化工进展 ›› 2021, Vol. 40 ›› Issue (1): 505-514.DOI: 10.16085/j.issn.1000-6613.2020-0548
收稿日期:
2020-04-09
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
刘永军
作者简介:
刘兴社(1992—),男,博士研究生,研究方向为煤化工废水无害化处理理论与技术。E-mail:基金资助:
Xingshe LIU(), Yongjun LIU(), Zhe LIU, Pengfei LI, Pan LIU
Received:
2020-04-09
Online:
2021-01-05
Published:
2021-01-12
Contact:
Yongjun LIU
摘要:
煤化工废水是一种典型的有毒、难降解性工业废水。经预处理后的废水中仍含有大量的有毒有害物质,其中氨氮、酚类物质是典型的代表,氨氮含量在200mg/L左右,酚类物质含量占COD值的40%以上,浓度高达1000mg/L。如果对这些高毒性的物质不加处理或处理深度不够,则对环境和生命都会造成极大的危害。因此,酚类物质、氨氮的有效处理是实现煤化工废水无害化处理以及绿色可持续发展的关键。本综述主要从酚类物质处理技术与工艺、氨氮处理技术与工艺两个方面梳理了国内外煤化工废水中酚类物质、氨氮的处理现状,也全面分析了各种技术与工艺的优缺点。使该领域的研究人员以更加科学的方法了解煤化工废水中酚类物质、氨氮处理技术与工艺的研究现状和发展趋势。最后,探讨了未来煤化工废水中酚类物质、氨氮处理的发展前景。
中图分类号:
刘兴社, 刘永军, 刘喆, 李鹏飞, 刘磐. 煤化工废水中酚类物质、氨氮的处理方法研究进展[J]. 化工进展, 2021, 40(1): 505-514.
Xingshe LIU, Yongjun LIU, Zhe LIU, Pengfei LI, Pan LIU. Research progress on treatment methods of phenolic substances and ammonia nitrogen in coal chemical wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 505-514.
项目 | 鲁奇工艺 | 德士古工艺 | 壳牌工艺 |
---|---|---|---|
氨氮 | 3500~9000 | 1300~2700 | 9000 |
COD | 3500~23000 | 200~760 | 200~300 |
甲酸化合物 | 无 | 100~1200 | 无 |
苯酚 | 1500~5500 | <10 | 20 |
氰化物 | 1~40 | 10~30 | 50 |
焦油 | <500 | 无 | 10~20 |
表1 三种煤气化废水水质[6] (mg/L)
项目 | 鲁奇工艺 | 德士古工艺 | 壳牌工艺 |
---|---|---|---|
氨氮 | 3500~9000 | 1300~2700 | 9000 |
COD | 3500~23000 | 200~760 | 200~300 |
甲酸化合物 | 无 | 100~1200 | 无 |
苯酚 | 1500~5500 | <10 | 20 |
氰化物 | 1~40 | 10~30 | 50 |
焦油 | <500 | 无 | 10~20 |
处理工艺 | 主要的运行条件 | 进水水质 | 去除率 | 参考文献 |
---|---|---|---|---|
单步活性 污泥法 | 水力停留时间96.1h | NH3-N 504~2340mg·L-1,COD 807~3275mg·L-1,酚110~350mg·L-1 | COD 75%、酚98% | Vazquez等[ |
两步活性 污泥法 | 第一好氧池停留时间为98h,第二好氧池停留时间为86h,循环比率为2 | NH3-N 123~296mg·L-1,COD 922~1980mg·L-1,酚133~293mg·L-1 | NH3-N99.2%、酚98.9%、COD90.7% | Vazquez等[ |
三步活性 污泥法 | 反硝化池水力停留时间为15.4h,第一好氧池水力停留时间为98h,第二好氧池水力停留时间为86h | COD 800~1870mg·L-1,酚100~221mg·L-1, NH3-N 133~348mg·L-1 | 氨氮、酚类物质、COD、总氮的去除率分别可达90%、99%、63%、90%。 | Mara?ón等[ |
表2 活性污泥脱氮技术
处理工艺 | 主要的运行条件 | 进水水质 | 去除率 | 参考文献 |
---|---|---|---|---|
单步活性 污泥法 | 水力停留时间96.1h | NH3-N 504~2340mg·L-1,COD 807~3275mg·L-1,酚110~350mg·L-1 | COD 75%、酚98% | Vazquez等[ |
两步活性 污泥法 | 第一好氧池停留时间为98h,第二好氧池停留时间为86h,循环比率为2 | NH3-N 123~296mg·L-1,COD 922~1980mg·L-1,酚133~293mg·L-1 | NH3-N99.2%、酚98.9%、COD90.7% | Vazquez等[ |
三步活性 污泥法 | 反硝化池水力停留时间为15.4h,第一好氧池水力停留时间为98h,第二好氧池水力停留时间为86h | COD 800~1870mg·L-1,酚100~221mg·L-1, NH3-N 133~348mg·L-1 | 氨氮、酚类物质、COD、总氮的去除率分别可达90%、99%、63%、90%。 | Mara?ón等[ |
处理工艺 | 主要的实验条件 | 进水水质 | 去除率 | 参考文献 |
---|---|---|---|---|
固定生物膜法 | 载体材料为聚乙烯,填充率为50% | NH3-N 166~684mg·L-1,COD 1400~1980mg·L-1,酚38~90mg·L-1 | NH3-N 46%、酚78%、COD 49% | Rava等[ |
A2/O-MBR | 总水力停留时间为40h,反应器运行500d | NH3-N 49~488mg·L-1,COD 1182~3310mg·L-1,TN 110~617mg·L-1 | NH3-N 99.5%,COD 89.8%,TN 71.5% | Zhao等[ |
限氧曝气-SBBR | 溶解氧浓度4.5~0.35mg·L-1 | NH3-N 80~125mg·L-1,COD 600~1000mg·L-1 | NH3-N 76.91%,TN 70.23% | Ma等[ |
MBBR | 悬浮载体为直径10mm的聚乙烯圆柱形材料,其密度约为0.97g·cm-3,填充率约50%。溶解氧控制在5mg·L-1左右,温度为33℃左右 | NH3-N 182~259mg·L-1,COD 1712~2340mg·L-1,酚94~146mg·L-1 | NH3-N 93%,COD 81%,酚89% | Li等[ |
表3 同步硝化反硝化脱氮技术
处理工艺 | 主要的实验条件 | 进水水质 | 去除率 | 参考文献 |
---|---|---|---|---|
固定生物膜法 | 载体材料为聚乙烯,填充率为50% | NH3-N 166~684mg·L-1,COD 1400~1980mg·L-1,酚38~90mg·L-1 | NH3-N 46%、酚78%、COD 49% | Rava等[ |
A2/O-MBR | 总水力停留时间为40h,反应器运行500d | NH3-N 49~488mg·L-1,COD 1182~3310mg·L-1,TN 110~617mg·L-1 | NH3-N 99.5%,COD 89.8%,TN 71.5% | Zhao等[ |
限氧曝气-SBBR | 溶解氧浓度4.5~0.35mg·L-1 | NH3-N 80~125mg·L-1,COD 600~1000mg·L-1 | NH3-N 76.91%,TN 70.23% | Ma等[ |
MBBR | 悬浮载体为直径10mm的聚乙烯圆柱形材料,其密度约为0.97g·cm-3,填充率约50%。溶解氧控制在5mg·L-1左右,温度为33℃左右 | NH3-N 182~259mg·L-1,COD 1712~2340mg·L-1,酚94~146mg·L-1 | NH3-N 93%,COD 81%,酚89% | Li等[ |
处理工艺 | 主要的实验条件 | 进水水质 | 去除率 | 参考文献 |
---|---|---|---|---|
颗粒活性炭-短程脱氮技术 | 颗粒活性炭填充率25%;DO为4~6mg·L-1 | NH3-N 130.4~173.3mg·L-1,COD 1328.8~1807.3mg·L-1 | 总氮的去除率68.8%~75.8% | Zhao等[ |
粉末活性炭-短程脱氮技术 | 粉末活性炭投加量1g·L,HRT为24h,DO为4mg·L-1 | NH3-N 154mg·L-1,COD 1350mg·L-1,总酚420mg·L-1 | NH3-N86.89%,COD 85.8%,总氮75.54% | Zhao等[ |
表4 短程硝化脱氮技术
处理工艺 | 主要的实验条件 | 进水水质 | 去除率 | 参考文献 |
---|---|---|---|---|
颗粒活性炭-短程脱氮技术 | 颗粒活性炭填充率25%;DO为4~6mg·L-1 | NH3-N 130.4~173.3mg·L-1,COD 1328.8~1807.3mg·L-1 | 总氮的去除率68.8%~75.8% | Zhao等[ |
粉末活性炭-短程脱氮技术 | 粉末活性炭投加量1g·L,HRT为24h,DO为4mg·L-1 | NH3-N 154mg·L-1,COD 1350mg·L-1,总酚420mg·L-1 | NH3-N86.89%,COD 85.8%,总氮75.54% | Zhao等[ |
处理工艺 | 主要的实验条件 | 进水水质 | 去除率 | 参考文献 |
---|---|---|---|---|
高温上流式厌氧污泥床 | pH 7.1~7.9,温度55℃±2℃,HRT 24h,运行天数120d | 总酚570mg·L-1,COD 2900mg·L-1,BOD5 875mg·L-1 | TPH 50%~60%,COD 50%~55% | Wang等[ |
外循环厌氧反应器 | HRT 50h,pH>8,外循环比1∶3 | 总酚750~850mg·L-1,COD 3200~3500mg·L-1,NH4-N 250~300mg·L-1, pH 8.0~9.5 | 酚类物质可得到有效去除 | Jia等[ |
投加共基质的强化厌氧技术 | 甲醇投加浓度为500mg COD/L | 总酚600mg·L-1 | TPH 72% | Wang等[ |
微电解-生物反应器(MEBR) | 第1运行阶段:运行时间90d,HRT 24h,pH 6.2,分阶段增加曝气量,最大量为3.5mg·L-1。第2运行阶段:运行时间90d,pH 6.2,DO 0.5mg·L-1 | 总酚309~351mg·L-1,COD 1700~2100mg·L-1,100~120mg·L-1 | COD和酚类化合物得到高效去除 | Ma等[ |
厌氧-好氧间歇工艺 | 66次的循环处理,HRT(厌氧24h、好氧48h和厌氧48h、好氧48h) | 总酚850~950mg·L-1,COD 3800~4400mg·L-1,氨氮230~300mg·L-1 | 77种有机污染物几乎完全的去除 | Ji等[ |
酚降解菌强化生物法 | pH 7~7.5,温度35℃,DO 2~4mg·L-1,运行天数30d | 总酚355.4~403.6mg·L-1,COD 2580.7~2710.9mg·L-1,氨氮182.1~259.0mg·L-1 | 膜生物反应器可抵抗进水浓度为750mg·L-1的酚类化合物 | Fang等[ |
酚降解菌强化生物接触氧化池 | pH 7~7.2,HRT 36h,DO 0.5~1mg·L-1 | 总酚355.4~403.6mg·L-1,COD 2580.7~2710.9mg·L-1,氨氮182.1~259.0mg·L-1 | TPH 80%,COD 78%,氨氮25% | Fang等[ |
芬顿氧化 | pH 7.8,处理时间60min,Fe2+=300mg·L-1,H2O2=4000mg·L-1 | 酚244mg·L-1,COD 1140mg·L-1 | 酚86%,COD 99.5% | Gü?lü等[ |
表5 酚类物质的处理技术
处理工艺 | 主要的实验条件 | 进水水质 | 去除率 | 参考文献 |
---|---|---|---|---|
高温上流式厌氧污泥床 | pH 7.1~7.9,温度55℃±2℃,HRT 24h,运行天数120d | 总酚570mg·L-1,COD 2900mg·L-1,BOD5 875mg·L-1 | TPH 50%~60%,COD 50%~55% | Wang等[ |
外循环厌氧反应器 | HRT 50h,pH>8,外循环比1∶3 | 总酚750~850mg·L-1,COD 3200~3500mg·L-1,NH4-N 250~300mg·L-1, pH 8.0~9.5 | 酚类物质可得到有效去除 | Jia等[ |
投加共基质的强化厌氧技术 | 甲醇投加浓度为500mg COD/L | 总酚600mg·L-1 | TPH 72% | Wang等[ |
微电解-生物反应器(MEBR) | 第1运行阶段:运行时间90d,HRT 24h,pH 6.2,分阶段增加曝气量,最大量为3.5mg·L-1。第2运行阶段:运行时间90d,pH 6.2,DO 0.5mg·L-1 | 总酚309~351mg·L-1,COD 1700~2100mg·L-1,100~120mg·L-1 | COD和酚类化合物得到高效去除 | Ma等[ |
厌氧-好氧间歇工艺 | 66次的循环处理,HRT(厌氧24h、好氧48h和厌氧48h、好氧48h) | 总酚850~950mg·L-1,COD 3800~4400mg·L-1,氨氮230~300mg·L-1 | 77种有机污染物几乎完全的去除 | Ji等[ |
酚降解菌强化生物法 | pH 7~7.5,温度35℃,DO 2~4mg·L-1,运行天数30d | 总酚355.4~403.6mg·L-1,COD 2580.7~2710.9mg·L-1,氨氮182.1~259.0mg·L-1 | 膜生物反应器可抵抗进水浓度为750mg·L-1的酚类化合物 | Fang等[ |
酚降解菌强化生物接触氧化池 | pH 7~7.2,HRT 36h,DO 0.5~1mg·L-1 | 总酚355.4~403.6mg·L-1,COD 2580.7~2710.9mg·L-1,氨氮182.1~259.0mg·L-1 | TPH 80%,COD 78%,氨氮25% | Fang等[ |
芬顿氧化 | pH 7.8,处理时间60min,Fe2+=300mg·L-1,H2O2=4000mg·L-1 | 酚244mg·L-1,COD 1140mg·L-1 | 酚86%,COD 99.5% | Gü?lü等[ |
有机化合物 | 进水 | 出水 | 有机化合物 | 进水 | 出水 |
---|---|---|---|---|---|
phenol | 12.09① | ND② | naphthalene,1,3-dimethyl | 2.65 | ND |
p-cresol | 15.12 | 2.16 | quinoline | 0.62 | ND |
phenol,4-ethyl | 3.19 | ND | furan,3-phenyl | 3.08 | ND |
phenol,2,6-dimethyl | 5.39 | ND | 5-hydroxyindole | 0.34 | 2.45 |
phenol,3,4-dimethyl | 3.45 | ND | 2-hydroxypyridine | ND | 1.87 |
phenol,3-ethy | 9.04 | 1.02 | undecane | 0.27 | 0.31 |
1-naphthalenol,2-methyl | 2.84 | ND | hexadecane | 0.81 | 0.11 |
phenol,2-(1-methylethyl)- | 0.44 | ND | pentadecane | 1.38 | 0.97 |
phenol,4-bis(1,1-dimethylethyl)- | 1.51 | 2.12 | phthalic acid, isobutyl 4-octyl ester | ND | 10.76 |
phenol,3,5-dimethyl | 2.71 | 0.13 | 4-chlorobutyric acid,3,4-dimethylphenyl | ND | 6.12 |
phenol,2-[(trimethylsilyl)oxy] | 0.89 | 1.32 | phthalic acid,6-ethyl-3-octyl butyl ester | ND | 10.35 |
indole | 1.84 | ND | hydroxybutanedioic acid | ND | 7.61 |
6-methyl-4-indanol | 1.25 | ND | propanoic acid,anhydride | ND | 4.11 |
benzene,1-ethyl-4-methoxy | 0.27 | ND | heptanoic acid | ND | 6.16 |
naphthalene | 2.87 | ND | others | 27.95 | 42.43 |
表6 在MEBR反应器中进水和出水的有机物组成[44]
有机化合物 | 进水 | 出水 | 有机化合物 | 进水 | 出水 |
---|---|---|---|---|---|
phenol | 12.09① | ND② | naphthalene,1,3-dimethyl | 2.65 | ND |
p-cresol | 15.12 | 2.16 | quinoline | 0.62 | ND |
phenol,4-ethyl | 3.19 | ND | furan,3-phenyl | 3.08 | ND |
phenol,2,6-dimethyl | 5.39 | ND | 5-hydroxyindole | 0.34 | 2.45 |
phenol,3,4-dimethyl | 3.45 | ND | 2-hydroxypyridine | ND | 1.87 |
phenol,3-ethy | 9.04 | 1.02 | undecane | 0.27 | 0.31 |
1-naphthalenol,2-methyl | 2.84 | ND | hexadecane | 0.81 | 0.11 |
phenol,2-(1-methylethyl)- | 0.44 | ND | pentadecane | 1.38 | 0.97 |
phenol,4-bis(1,1-dimethylethyl)- | 1.51 | 2.12 | phthalic acid, isobutyl 4-octyl ester | ND | 10.76 |
phenol,3,5-dimethyl | 2.71 | 0.13 | 4-chlorobutyric acid,3,4-dimethylphenyl | ND | 6.12 |
phenol,2-[(trimethylsilyl)oxy] | 0.89 | 1.32 | phthalic acid,6-ethyl-3-octyl butyl ester | ND | 10.35 |
indole | 1.84 | ND | hydroxybutanedioic acid | ND | 7.61 |
6-methyl-4-indanol | 1.25 | ND | propanoic acid,anhydride | ND | 4.11 |
benzene,1-ethyl-4-methoxy | 0.27 | ND | heptanoic acid | ND | 6.16 |
naphthalene | 2.87 | ND | others | 27.95 | 42.43 |
微生物 | 底物 | 降解性能 | 微生物来源 | 参考文献 |
---|---|---|---|---|
Diaphorobacter P2 | 苯酚 | 4d内可完全生化降解约1/2(412.3mg·L-1)焦化原水中的酚类物质 | 分离于焦化废水 | Meng等[ |
Pseudomonas sp. | 邻二甲苯 | 在邻二甲苯浓度高达2500mg·L-1时,对其的去除率在30h内可达到73% | 分离于受焦化废水污染的土壤中 | Chen等[ |
Comamonas testosterone | 苯酚 | 对苯酚具较高耐受力达到2000mg·L-1、且在48h内可将初始浓度为1000mg·L-1的苯酚完全降解 | 分离于焦化废水厂的活性污泥中 | Chen等[ |
Tropicalis strain K11 | 苯酚 | 初始浓度为125mg·L-1的苯酚去除率可达80% | 分离于焦化废水厂的活性污泥中 | Karim等[ |
Debaryomyces sp. | 苯酚 | 在适宜的条件下,500mg·L-1的苯酚可在32h时内完全降解 | 分离于煤气化废水 | Jiang等[ |
Klebsiella sp. | 苯酚、4-甲基苯酚以及 3,5-二甲基苯酚和间苯二酚 | 该菌株形成的膜生物反应器可抵抗进水浓度为750mg·L-1的酚类化合物 | 分离于煤气化废水 | Fang等[ |
表7 从煤化工废水中分离出的降解酚类污染物的优势菌
微生物 | 底物 | 降解性能 | 微生物来源 | 参考文献 |
---|---|---|---|---|
Diaphorobacter P2 | 苯酚 | 4d内可完全生化降解约1/2(412.3mg·L-1)焦化原水中的酚类物质 | 分离于焦化废水 | Meng等[ |
Pseudomonas sp. | 邻二甲苯 | 在邻二甲苯浓度高达2500mg·L-1时,对其的去除率在30h内可达到73% | 分离于受焦化废水污染的土壤中 | Chen等[ |
Comamonas testosterone | 苯酚 | 对苯酚具较高耐受力达到2000mg·L-1、且在48h内可将初始浓度为1000mg·L-1的苯酚完全降解 | 分离于焦化废水厂的活性污泥中 | Chen等[ |
Tropicalis strain K11 | 苯酚 | 初始浓度为125mg·L-1的苯酚去除率可达80% | 分离于焦化废水厂的活性污泥中 | Karim等[ |
Debaryomyces sp. | 苯酚 | 在适宜的条件下,500mg·L-1的苯酚可在32h时内完全降解 | 分离于煤气化废水 | Jiang等[ |
Klebsiella sp. | 苯酚、4-甲基苯酚以及 3,5-二甲基苯酚和间苯二酚 | 该菌株形成的膜生物反应器可抵抗进水浓度为750mg·L-1的酚类化合物 | 分离于煤气化废水 | Fang等[ |
1 | JIA Shengyong, HAN Hongjun, ZHUANG Haifeng, et al. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition[J]. Bioresource Technology, 2015, 192: 507-513. |
2 | GAI Hengjun, SONG Hongbing, XIAO Meng, et al. Conceptual design of a modified phenol and ammonia recovery process for the treatment of coal gasification wastewater[J]. Chemical Engineering Journal, 2016, 304: 621-628. |
3 | ZHAO Dongyan, Weijie LUN, WEI Junjie. Discussion on wastewater treatment process of coal chemical industry[J]. IOP Conference Series: Earth and Environmental Science, 2017, 100: 012067. |
4 | CUI Peizhe, Zihao MAI, YANG Siyu, et al. Integrated treatment processes for coal-gasification wastewater with high concentration of phenol and ammonia[J]. Journal of Cleaner Production, 2016, 142: 2218-2226. |
5 | 贾永强. 煤化工废水关键处理技术的研究与水系统集成优化[D]. 天津: 天津大学, 2016. |
JIA Yongqiang. Research on key process technology of coal chemical wastewater and optimization of water system integration[D]. Tianjin: Tianjin University, 2016. | |
6 | WANG Wei, HAN Hongjun, YUAN Min, et al. Treatment of coal gasification waste-water by a two-continuous UASB system with step-feed for COD and phenols degradation[J]. Bioresource Technology, 2011, 102: 5454-5460. |
7 | 陈凌跃. 煤化工废水处理技术瓶颈分析及优化与调试[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
CHEN Lingyue. Bottleneck analysis and optimazation with adjustment on the treatment technology of coal chemical wastewater[D]. Harbin: Harbin Institute of Technology, 2015. | |
8 | XU Peng, HAN Hongjun, HOU Baolin, et al. Treatment of coal gasification wastewater by a two-phase anaerobic digestion[J]. Desalination & Water Treatment, 2015, 54(3): 598-608. |
9 | ZHOU Xin, LI Yaxin, ZHAO Yi. Removal characteristics of organics and nitrogen in a novel four-stage biofilm integrated system for enhanced treatment of coking wastewater under different HRTs[J]. RSC Advances, 2014, 4(30): 15620-15629. |
10 | VÁZQUEZ I, RODRÍGUEZ J, MARAÑÓN E, et al. Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation[J]. Journal of Hazardous Materials, 2006, 137(3): 1773-1780. |
11 | VÁZQUEZ I, RODRÍGUEZ J, MARAÑÓN E, et al. Study of the aerobic biodegradation of coke wastewater in a two and three-step activated sludge process[J]. Journal of Hazardous Materials, 2006, 137(3): 1681-1688. |
12 | MARAÑÓN E, VÁZQUEZ I, RODRÍGUEZ J, et al. Coke wastewater treatment by a three-step activated sludge system[J]. Water Air & Soil Pollution, 2008, 192(4): 155-164. |
13 | 管凤伟, 高戈, 赵庆良. A/O生物膜工艺处理煤气废水的试验研究[J]. 中国给水排水, 2009, 25(13): 74-76. |
GUAN Fengwei, GAO Ge, ZHAO Qingliang. Treatment of coal gasification wastewater by A/O biofilm process[J]. China Water & Wastewater, 2009, 25(13): 74-76. | |
14 | 赵维电, 王新华, 高宝玉. A/O-生物膜系统处理煤化工废水[J]. 环境工程学报, 2012, 6(10): 3481-3484. |
ZHAO Weidian, WANG Xinhua, GAO Baoyu. Treatment of coal chemical industry wastewater by an A/O-biofilm pilot system[J]. Chinese Journal of Environmental Engineering, 2012, 6(10): 3481-3484. | |
15 | 谷力彬, 姜成旭, 郑朋. 浅谈煤化工废水处理存在的问题及对策[J]. 化工进展, 2012, 31(S1): 258-260. |
GU Libin, JIANG Chengxu, ZHENG Peng. The preliminary discussion on the problem and counter measure for wastewater treatment of coal chemical industry[J]. Chemical Industry and Engineering Progress, 2012, 31(S1): 258-260. | |
16 | 吴限. 煤化工废水处理技术面临的问题与技术优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
WU Xian. Research on problems facing and technology optimization of coal chemical industry wastewater treatment technology[D]. Harbin: Harbin Institute of Technology, 2016. | |
17 | RAMOS C, SUÁREZ-OJEDA M E, CARRERA J. Biodegradation of a high-strength wastewater containing a mixture of ammonium, aromatic compounds and salts with simultaneous nitritation in an aerobic granular reactor[J]. Process Biochemistry, 2016, 51(3): 399-407. |
18 | WANG Zixing, XU Xiaochen, CHEN Jie, et al. Treatment of Lurgi coal gasification wastewater in pre-denitrification anaerobic and aerobic biofilm process[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 899-905. |
19 | PAL P, KUMAR R. Treatment of coke wastewater: a critical review for developing sustainable management strategies[J]. Separation & Purification Reviews, 2014, 43(2): 89-123. |
20 | KIM Mi-Hwa, PARK Tae-Joo, KIM Moonil. Microbial characteristics in a fixed-biofilm BNR process for treatment of low organic sewage[J]. Environmental Technology, 2013, 34(4): 513-519. |
21 | RAVA E, CHIRWA E. Effect of carrier fill ratio on biofilm properties and performance of a hybrid fixed-film bioreactor treating coal gasification wastewater for the removal of COD, phenols and ammonia-nitrogen[J]. Water Science & Technology, 2016, 73(10): 2461-2467. |
22 | JIA Shengyong, HAN Hongjun, HOU Baolin, et al. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR-PAC) system[J]. Chemosphere, 2014, 117: 753-759. |
23 | 陈谊, 孙宝盛, 张斌, 等. 不同MBR反应器中硝化菌群落结构的研究[J]. 中国环境科学, 2010, 30(1): 69-75. |
CHEN Yi, SUN Baosheng, ZHANG Bin, et al. Nitrifying bacteria structure community of different MBR reactor[J]. China Environmental Science, 2010, 30(1): 69-75. | |
24 | ZHAO Wentao, HUANG Xia, Duu-jong LEE. Enhanced treatment of coke plant wastewater using an anaerobic-anoxic-oxic membrane bioreactor system[J]. Separation & Purification Technology, 2009, 66(2): 279-286. |
25 | WANG Zixing, XU Xiaochen, GONG Zheng, et al. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system[J]. Journal of Hazardous Materials, 2012, 235/236: 78-74. |
26 | GONG Lingxiao, Li JUN, YANG Qing, et al. Biomass characteristics and simultaneous nitrification-denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage[J]. Bioresource Technology, 2012, 119: 277-284. |
27 | ZHUANG Haifeng, HAN Hongjun, JIA Shengyong, et al. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system[J]. Bioresource Technology, 2014, 157: 223-230. |
28 | MA Weiwei, HAN Yuxing, MA Wencheng, et al. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor[J]. Bioresource Technology, 2017, 244(1): 84-91. |
29 | BARWAL A, CHAUDHARY R. To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(3): 258-299. |
30 | NAVARRI M, BATTISTINI T, FALLETTI L. Wastewater treatment in a touristic locality with a plant based on moving bed biofilm reactors (MBBR)[J]. Current Environmental Engineering, 2014, 1(3): 157-161. |
31 | LI Huiqiang, HAN Hongjun, DU Maoan, et al. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor[J]. Bioresource Technology, 2011, 102(7): 4667-4673. |
32 | HOU Baolin, HAN Hongjun, JIA Shengyong, et al. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor[J]. Journal of Environmental Sciences, 2014, 26(5): 1014-1022. |
33 | ZHAO Qian, HAN Hongjun, HOU Baolin, et al. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process[J]. Journal of Environmental Sciences, 2014, 26(11): 2231-2239. |
34 | ZHAO Qian, HAN Hongjun, XU Chunyan, et al. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater[J]. Bioresource Technology, 2013, 142: 179-185. |
35 | ZHU Hao, HAN Yuxing, MA Wencheng, et al. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR)[J]. Bioresource Technology, 2017, 245: 786-793. |
36 | XU Peng, MA Wencheng, HOU Baolin, et al. A novel integration of microwave catalytic oxidation and MBBR process and its application in advanced treatment of biologically pretreated Lurgi coal gasification wastewater[J]. Separation & Purification Technology, 2017, 177: 233-238. |
37 | XU Peng, HAN Hongjun, HUO Baolin, et al. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater[J]. Bioresource Technology, 2015, 272(1): 218-224. |
38 | WANG Wei, HAN Hongjun. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater[J]. Bioresource Technology, 2012, 103(1): 95-100. |
39 | WANG Wei, ZHANG Jing, WANG Shun, et al. Oxygen-limited aeration for relieving the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater[J]. International Biodeterioration & Biodegradation, 2014, 95: 110-116. |
40 | KUSCHK P, STOTTMEISTER U, WIESSNER A, et al. Batch methanogenic fermentation experiments of wastewater from a brown coal low-temperature coke plant[J]. Journal of Environmental Sciences, 2010, 22(2): 192-197. |
41 | LI Yajie, TABASSUM S, ZHANG Zhenjia. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater[J]. Journal of Environmental Sciences, 2016, 28: 23-33. |
42 | WANG Wei, MA Wencheng, HAN Hongjun, et al. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor[J]. Bioresource Technology, 2011, 102(3): 2441-2447. |
43 | WANG Wei, HAN Hongjun, YUAN Min, et al. Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition[J]. Journal of Environmental Sciences, 2010, 22(12): 40-46. |
44 | MA Weiwei, HAN Yuxing, XU Chunyan, et al. Enhanced degradation of phenolic compounds in coal gasifification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition[J]. Bioresource Technology, 2018, 251: 303-310. |
45 | JI Qinhong, TABASSUM S, YU Guangxin, et al. Determination of biological removal of recalcitrant organic contaminants in coal gasification wastewater[J]. Environmental Technology, 2015, 36(22): 2815-2824. |
46 | SHI Shengnan, QU Yuanyuan, MA Fang, et al. Bioremediation of coking wastewater containing carbazole, dibenzofuran, dibenzothiophene and naphthalene by a naphthalene-cultivated Arthrobacter sp. W1[J]. Bioresource Technology, 2014, 164: 28-33. |
47 | MENG Xiaojun, ZHANG Yuxiu, JIA Rong, et al. Isolation and characterization of the phenol degradation bacterium diaphorobacter P2 strain from coking wastewater[J]. Advanced Materials Research, 2012, 550/553: 2296-2300. |
48 | 陈佩, 颜家保, 武文丽, 等. 邻二甲苯高效降解菌的分离及其降解特性[J]. 化工进展, 2016, 35(2): 565-569. |
CHEN Pei, YAN Jiabao, WU Wenli, et al. Separation and biodegradation characteristics of a o-xylene degrading strain[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 565-569. | |
49 | 陈春, 李文英, 吴静文, 等. 焦化废水中苯酚降解菌筛选及其降解性能[J]. 环境科学, 2012, 33(5): 246-250. |
CHEN Chun, LI Wenying, WU Jingwen, et al. Screening and characterization of phenol degrading bacteria for the coking wastewater treatment[J]. Environmental Science, 2012, 33(5): 246-250. | |
50 | KARIMI M, HASSANSHAHIAN M. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman[J]. Brazilian Journal of Microbiology, 2016, 47(1): 18-24. |
51 | JIANG Yu, SHANG Yu, YANG Kai, et al. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 1883-1890. |
52 | FANG Fang, HAN Hongjun, XU Chunyan, et al. Degradation of phenolic compounds in coal gasification wastewater by biofilm reactor with isolated Klebsiella sp.[J]. Journal of Harbin Institute of Technology, 2014, 21(3): 9-17. |
53 | FANG Fang, HAN Hongjun, ZHAO Qian, et al. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment[J]. Bioresource Technology, 2013, 150: 314-320. |
54 | FANG Fang, WU Gang, HAN Hongjun, et al. Improvement effect of bioaugmentation with phenol degrading bacteriaon Lurgi coal gasification wastewater treatment[J]. Journal of Harbin Institute of Technology, 2017, 24(6): 52-59. |
55 | BOCZKAJ G, FERNANDES A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review[J]. Chemical Engineering Journal, 2017, 320: 608-633. |
56 | GÜÇLÜ D, ŞIRIN N, ŞAHINKAYA S, et al. Advanced treatment of coking wastewater by conventional and modified Fenton processes[J]. Environmental Progress & Sustainable Energy, 2013, 32(2): 176-180. |
57 | ZHUANG Haifeng, HAN Hongjun, MA Wencheng, et al. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process[J]. Journal of Environmental Sciences, 2015, 33(7): 12-20. |
58 | ZHUANG Haifeng, HAN Hongjun, HOU Baolin, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts[J]. Bioresource Technology, 2014, 166: 178-186. |
59 | XU Peng, HAN Hongjun, ZHUANG Haifeng, et al. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process[J]. Bioresource Technology, 2016, 177: 233-243. |
[1] | 李建雄, 耿爽, 胡树坚, 周明. 脂质体递送系统功能结构设计与应用研究进展[J]. 化工进展, 2023, 42(4): 2003-2012. |
[2] | 杨壮壮, 刘永军, 刘兴社, 刘喆, 杨璐, 张爱宁. 煤化工废水中油泥的聚结分离与水中有机物的去除效果[J]. 化工进展, 2023, 42(1): 538-545. |
[3] | 陆诗建, 刘苗苗, 刘玲, 康国俊, 毛松柏, 王风, 张娟娟, 贡玉萍. 烟气胺法CO2捕集技术进展与未来发展趋势[J]. 化工进展, 2023, 42(1): 435-444. |
[4] | 谢腾, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 张沛祯, 田利伟, 傅国浩. 农业生物质与塑料共热解技术进展[J]. 化工进展, 2022, 41(10): 5306-5315. |
[5] | 刘兴社, 刘永军, 刘喆, 李鹏飞, 张婷婷, 孙小琴. 煤化工废水中油、酚、氨回收研究进展[J]. 化工进展, 2021, 40(2): 1048-1057. |
[6] | 魏书梅, 徐亚荣, 聂宏元, 朱学栋. 甲醇耦合轻烃反应制芳烃/烯烃研究进展与经济性分析[J]. 化工进展, 2020, 39(S1): 116-122. |
[7] | 邓燕芳, 刘桉如, 罗明辉, 范杰平. 分子印迹膜分离技术进展[J]. 化工进展, 2020, 39(6): 2166-2176. |
[8] | 王静刚, 刘小青, 朱锦. 生物基芳香平台化合物2,5-呋喃二甲酸的合成研究进展[J]. 化工进展, 2017, 36(02): 672-682. |
[9] | 汪彩虹, 陈硕然, 叶常青, 王筱梅. 单分散磁性Fe3O4纳米粒子的研究进展[J]. 化工进展, 2016, 35(S1): 242-247. |
[10] | 胡徐腾. 天然气制乙烯技术进展及经济性分析[J]. 化工进展, 2016, 35(06): 1733-1738. |
[11] | 杨为民. 碳四烃转化与利用技术研究进展及发展前景[J]. 化工进展, 2015, 34(1): 1-9. |
[12] | 薛金召, 牛小娟, 汪希领, 王先锋, 申明, 郭秋强. 国内环氧丙烷市场分析及技术进展[J]. 化工进展, 2015, 34(09): 3500-3506. |
[13] | 白净, 黄会杰, 陈俊英, 常春, 方书起, 李洪亮, 张璐, 闫德冉. 酶制剂浓缩方法研究进展[J]. 化工进展, 2015, 34(06): 1526-1531. |
[14] | 罗立群,谭旭升,田金星. 石墨提纯工艺研究进展[J]. 化工进展, 2014, 33(08): 2110-2116. |
[15] | 吴秀章. 煤制低碳烯烃工业示范工程最新进展[J]. 化工进展, 2014, 33(04): 787-794. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |