~75 0.1~221 3.8 | — — 75.6 — | 26.5 29.1 — — | 91.0 112.0 153.5 79.0 | 良好的反应热控制、单体水溶性差、保质期长、可靠性高 | [ [ [ [ | |
微乳液聚合法 | 正十八烷 正十七烷 正十九烷 | 聚二乙烯基苯 聚苯乙烯 聚甲基丙烯酸甲酯 | 1.5 1~20 0.1~35 | — 63.3 60.3 | 22.6 21.5 31.2 | 192 136.9 139.2 | 不使用挥发性溶剂、保质期长、可靠性高 | [ [ [ |
表3 微胶囊相变材料的常用制备方法
制备方法 | 芯材 | 壳材 | 粒径分布 /μm | 包覆率 /% | 熔点 /℃ | 熔化潜热 /J·g-1 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
喷雾干燥法 | 正十八烷 石蜡(Rubitherm?RT27) 石蜡 | 二氧化钛 低密度聚乙烯和乙酸乙烯酯共聚物 二氧化硅 | 0.1~5 <10 | — 63.0 82.2 | 28.7 28.4 57.9 | 92~97 98.1 156.9 | 操作简便、生产效率高、用途广泛、花费低、适宜工业化生产 | 包埋率低、设备复杂、占地面积大、一次性投资大、耗能大 | [ [ [ |
溶胶-凝胶法 | 硬脂醇 正十二醇 棕榈酸 石蜡 | 二氧化硅 二氧化硅 二氧化硅 二氧化钛 | 62~464 — 386~488 80~90 | 91.1 49.2 53.5 69.4 | 55.9 21.0 62.0 61.8 | 229.7 116.7 109.9 90.4 | 导热快、可靠性高 | 原料价格比较昂贵、部分有机物损害健康 | [ [ [ [ |
复凝聚法 | 石蜡(Rubitherm?RT27) 石腊 辛酸 | 明胶/阿拉伯树胶 明胶/阿拉伯树胶 脲醛,三聚氰胺甲醛 | 12.0 — 0.2~1.5 | 49.0 80.0 59.3 | 62.5 25.0 13.9 | 239.8 144.7 93.9 | 非水溶性芯材高效、高产 | 成本高、易凝聚、保质期短、可靠性低 | [ [ [ |
界面聚合法 | 石蜡 正十八烷 十二酸十二醇 硬脂酸丁酯 硬脂酸丁酯 | 聚甲基丙烯酸甲酯 聚氨酯 聚脲 聚氨酯 聚脲树脂 | 200~400 5~10 10~40 10~35 10~300 | 52.9 40~70 — 78.5 — | 20.3 — 31.7 22.3 17.7 | 122.4 110.0 140.3 81.0 104.4 | 操作方法简单、反应速度快、成本低、可降解、包封率高 | 对壳材要求高、力学性能差 | [ [ [ [ [ |
原位聚合法 | 石蜡 正十八烷 正十九烷 正二十烷 正十八烷 | 三聚氰胺脲甲醛 尿素-三聚氰胺-甲醛 尿素-三聚氰胺-甲醛 尿素-三聚氰胺-甲醛 三聚氰胺甲醛 | 2.7~5.6 0.3~6.4 — — 2.2 | — 72.0 69.0 71.0 59.0 | 27.4 36.5 29.3 45.3 40.6 | 134.3 167.5 161.0 172.0 144.0 | 易形成球形、壳层厚度及包覆的物质含量易控制 | 操作复杂、对壳材和芯材有要求、需要控制反应条件多 | [ [ [ [ [ |
悬浮聚合法 | 正十八烷 正十八烷 PRS?石蜡 石蜡(Rubitherm?RT27) | 甲基丙烯酸正十八烷基共聚物 聚甲基丙烯酸丁酯、聚丙烯酸丁酯 聚苯乙烯 | 0.5~4.0 2~75 0.1~221 3.8 | — — 75.6 — | 26.5 29.1 — — | 91.0 112.0 153.5 79.0 | 良好的反应热控制、单体水溶性差、保质期长、可靠性高 | [ [ [ [ | |
微乳液聚合法 | 正十八烷 正十七烷 正十九烷 | 聚二乙烯基苯 聚苯乙烯 聚甲基丙烯酸甲酯 | 1.5 1~20 0.1~35 | — 63.3 60.3 | 22.6 21.5 31.2 | 192 136.9 139.2 | 不使用挥发性溶剂、保质期长、可靠性高 | [ [ [ |
方法 | 芯材 | 壳材 | 芯材熔化潜热 /J·g-1 | 微胶囊熔化 潜热/J·g-1 | 芯材凝固 潜热/J·g-1 | 微胶囊凝固 潜热/J·g-1 | 包覆率 /% | 结论 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
原位聚合法和 化学镀法 | 1-十四醇(TD) | 三聚氰胺、 尿素和甲醛 | 209.8 209.8 209.8 209.8 | 116.7 98.5 126.6 119.4 | 207.5 207.5 207.5 207.5 | 116.4 93.9 120.9 111.0 | 55.6 46.9 60.3 56.9 | 相变微胶囊镀银后可有效抑制相变材料的过冷,并提高包覆效率 | [ |
原位聚合法 | 石蜡 | 三聚氰胺、 尿素和甲醛 | 70.1 70.1 70.1 70.1 70.1 | 35.6 28.8 23.7 32.2 29.4 | 73.6 73.6 73.6 73.6 73.6 | 45.5 33.6 29.6 39.5 39.0 | 56.4 43.4 37.1 49.9 47.6 | 加入氧化石墨烯后增强了MCPCM粒度均匀性、热稳定性和不渗透性。随着微胶囊含量的增加,石膏材料的力学性能下降 | [ |
悬浮聚合法 | 正十二醇 | 丙烯酸树脂 | 216.0 | 93.31 | 207.8 | 78.16 | 43 | MEPCM降低了PCM过冷度,提升了PCM对温度变化的响应速度,增大了储能 | [ |
溶胶-凝胶法 | 石蜡 | 二氧化钛 | 130.3 | 90.37 | 127.8 | 94.66 | 69.36 | MEPCM具有良好的热稳定性,包覆较好,可有效防止石蜡泄漏 | [ |
溶胶-凝胶法 | 正十二醇 | 二氧化硅 | 210.13 | 103.4 | 209.3 | 99.64 | 49.21 | 乳化剂、溶液pH、芯壳比都会影响MCPCM的包覆率 | [ |
化学沉淀法 | 正十二醇 | 二氧化硅 | 210.13 | 116.7 | 209.3 | 114.61 | 55.54 | 当芯壳比由2∶1增加到 5∶1时,微胶囊的相变焓先增大后减少,形成的壳材较薄,后处理中易泄漏 | [ |
表4 微胶囊相变材料的包覆率
方法 | 芯材 | 壳材 | 芯材熔化潜热 /J·g-1 | 微胶囊熔化 潜热/J·g-1 | 芯材凝固 潜热/J·g-1 | 微胶囊凝固 潜热/J·g-1 | 包覆率 /% | 结论 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
原位聚合法和 化学镀法 | 1-十四醇(TD) | 三聚氰胺、 尿素和甲醛 | 209.8 209.8 209.8 209.8 | 116.7 98.5 126.6 119.4 | 207.5 207.5 207.5 207.5 | 116.4 93.9 120.9 111.0 | 55.6 46.9 60.3 56.9 | 相变微胶囊镀银后可有效抑制相变材料的过冷,并提高包覆效率 | [ |
原位聚合法 | 石蜡 | 三聚氰胺、 尿素和甲醛 | 70.1 70.1 70.1 70.1 70.1 | 35.6 28.8 23.7 32.2 29.4 | 73.6 73.6 73.6 73.6 73.6 | 45.5 33.6 29.6 39.5 39.0 | 56.4 43.4 37.1 49.9 47.6 | 加入氧化石墨烯后增强了MCPCM粒度均匀性、热稳定性和不渗透性。随着微胶囊含量的增加,石膏材料的力学性能下降 | [ |
悬浮聚合法 | 正十二醇 | 丙烯酸树脂 | 216.0 | 93.31 | 207.8 | 78.16 | 43 | MEPCM降低了PCM过冷度,提升了PCM对温度变化的响应速度,增大了储能 | [ |
溶胶-凝胶法 | 石蜡 | 二氧化钛 | 130.3 | 90.37 | 127.8 | 94.66 | 69.36 | MEPCM具有良好的热稳定性,包覆较好,可有效防止石蜡泄漏 | [ |
溶胶-凝胶法 | 正十二醇 | 二氧化硅 | 210.13 | 103.4 | 209.3 | 99.64 | 49.21 | 乳化剂、溶液pH、芯壳比都会影响MCPCM的包覆率 | [ |
化学沉淀法 | 正十二醇 | 二氧化硅 | 210.13 | 116.7 | 209.3 | 114.61 | 55.54 | 当芯壳比由2∶1增加到 5∶1时,微胶囊的相变焓先增大后减少,形成的壳材较薄,后处理中易泄漏 | [ |
方法 | 芯材 | 壳材 | 粒径分布/μm | 参考文献 |
---|---|---|---|---|
喷雾干燥法 | 正十八烷 | 二氧化钛 | 0.1~5 | [ |
溶胶-凝胶法 | 硬脂醇 | 二氧化硅 | 62~464 | [ |
棕榈酸 | 二氧化硅 | 386~488 | [ | |
复凝聚法 | 辛酸 | 脲醛、三聚氰胺甲醛 | 0.2~1.5 | [ |
界面聚合法 | 石蜡 | 聚甲基丙烯酸甲酯 | 200~400 | [ |
十二酸十二醇 | 聚脲 | 10~40 | [ | |
原位聚合法 | 28#石蜡 | 尿素-三聚氰胺-甲醛 | 2.75~5.62 | [ |
正十八烷 | 尿素-三聚氰胺-甲醛 | 0.3~6.4 | [ | |
悬浮聚合法 | PRS?石蜡 | 聚苯乙烯 | 0.13~221 | [ |
正十八烷 | 聚甲基丙烯酸丁酯、聚丙烯酸丁酯 | 2~75 | [ | |
微乳液聚合法 | 正十七烷 | 聚苯乙烯 | 1~20 | [ |
正十九烷 | 聚甲基丙烯酸甲酯 | 0.1~35 | [ | |
原位聚合法 | 硬脂酸丁酯 | 三聚氰胺甲醛树脂 | 20~200 | [ |
原位聚合法 | 正十八烷 | 尿素-三聚氰胺-甲醛 | 0.5~5 | [ |
界面聚合法 | 硬脂酸丁酯 | 脲醛树脂 | 10~300 | [ |
界面聚合法 | 30#石蜡 | 聚甲基丙烯酸丁酯 | 10~600 | [ |
表5 微胶囊相变材料的粒径分布
方法 | 芯材 | 壳材 | 粒径分布/μm | 参考文献 |
---|---|---|---|---|
喷雾干燥法 | 正十八烷 | 二氧化钛 | 0.1~5 | [ |
溶胶-凝胶法 | 硬脂醇 | 二氧化硅 | 62~464 | [ |
棕榈酸 | 二氧化硅 | 386~488 | [ | |
复凝聚法 | 辛酸 | 脲醛、三聚氰胺甲醛 | 0.2~1.5 | [ |
界面聚合法 | 石蜡 | 聚甲基丙烯酸甲酯 | 200~400 | [ |
十二酸十二醇 | 聚脲 | 10~40 | [ | |
原位聚合法 | 28#石蜡 | 尿素-三聚氰胺-甲醛 | 2.75~5.62 | [ |
正十八烷 | 尿素-三聚氰胺-甲醛 | 0.3~6.4 | [ | |
悬浮聚合法 | PRS?石蜡 | 聚苯乙烯 | 0.13~221 | [ |
正十八烷 | 聚甲基丙烯酸丁酯、聚丙烯酸丁酯 | 2~75 | [ | |
微乳液聚合法 | 正十七烷 | 聚苯乙烯 | 1~20 | [ |
正十九烷 | 聚甲基丙烯酸甲酯 | 0.1~35 | [ | |
原位聚合法 | 硬脂酸丁酯 | 三聚氰胺甲醛树脂 | 20~200 | [ |
原位聚合法 | 正十八烷 | 尿素-三聚氰胺-甲醛 | 0.5~5 | [ |
界面聚合法 | 硬脂酸丁酯 | 脲醛树脂 | 10~300 | [ |
界面聚合法 | 30#石蜡 | 聚甲基丙烯酸丁酯 | 10~600 | [ |
方法 | 芯材 | 壳材 | 芯壳比 | 熔化潜热 /J·g-1 | 包覆率 | 结论 | 参考文献 |
---|---|---|---|---|---|---|---|
原位聚合法 | 石蜡 | 脲醛树脂 | 1∶1 1.5∶1 2∶1 | 33~39 68~91 73~107 | — — — | 芯壳比是影响微胶囊相变潜热的首要因素,随着芯壳比增大,潜热增大,但芯壳比大于1.5∶1时,易出现壳材包覆不完全、壳材粘连、微胶囊团聚现象 | [ |
复凝聚法 | 低温有机相变材料 | 三聚氰胺-尿素-甲醛树脂 | 1∶3 1∶2 1∶1 | 18.56 31.63 47.55 | 16.71 28.47 42.80 | 随着芯壳比的增加,MCPCM的相变潜热逐渐增大,相应的封装效率和储能效率逐渐增加,且微胶囊中PCM的结晶温度逐渐降低,MCPCM呈现出优异的相变滞后性能 | [ |
界面聚合法 | 石蜡 | 聚甲基丙烯酸甲酯 | 1∶1 4∶3 5∶3 2∶1 | 64.93 62.34 62.17 60.30 | 52.95 50.88 49.99 48.09 | 随着芯壳比的增加,其焓值和封装效率逐渐提高。熔融温度略有提高,而冻结温度逐渐降低,这可能是由PMMA壳层厚度变化引起的。芯壳比为4∶3可制备出更佳的胶囊 | [ |
原位聚合法 | 脂肪酸 | 聚苯乙烯 | 1∶1 1.5∶1 2∶1 2.5∶1 | — — — — | 44.2 52.8 60.3 51.2 | 芯壳比在(1~2)∶1时微胶囊的包覆率呈上升趋势,继续增大比例,包覆率呈现下降趋势,3∶1时无法形成微胶囊。芯壳比过高会导致芯材渗漏,无法制备出微胶囊 | [ |
表6 微胶囊相变材料的芯壳比
方法 | 芯材 | 壳材 | 芯壳比 | 熔化潜热 /J·g-1 | 包覆率 | 结论 | 参考文献 |
---|---|---|---|---|---|---|---|
原位聚合法 | 石蜡 | 脲醛树脂 | 1∶1 1.5∶1 2∶1 | 33~39 68~91 73~107 | — — — | 芯壳比是影响微胶囊相变潜热的首要因素,随着芯壳比增大,潜热增大,但芯壳比大于1.5∶1时,易出现壳材包覆不完全、壳材粘连、微胶囊团聚现象 | [ |
复凝聚法 | 低温有机相变材料 | 三聚氰胺-尿素-甲醛树脂 | 1∶3 1∶2 1∶1 | 18.56 31.63 47.55 | 16.71 28.47 42.80 | 随着芯壳比的增加,MCPCM的相变潜热逐渐增大,相应的封装效率和储能效率逐渐增加,且微胶囊中PCM的结晶温度逐渐降低,MCPCM呈现出优异的相变滞后性能 | [ |
界面聚合法 | 石蜡 | 聚甲基丙烯酸甲酯 | 1∶1 4∶3 5∶3 2∶1 | 64.93 62.34 62.17 60.30 | 52.95 50.88 49.99 48.09 | 随着芯壳比的增加,其焓值和封装效率逐渐提高。熔融温度略有提高,而冻结温度逐渐降低,这可能是由PMMA壳层厚度变化引起的。芯壳比为4∶3可制备出更佳的胶囊 | [ |
原位聚合法 | 脂肪酸 | 聚苯乙烯 | 1∶1 1.5∶1 2∶1 2.5∶1 | — — — — | 44.2 52.8 60.3 51.2 | 芯壳比在(1~2)∶1时微胶囊的包覆率呈上升趋势,继续增大比例,包覆率呈现下降趋势,3∶1时无法形成微胶囊。芯壳比过高会导致芯材渗漏,无法制备出微胶囊 | [ |
材料 | 密度/kg·m-3 | 热导率/W·m-1·K-1 | 熔化潜热/J·g-1 | 结论 | 参考文献 |
---|---|---|---|---|---|
正十二烷/SiO2微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=15% | 946.4 995 993 990 | kp=0.749 kb=0.60 kb=0.61 kb=0.62 | 192.7 13.23 22.33 31.48 | 微胶囊相变材料的加入提高了系统的热、电和?效率。增加悬浮液浓度能提高体系的性能,但使用浓度过高,增强率降低 | [ |
正十八烷/PMMA微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=20% | 867.2 989.6 982.3 968.0 | kp=0.164 kb=0.571 kb=0.541 kb=0.483 | 147.1 — — — | MCPCM悬浮液增强了管道换热效果。利用螺旋波纹管增强流体扰动,改善因悬浮液浓度高时热导率减小和黏度增大引起的传热不利 | [ |
1-溴十六烷/氨基塑料(脲醛)微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=15.8% | 1045 1000 1002 1005 | kp=0.211 kb=0.576 kb=0.553 kb=0.527 | 130 6.5 13.0 20.5 | MCPCM悬浮液增大了换热率,泵耗大大降低。质量分数越高,其传热强化比越大。实际应用中具有良好的可行性 | [ |
表7 微胶囊相变材料的热导率
材料 | 密度/kg·m-3 | 热导率/W·m-1·K-1 | 熔化潜热/J·g-1 | 结论 | 参考文献 |
---|---|---|---|---|---|
正十二烷/SiO2微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=15% | 946.4 995 993 990 | kp=0.749 kb=0.60 kb=0.61 kb=0.62 | 192.7 13.23 22.33 31.48 | 微胶囊相变材料的加入提高了系统的热、电和?效率。增加悬浮液浓度能提高体系的性能,但使用浓度过高,增强率降低 | [ |
正十八烷/PMMA微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=20% | 867.2 989.6 982.3 968.0 | kp=0.164 kb=0.571 kb=0.541 kb=0.483 | 147.1 — — — | MCPCM悬浮液增强了管道换热效果。利用螺旋波纹管增强流体扰动,改善因悬浮液浓度高时热导率减小和黏度增大引起的传热不利 | [ |
1-溴十六烷/氨基塑料(脲醛)微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=15.8% | 1045 1000 1002 1005 | kp=0.211 kb=0.576 kb=0.553 kb=0.527 | 130 6.5 13.0 20.5 | MCPCM悬浮液增大了换热率,泵耗大大降低。质量分数越高,其传热强化比越大。实际应用中具有良好的可行性 | [ |
32 | FEI B, LU H, QI K, et al. Multi-functional microcapsules produced by aerosol reaction[J]. Journal of Aerosol Science, 2008, 39(12): 1089-1098. |
33 | BORREGUERO A M, VALVERDE J L, RODRIGUEZ J F, et al. Synthesis and characterization of microcapsules containing Rubitherm® RT27 obtained by spray drying[J]. Chemical Engineering Journal, 2011, 166(1): 384-390. |
34 | CHEN Z, CAO L, FANG G, et al. Synthesis and characterization of microencapsulated paraffin microcapsules as shape-stabilized thermal energy storage materials[J]. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(2): 112-123. |
35 | ZHU C, LIN Y, FANG G. Preparation and thermal properties of microencapsulated stearyl alcohol with silicon dioxide shell as thermal energy storage materials[J]. Applied Thermal Engineering, 2020, 169: 114943. |
36 | 耿丽霞. 正十二醇/二氧化硅微胶囊相变材料的制备及热物性研究[D]. 广州: 华南理工大学, 2017. |
GENG Lixia. Preparation and thermal properties of N-dodecanol@SiO2 microencapsulated phase change materials[D]. Guangzhou: South China University of Technology, 2017. | |
37 | 张军强, 王花枝, 杨志涛, 等. 棕榈酸/SiO2纳米胶囊的制备及其储热性能[J]. 功能材料, 2019, 50(11): 11065-11069. |
ZHANG Junqiang, WANG Huazhi, YANG Zhitao, et al. Preparation and thermal energy storage properties of palmitic acid/SiO2 nanocapsules[J]. Journal of Functional Materials, 2019, 50(11): 11065-11069. | |
38 | 周龙祥, 王保明, 田玉提, 等. 二氧化钛包覆石蜡相变微胶囊的制备及表征[J]. 现代化工, 2019, 39(3): 82-86. |
ZHOU Longxiang, WANG Baoming, TIAN Yuti, et al. Preparation and characterization of titanium oxide-coated microencapsulated paraffin phase change materials[J]. Modern Chemical Industry, 2019, 39(3): 82-86. | |
39 | ÖZONUR Y, MAZMAN M, PAKSOY H Ö, et al. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material[J]. International Journal of Energy Research, 2006, 30(10): 741-749. |
40 | ONDER E, SARIER N, CIMEN E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics[J]. Thermochimica Acta, 2008, 467(1/2): 63-72. |
1 | 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12): 5066-5085. |
LI Zhao, LI Baorang, CHEN Haozhi, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085. | |
2 | JAVADI F S, METSELAAR H S C, GANESAN P. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review[J]. Solar Energy, 2020, 206: 330-352. |
3 | QASIM M A, ALI H M, KHAN M N, et al. The effect of using hybrid phase change materials on thermal management of photovoltaic panels—An experimental study[J]. Solar Energy, 2020, 209: 415-423. |
4 | SHARMA R K, GANESAN P, TYAGI V V, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J]. Energy Conversion and Management, 2015, 95: 193-228. |
5 | 申天伟, 陆少锋, 张晶, 等. 低黄变聚脲微胶囊相变材料的制备及性能表征[J]. 化工进展, 2017, 36(12): 4547-4553. |
SHEN Tianwei, LU Shaofeng, ZHANG Jing, et al. Preparation and performance characterization of low-yellowing polyurea microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4547-4553. | |
6 | XU B, ZHOU J, NI Z, et al. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2018, 179: 87-94. |
7 | CHEN Z, FANG G. Preparation and heat transfer characteristics of microencapsulated phase change material slurry: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4624-4632. |
8 | CUI H, LIAO W, MI X, et al. Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials[J]. Energy and Buildings, 2015, 105: 273-284. |
9 | FRAZZICA A, BRANCATO V, PALOMBA V, et al. Thermal performance of hybrid cement mortar-PCMs for warm climates application[J]. Solar Energy Materials and Solar Cells, 2019, 193: 270-280. |
10 | THIELE A M, SANT G, PILON L. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls[J]. Energy Conversion and Management, 2015, 93: 215-227. |
11 | GENG X, LI W, WANG Y, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018, 217: 281-294. |
12 | GENG X, LI W, YIN Q, et al. Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity[J]. Energy, 2018, 159: 857-869. |
13 | SARIER N, ONDER E. Organic phase change materials and their textile applications: an overview[J]. Thermochimica Acta, 2012, 540: 7-60. |
14 | JIANG F, WANG X, WU D. Magnetic microencapsulated phase change materials with an organo-silica shell: design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films[J]. Energy, 2016, 98: 225-239. |
15 | 郭军红, 邵竞尧, 许芬, 等. RAM-相变微胶囊红外微波隐身复合材料[J]. 精细化工, 2017, 34(12): 1350-1355, 1369. |
GUO Junhong, SHAO Jingyao, XU Fen, et al. RAM-microencapsulated phase change infrared and microwave stealth composites[J]. Fine Chemicals, 2017, 34(12): 1350-1355, 1369. | |
16 | 李兆宁, 赵彦杰, 范亚茹. 相变蓄冷浆体材料研究进展[J]. 化工进展, 2018, 37(S1): 108-116. |
LI Zhaoning, ZHAO Yanjie, FAN Yaru. Research progress of phase change cold storage slurry materials[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 108-116. | |
17 | CHEN S, WANG X, LI W, et al. Experimental study on cooling performance of microencapsulated phase change suspension in a PEMFC[J]. International Journal of Hydrogen Energy, 2017, 42(50): 30004-30012. |
18 | TRIVEDI G V N, PARAMESHWARAN R. Microencapsulated phase change material suspensions for cool thermal energy storage[J]. Materials Chemistry and Physics, 2020, 242: 122519. |
19 | WANG Z, QU J, ZHANG R, et al. Photo-thermal performance evaluation on MWCNTs-dispersed microencapsulated PCM slurries for direct absorption solar collectors[J]. Journal of Energy Storage, 2019, 26: 100793. |
20 | 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432. |
LI Xinghui, CHEN Minzhi, ZHOU Xiaoyan. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42 (11): 1422-1432. | |
41 | KONUKLU Y, UNAL M, PAKSOY H. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 120: 536-542. |
42 | SHI J, WU X, SUN R, et al. Nano-encapsulated phase change materials prepared by one-step interfacial polymerization for thermal energy storage[J]. Materials Chemistry and Physics, 2019, 231: 244-251. |
43 | SU J F, WANG L X, REN L. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: influence of styrene-maleic anhydride as a surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299(1/2/3): 268-275. |
44 | CAI C, OUYANG X, ZHOU L, et al. Co-solvent free interfacial polycondensation and properties of polyurea PCM microcapsules with dodecanol dodecanoate as core material[J]. Solar Energy, 2020, 199: 721-730. |
21 | 徐众, 侯静, 李军, 等. 膨胀石墨/有机质复合相变材料的制备及性能[J]. 化工进展, 2020, 39(7): 2758-2767. |
XU Zhong, HOU Jing, LI Jun, et al. Preparation and performances of expanded graphite/organic matter composite phase change materials[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2758-2767. | |
45 | LU S, SHEN T, XING J, et al. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization[J]. Materials Letters, 2018, 211: 36-39. |
46 | 王宇欣, 刘爽, 王平智, 等. 温室蓄热微胶囊相变材料制备筛选与性能表征[J]. 农业机械学报, 2016, 47(9): 348-358. |
WANG Yuxin, LIU Shuang, WANG Pingzhi, et al. Preparation and characterization of microencapsulated phase change materials for greenhouse application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 348-358. | |
47 | HAN S, CHEN Y, LYU S, et al. Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124046. |
22 | JIANG B, WANG X, WU D. Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: a novel design of applied energy microsystem for bioapplications[J]. Applied Energy, 2017, 201: 20-33. |
23 | LUO R, WANG S, WANG T, et al. Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation[J]. Energy and Buildings, 2015, 108: 373-380. |
48 | ZHANG X, FAN Y, TAO X, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005, 281(2): 299-306. |
49 | LI W, ZHANG X X, WANG X C, et al. Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content[J]. Materials Chemistry and Physics, 2007, 106(2/3): 437-442. |
24 | MO S, HE L, JIA L, et al. Thermophysical properties of a novel nanoencapsulated phase change material[J]. International Journal of Thermophysics, 2020, 41(5): 1-12. |
25 | AYDIN Ahmet Alper. High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters' homologous series[J]. Solar Energy Materials and Solar Cells, 2013, 113: 44-51. |
50 | TANG X, LI W, ZHANG X, et al. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage[J]. Energy, 2014, 68: 160-166. |
51 | QIU X, SONG G, CHU X, et al. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage[J]. Thermochimica Acta, 2013, 551: 136-144. |
26 | HASL T, JIRICEK I. The prediction of heat storage properties by the study of structural effect on organic phase change materials[J]. Energy Procedia, 2014, 46(1): 301-309. |
27 | YUAN Yanping, ZHANG Nan, TAO Wenquan, et al. Fatty acids as phase change materials: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29(7): 482-498. |
28 | 陈涛, 孙寒雪, 朱照琪, 等. (准)共晶系相变储能材料的研究进展[J]. 化工进展, 2019, 38(7): 3265-3273. |
CHEN Tao, SUN Hanxue, ZHU Zhaoqi, et al. Progress in studies of(quasi-)eutectic phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3265-3273. | |
29 | PENG H, WANG J, ZHANG X, et al. A review on synthesis, characterization and application of nanoencapsulated phase change materials for thermal energy storage systems[J]. Applied Thermal Engineering, 2021, 185: 116326. |
30 | ZHANG T, WANG Y, SHI H, et al. Fabrication and performances of new kind microencapsulated phase change material based on stearic acid core and polycarbonate shell[J]. Energy Conversion and Management, 2012, 64: 1-7. |
31 | NIU X F, XU Q, ZHANG Y, et al. Fabrication and properties of micro-nanoencapsulated phase change materials for internally-cooled liquid desiccant dehumidification[J]. Nanomaterials, 2017, 7(5): 96. |
52 | SANCHEZ L, SANCHEZ P, CARMONA M, et al. Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization[J]. Colloid and Polymer Science, 2008, 286(8/9): 1019-1027. |
53 | BORREGUERO A M, CARMONA M, SANCHEZ M L, et al. Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio[J]. Applied Thermal Engineering, 2010, 30(10): 1164-1169. |
54 | CHAIYASAT P, ISLAM M Z, CHAIYASAT A. Preparation of poly(divinylbenzene) microencapsulated octadecane by microsuspension polymerization: oil droplets generated by phase inversion emulsification[J]. RSC Advances, 2013, 3(26): 10202. |
55 | SARI A, ALKAN C, KAHRAMAN DÖĞÜŞCÜ D, et al. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 126: 42-50. |
56 | SARI A, ALKAN C, BIÇER A, et al. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage[J]. Energy Conversion and Management, 2014, 86: 614-621. |
57 | DANG X, YANG M, SHAN Z, et al. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release[J]. Materials Science and Engineering C, 2017, 74: 493-500. |
58 | REN W, TIAN G, ZHAO S, et al. Effects of spray-drying temperature on the physicochemical properties and polymethoxyflavone loading efficiency of citrus oil microcapsules[J]. LWT—Food Science and Technology, 2020, 133: 109954. |
59 | WANG Y, ZHU X, BIE X, et al. Preparation of microcapsules containing antimicrobial lipopeptide from Bacillus amyloliquefaciens ES-2 by spray drying[J]. LWT—Food Science and Technology, 2014, 56(2): 502-507. |
60 | ZUO J, ZHAN J, LUO C, et al. Characteristics and release property of polylactic acid/sodium monofluorophosphate microcapsules prepared by spray drying[J]. Advanced Powder Technology, 2017, 28(11): 2805-2811. |
61 | LEE H, DESHMUKH P R, KIM J H, et al. Spray drying formation of metal oxide (TiO2 or SnO2) nanoparticle coated boron particles in the form of microspheres and their physicochemical properties[J]. Journal of Alloys and Compounds, 2019, 810: 151923. |
62 | NANDIYANTO A B D, OKUYAMA K. Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges[J]. Advanced Powder Technology, 2011, 22(1): 1-19. |
63 | HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003, 74(1/2): 195-202. |
64 | FEI X, LIU S, ZHANG B, et al. Effect of alkyltriethoxysilane on the performance of sodium silicate-based silica shell phase change microcapsules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125503. |
65 | BAE J. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithiumi on battery[J]. Journal of Solid State Chemistry, 2011, 184(7): 1749-1755. |
66 | MAIA F, YASAKAU K A, CARNEIRO J, et al. Corrosion protection of AA2024 by sol-gel coatings modified with MBT-loaded polyurea microcapsules[J]. Chemical Engineering Journal, 2016, 283: 1108-1117. |
67 | QIAN T, DANG B, CHEN Y, et al. Fabrication of magnetic phase change n-eicosane@Fe3O4/SiO2 microcapsules on wood surface via sol-gel method[J]. Journal of Alloys and Compounds, 2019, 772: 871-876. |
68 | FANG G, CHEN Z, LI H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials[J]. Chemical Engineering Journal, 2010, 163(1/2): 154-159. |
69 | WU X, FAN M, CUI S, et al. Novel Na2SO4@SiO2 phase change material with core-shell structures for high temperature thermal storage[J]. Solar Energy Materials and Solar Cells, 2018, 178: 280-288. |
70 | HE F, WANG X, WU D. New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor[J]. Energy, 2014, 67: 223-233. |
71 | HUO X, LI W, WANG Y, et al. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation[J]. Carbohydrate Polymers, 2018, 200: 602-610. |
72 | SINGH J, VENNAPUSA J R, CHATTOPADHYAY S. Protein-polysaccharide based microencapsulated phase change material composites for thermal energy storage[J]. Carbohydrate Polymers, 2020, 229: 115531. |
73 | TANGSIRIRATANA E, SKOLPAP W, PATTERSON R J, et al. Thermal properties and behavior of microencapsulated sugarcane wax phase change material[J]. Heliyon, 2019, 5(8): e02184. |
74 | PIACENTINI E, GIORNO L, DRAGOSAVAC M M, et al. Microencapsulation of oil droplets using cold water fish gelatine/gum Arabic complex coacervation by membrane emulsification[J]. Food Research International, 2013, 53(1): 362-372. |
75 | HUANG X, ZHU C, LIN Y, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: a review[J]. Applied Thermal Engineering, 2019, 147: 841-855. |
76 | LI Y, ZHANG X, ZHAO Y, et al. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum Arabic: phase behavior, thermodynamic, and structural properties[J]. Food Research International, 2018, 107: 596-604. |
77 | 海彬, 姜高亮, 芦雷鸣, 等. 复凝聚法制备石蜡相变储能微胶囊及其性能研究[J]. 应用化工, 2018, 47(1): 10-13, 17. |
Bin HAI, JIANG Gaoliang, LU Leiming, et al. Preparation and properties of microencapsulated paraffin phase change material by complex coacervation[J]. Applied Chemical Industry, 2018, 47(1): 10-13, 17. | |
78 | BASAL G, SIRIN DEVECI S, YALCIN D, et al. Properties of n-eicosane-loaded silk fibroin-chitosan microcapsules[J]. Journal of Applied Polymer Science, 2011, 121(4): 1885-1889. |
79 | ZHU X, LI X, SHEN J, et al. Stable microencapsulated phase change materials with ultrahigh payload for efficient cooling of mobile electronic devices[J]. Energy Conversion and Management, 2020, 223: 113478. |
80 | TSUDA N, OHTSUBO T, FUJI M. Preparation of self-bursting microcapsules by interfacial polymerization[J]. Advanced Powder Technology, 2012, 23(6): 724-730. |
81 | YANG J M, KIM J. The microencapsulation of calcium chloride hexahydrate as a phase-change material by using the hybrid coupler of organoalkoxysilanes[J]. Journal of Applied Polymer Science, 2018, 135(6): 45821. |
82 | ZHANG H, WANG X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation[J]. Solar Energy Materials and Solar Cells, 2009, 93(8): 1366-1376. |
83 | LU S, SHEN T, XING J, et al. Preparation, characterization, and thermal stability of double-composition shell microencapsulated phase change material by interfacial polymerization[J]. Colloid and Polymer Science, 2017, 295(10): 2061-2067. |
84 | GUO X, CAO J, PEMG Y, et al. Incorporation of microencapsulated dodecanol into wood flour/high-density polyethylene composite as a phase change material for thermal energy storage[J]. Materials & Design, 2016, 89: 1325-1334. |
85 | SARIER N, ONDER E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. Thermochimica Acta, 2007, 452(2): 149-160. |
86 | ZHANG H, WANG X. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332(2/3): 129-138. |
87 | GAO P P, ZHOU Z H, YANG B, et al. Structural regulation of poly(urea-formaldehyde) microcapsules containing lube base oil and their thermal properties[J]. Progress in Organic Coatings, 2021, 150: 105990. |
88 | 华柄宇, 王进美, 刘红媛, 等. 相变点可控的相变微胶囊制备与性能研究[J]. 化工新型材料, 2020, 48(5): 130-134. |
HUA Bingyu, WANG Jinmei, LIU Hongyuan, et al. Preparation and property of phase change microcapsule with controllable phase transition point[J]. New Chemical Materials, 2020, 48(5): 130-134. | |
89 | XU R, XIA X, WANG W, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with good thermal insulting properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591: 124519. |
90 | WANG H, LUO J, YANG Y, et al. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance[J]. Solar Energy, 2016, 139: 591-598. |
91 | QIU X, LU L, WANG J, et al. Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shells[J]. Solar Energy Materials and Solar Cells, 2014, 128: 102-111. |
92 | WANG Z, MA W, HU D, et al. Synthesis and characterization of microencapsulated methyl laurate with polyurethane shell materials via interfacial polymerization in Pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124958. |
93 | LI W, SONG G, TANG G, et al. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell[J]. Energy, 2011, 36(2): 785-791. |
94 | SU W, DARKWA J, KOKOGIANNAKIS G, et al. Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage[J]. Energy Procedia, 2017, 121: 95-101. |
95 | MA Y, XIE Q, WANG X, et al. Synthesis and characterization of microencapsulated phase change materials with comb-like acrylic co-polymer shell as thermal energy storage materials[J]. Solar Energy, 2019, 179: 410-423. |
96 | GAO X, ZHAO T, LUO G, et al. Facile method of fabricating microencapsulated phase change materials with compact bonding polymer-silica hybrid shell using TEOS/MPS[J]. Thermochimica Acta, 2018, 659: 183-190. |
97 | ZHAO J, YANG Y, LI Y, et al. Microencapsulated phase change materials with TiO2-doped PMMA shell for thermal energy storage and UV-shielding[J]. Solar Energy Materials and Solar Cells, 2017, 168: 62-68. |
98 | WANG H, LI Y, ZHAO L, et al. A facile approach to synthesize microencapsulated phase change materials embedded with silver nanoparicle for both thermal energy storage and antimicrobial purpose[J]. Energy, 2018, 158: 1052-1059. |
99 | FANG Y, YU H, WAN W, et al. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials[J]. Energy Conversion and Management, 2013, 76: 430-436. |
100 | ALAY S, GÖDE F, ALKAN C. Synthesis and thermal properties of poly(n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics[J]. Journal of Applied Polymer Science, 2011, 120(5): 2821-2829. |
101 | KOJIMA R, HIDAKA S, TAIRA M, et al. Preparation of liquid crystal nanocapsules by polymerization of oil-in-water emulsion monomer droplets[J]. Journal of Colloid and Interface Science, 2020, 563: 122-130. |
102 | ALKAN C, SARı A, KARAIPEKLI A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage[J]. Energy Conversion and Management, 2011, 52(1): 687-692. |
103 | 吴克刚, 柴向华. 单细胞AA油喷雾干燥微胶囊化壁材包埋性能的研究[J]. 高校化学工程学报, 2008, 22(5): 797-802. |
WU Kegang, CHAI Xianghua. Performance of various shell materials for microencapsulation of single cell oil rich in arachidonic acid by spray drying[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(5): 797-802. | |
104 | 单新丽, 王建平, 刘妍, 等. 丙烯酸共聚物囊壁的正十八烷微胶囊的制备和性能表征[J]. 物理化学学报, 2009, 25(12): 2590-2596. |
SHAN Xinli, WANG Jianping, LIU Yan, et al. Fabrication and characterization of microencapsulated n-octadecane with an acrylic co-polymeric shell[J]. Acta Physico-Chimica Sinica, 2009, 25(12): 2590-2596. | |
105 | 胡荣荣, 李凤艳, 张世杰, 等. 聚甲基丙烯酸甲酯/石蜡微胶囊的制备与性能[J]. 石油化工高等学校学报, 2019, 32(3): 14-19. |
HU Rongrong, LI Fengyan, ZHANG Shijie, et al. Fabrication and characterization of microencapsulated paraffin with methyl methacrylate-based polymer shell[J]. Journal of Petrochemical Universities, 2019, 32(3): 14-19. | |
106 | 丁泽, 陈昭朋, 张凯, 等. 相变微胶囊/环氧树脂复合泡沫的制备及性能[J]. 高分子材料科学与工程, 2019, 35(1): 136-141. |
DING Ze, CHEN Zhaopeng, ZHANG Kai, et al. Preparation and properties of phase change microcapsule/epoxy resin composite foam[J]. Polymer Materials Science & Engineering, 2019, 35(1): 136-141. | |
107 | 俞滨滨, 裴克梅. 自调温涂料用石蜡相变微胶囊的制备与性能分析[J]. 浙江理工大学学报(自然科学版), 2020, 43(5): 602-608. |
YU Binbin, PEI Kemei. Preparation and properties of paraffin phase change microcapsules for temperature auto-adjusting coatings[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(5): 602-608. | |
108 | 杨颖旎, 尚丽娜, 赵俊淇, 等. 聚氨酯相变储能微胶囊的制备及性能表征[J]. 化工新型材料, 2019, 47(12): 91-94. |
YANG Yingni, SHANG Lina, ZHAO Junqi, et al. Preparation and characterization of polyurethane phase change energy storage microcapsules[J]. New Chemical Materials, 2019, 47(12): 91-94. | |
109 | WANG X, LI C, ZHAO T. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance[J]. Solar Energy Materials and Solar Cells, 2018, 183: 82-91. |
110 | 苏永丽. 二氧化硅/壳聚糖/石蜡相变微胶囊的制备和性能[D]. 南京: 东南大学, 2016. |
SU Yongli. Preparation and properties of silica/chitosan/paraffin phase change microcapsules[D]. Nanjing: Southeast University, 2016. | |
111 | ZUO J D, DONG B Q, XING F, et al. Preparation of polystyrene/sodium monofluorophosphate microcapsules by W/O/W solvent evaporation method[J]. Advanced Powder Technology, 2016, 27(4): 1086-1092. |
112 | LIU H, WANG Y, LI D, et al. Preparation and characterization of poly(melamine-formaldehyde) microcapsules filled with propisochlor[J]. Journal of Macromolecular Science, Part A, 2019, 56(7): 676-685. |
113 | ZHANG Y, WANG K, TAO W, et al. Preparation of microencapsulated phase change materials used graphene oxide to improve thermal stability and its incorporation in gypsum materials[J]. Construction and Building Materials, 2019, 224: 48-56. |
114 | 鲁进利, 李洋, 韩亚芳, 等. 丙烯酸树脂-正十二烷醇相变微胶囊制备及性能表征[J]. 过程工程学报, 2019, 19(3): 617-622. |
LU Jinli, LI Yang, HAN Yafang, et al. Preparation and properties characterization of microencapsulated phase change materials using acrylic resin copolymers/n-dodecanol[J]. The Chinese Journal of Process Engineering, 2019, 19(3): 617-622. | |
115 | 张艳辉, 邓建国, 黄奕刚. 乙二醇双硬脂酸酯/PMMA核壳储能微胶囊制备[J]. 化工进展, 2012, 31(3): 580-585. |
ZHANG Yanhui, DENG Jianguo, HUANG Yigang. Preparation of phase change material EGDS/PMMA core-shell microcapsules[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 580-585. | |
116 | YANG J, KELLER M W, MOORE J S, et al. Microencapsulation of isocyanates for self-healing polymers[J]. Macromolecules, 2008, 41(24): 9650-9655. |
117 | MA Y, LU P, CHEN W, et al. Preparation of isocyanate microcapsules as functional crosslinking agent by minimalist interfacial polymerization[J]. Advanced Powder Technology, 2019, 30(10): 1995-2002. |
118 | FRANÇA D, MEDINA Â F, MESSA L L, et al. Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable-controlled release materials[J]. Carbohydrate Polymers, 2018, 196: 47-55. |
119 | STROBEL S A, HUDNALL K, ARBAUGH B, et al. Stability of fish oil in calcium alginate microcapsules cross-linked by in situ internal gelation during spray drying[J]. Food and Bioprocess Technology, 2020, 13(2): 275-287. |
120 | ZHANG X X, FAN Y F, TAO X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005, 281(2): 299-306. |
121 | 许明明, 赵立功, 李建立, 等. 辐射余热回收用相变微胶囊的制备与表征[J]. 广州化工, 2020, 48(7): 61-64. |
XU Mingming, ZHAO Ligong, LI Jianli, et al. Preparation and characterization of phase change microcapsules for radiation waste heat recovery[J]. Guangzhou Chemical Industry, 2020, 48(7): 61-64. | |
122 | 周青春, 张金枝, 邹其超. 滞后低温相变储能微胶囊的制备和性能研究[J]. 胶体与聚合物, 2019, 37(2): 58-61. |
ZHOU Qingchun, ZHANG Jinzhi, ZOU Qichao. Preparation and properties of hysteresis low temperature phase change energy storage microcapsules[J]. Chinese Journal of Colloid & Polymer, 2019, 37(2): 58-61. | |
123 | HU X, ZHANG Y. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3163-3172. |
124 | 邹得球, 马先锋, 刘小诗, 等. 石墨烯在相变材料中的研究进展[J]. 化工进展, 2017, 36(5): 1743-1754. |
ZOU Deqiu, MA Xianfeng, LIU Xiaoshi, et al. Research progress on graphene in phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1743-1754. | |
125 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
126 | LIN S C, AL-KAYIEM H H. Evaluation of copper nanoparticles-Paraffin wax compositions for solar thermal energy storage[J]. Solar Energy, 2016, 132: 267-278. |
127 | HO C J, LEE C Y, YAMADA M. Experiments on laminar cooling characteristics of a phase change nanofluid flow through an iso-flux heated circular tube[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1307-1315. |
128 | LI W, WAN H, LOU H, et al. Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam[J]. Energy, 2017, 127: 671-679. |
129 | LI W Q, WAN H, JING T T, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: a numerical and experimental study[J]. Applied Thermal Engineering, 2019, 146: 413-421. |
130 | EISAPOUR M, EISAPOUR A H, HOSSEINI M J, et al. Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid[J]. Applied Energy, 2020, 266: 114849. |
131 | 张冠华, 俞臻杰, 崔国民, 等. 相变微胶囊悬浮液强制对流换热实验研究[J]. 热能动力工程, 2019, 34(6): 147-154. |
ZHANG Guanhua, YU Zhenjie, CUI Guomin, et al. An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(6): 147-154. | |
132 | CHEN B, WANG X, ZENG R, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1638-1646. |
133 | CHUNG U S, MIN J H, LEE P C, et al. Polyurethane matrix incorporating PDMS-based self-healing microcapsules with enhanced mechanical and thermal stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 173-180. |
134 | LU S, SHEN T, XING J, et al. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization[J]. Materials Letters, 2018, 211: 36-39. |
135 | NOMURA T, YOOLERD J, SHENG N, et al. Al/Al2O3 core/shell microencapsulated phase change material for high-temperature applications[J]. Solar Energy Materials and Solar Cells, 2019, 193: 281-286. |
136 | JEONG S G, JEON J, SEO J, et al. Performance evaluation of the microencapsulated PCM for wood-based flooring application[J]. Energy Conversion and Management, 2012, 64: 516-521. |
137 | NAVARRO L, SOLÉ A, MARTÍN M, et al. Benchmarking of useful phase change materials for a building application[J]. Energy and Buildings, 2019, 182: 45-50. |
138 | 周玉帅, 赵敬德, 董晓丽. 微胶囊相变材料蓄冷系统分析与比较[J]. 发电与空调, 2012, 33(1): 61-64. |
ZHOU Yushuai, ZHAO Jingde, DONG Xiaoli. Comparison and analysis of exergy about MPCM slurry storage system[J]. Power Generation & Air Condition, 2012, 33(1): 61-64. | |
139 | CAO V D, PILEHVAR S, SALAS-BRINGAS C, et al. Thermal analysis of geopolymer concrete walls containing microencapsulated phase change materials for building applications[J]. Solar Energy, 2019, 178: 295-307. |
140 | JEONG S G, CHANG S J, WI S, et al. Development and performance evaluation of heat storage paint with MPCM for applying roof materials as basic research[J]. Energy and Buildings, 2016, 112: 62-68. |
141 | SHI X J, ZHANG P. A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system[J]. Applied Energy, 2013, 112: 1393-1402. |
142 | ZHAI X Q, WANG X L, WANG T, et al. A review on phase change cold storage in air-conditioning system: materials and applications[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 108-120. |
143 | ZHENG L, ZHANG W, LIANG F. Experiment study on thermal conductivity of microcapsule phase change suspension applied to solar powered air conditioning cold storage system[J]. Procedia Engineering, 2017, 205: 1237-1244. |
144 | SARIER N, ONDER E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. Thermochimica Acta, 2007, 452(2): 149-160. |
145 | 阎若思, 王瑞, 刘星. 相变材料微胶囊在蓄热调温智能纺织品中的应用[J]. 纺织学报, 2014, 35(9): 155-164. |
YAN Ruosi, WANG Rui, LIU Xing. Application of microencapsulated phase-change materials in intelligent heat-storage and thermo-regulated textile[J]. Journal of Textile Research, 2014, 35(9): 155-164. | |
146 | YEERKEN T, YU W, FENG J, et al. Durable superamphiphobic aramid fabrics modified by PTFE and FAS for chemical protective clothing[J]. Progress in Organic Coatings, 2019, 135: 41-50. |
147 | BARTKOWIAK G, DABROWSKA A, MARSZALEK A. Analysis of thermoregulation properties of PCM garments on the basis of ergonomic tests[J]. Textile Research Journal, 2013, 83(2): 148-159. |
148 | SUN Z, ZHAO L, WAN H, et al. Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors[J]. Chemical Engineering Journal, 2020, 396: 125317. |
149 | JIN Z G, WANG Y, LIU J G, et al. Synthesis and properties of paraffin capsules as phase change materials[J]. Polymer, 2008, 49(12): 2903-2910. |
150 | NG D Q, TSENG Y L, SHIH Y F, et al. Synthesis of novel phase change material microcapsule and its application[J]. Polymer, 2017, 133: 250-262. |
151 | 郝立才, 肖红, 刘卫, 等. 防热红外侦视纺织品的研究进展[J]. 纺织学报, 2014, 35(7): 158-164. |
HAO Licai, XIAO Hong, LIU Wei, et al. Research development of thermal infrared camouflage textiles[J]. Journal of Textile Research, 2014, 35(7): 158-164. | |
152 | 贾其, 吕绪良, 荣先辉, 等. 添加相变材料的混凝土路面红外伪装应用研究[J]. 兵工学报, 2011, 32(8): 975-980. |
JIA Qi, Xuliang LYU, RONG Xianhui, et al. Application of concrete with phase-change materials in pavement infrared camouflage[J]. Acta Armamentarii, 2011, 32(8): 975-980. | |
153 | 郭军红, 邵竞尧, 包雪梅, 等. 吸波-相变微胶囊/环氧树脂红外微波隐身涂料[J]. 涂料工业, 2017, 47(11): 28-35. |
GUO Junhong, SHAO Jingyao, BAO Xuemei, et al. Study on RAM-MCPCM/epoxy compatible stealth coating[J]. Paint & Coatings Industry, 2017, 47(11): 28-35. | |
154 | BAL L M, SATYA S, NAIK S N. Solar dryer with thermal energy storage systems for drying agricultural food products: a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(8): 2298-2314. |
155 | PATEL S K, BADE M H. Energy targeting and process integration of spray dryer with heat recovery systems[J]. Energy Conversion and Management, 2020, 221: 113148. |
156 | SERALE G, GOIA F, PERINO M. Numerical model and simulation of a solar thermal collector with slurry Phase Change Material (PCM) as the heat transfer fluid[J]. Solar Energy, 2016, 134: 429-444. |
157 | LIU L, JIA Y, LIN Y, et al. Performance evaluation of a novel solar photovoltaic-thermal collector with dual channel using microencapsulated phase change slurry as cooling fluid[J]. Energy Conversion and Management, 2017, 145: 30-40. |
158 | MUÑOZ-SÁNCHEZ B, IPARRAGUIRRE-TORRES I, MADINA-ARRESE V, et al. Encapsulated high temperature PCM as active filler material in a thermocline-based thermal storage system[J]. Energy Procedia, 2015, 69: 937-946. |
159 | 张方, 胥建群, 黄喜军. 基于PCMS流动和传热特性凝汽器的节水节能研究[J]. 中国电机工程学报, 2017, 37(10): 2905-2912. |
ZHANG Fang, XU Jianqun, HUANG Xijun. Research on water and energy conservation of the condenser based on characteristics of flow and heat transfer of PCMS[J]. Proceedings of the Chinese Society for Electrical Engineering, 2017, 37(10): 2905-2912. |
[1] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[2] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[3] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[4] | 马殿普, 李俊, 覃德清, 袁英杰, 潘飞, 符泽卫. 锡酸锌纳米材料的制备方法及应用研究进展[J]. 化工进展, 2022, 41(6): 3113-3126. |
[5] | 宋梓豪, 王宏鑫, 杜博宇, 段秋阳, 卢晶虹, 江颖辉, 崔升. 聚酰亚胺气凝胶制备、性能及应用进展[J]. 化工进展, 2022, 41(2): 816-826. |
[6] | 刘瑞琴, 孟凡会, 王立言, 张鹏, 张俊峰, 谭猗生, 李忠. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878. |
[7] | 何广源, 陈学敏, 王雨婷, 李发堂, 张子健, 许文浩. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7): 3813-3825. |
[8] | 黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203. |
[9] | 罗明生, 冯旭楞, 宋丹, 杨智, 王亚涛, 李洪娟. 制备方法对FeC2O4制备的费托合成铁催化剂的影响[J]. 化工进展, 2020, 39(6): 2422-2429. |
[10] | 付绒,杨春林,胡燕燕,欧梅桂. 核壳型磁性荧光纳米复合材料的制备及其应用研究进展[J]. 化工进展, 2019, 38(08): 3742-3755. |
[11] | 李兆宁, 赵彦杰, 范亚茹. 相变蓄冷浆体材料研究进展[J]. 化工进展, 2018, 37(S1): 108-116. |
[12] | 刘流, 张颂红, 贠军贤, 姚克俭. 纳凝胶的制备、性能及应用进展[J]. 化工进展, 2018, 37(12): 4726-4734. |
[13] | 张国辉, 张玉婷, 张景成, 南军, 臧甲忠, 于海斌. 制备方法对Ni-Mo/Al2O3加氢催化剂性能的影响[J]. 化工进展, 2018, 37(11): 4315-4321. |
[14] | 李希萌, 厉英, 胡传波. 聚吡咯纳米复合材料制备及应用研究进展[J]. 化工进展, 2018, 37(04): 1489-1500. |
[15] | 王敏朵, 曾双亲, 贾燕子, 杨清河. 制备方法对含硅氧化铝载体性质的影响[J]. 化工进展, 2017, 36(S1): 235-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |