化工进展 ›› 2021, Vol. 40 ›› Issue (2): 1048-1057.DOI: 10.16085/j.issn.1000-6613.2020-0547
刘兴社1(), 刘永军1(), 刘喆1, 李鹏飞1, 张婷婷1, 孙小琴2
收稿日期:
2020-04-09
修回日期:
2020-09-08
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
刘永军
作者简介:
刘兴社(1992—),男,博士研究生,研究方向为煤化工废水无害化处理理论与技术。E-mail:基金资助:
Xingshe LIU1(), Yongjun LIU1(), Zhe LIU1, Pengfei LI1, Tingting ZHANG1, Xiaoqin SUN2
Received:
2020-04-09
Revised:
2020-09-08
Online:
2021-02-05
Published:
2021-02-09
Contact:
Yongjun LIU
摘要:
煤化工废水水量大,水质复杂,化学需氧量(COD)最高可达30000mg/L,是一种典型的处理难度高的工业废水。油类物质、酚类物质以及氨氮是煤化工废水中污染物质的主要组成成分,其最高浓度分别可达10000mg/L、9000mg/L、4000mg/L。如果不回收,则造成资源的严重浪费。因此,油类物质、酚类物质以及氨氮的有效回收是实现煤化工废水无害化处理不容忽视的问题。本文主要从油类物质、酚类物质、氨氮的回收技术与工艺3个方面梳理了国内外煤化工废水中油类物质、酚类物质以及氨氮的回收现状,并对各类技术的优缺点进行了对比和分析,其目的是让该领域的研究人员以更加科学的方法了解煤化工废水中油类物质、酚类物质以及氨氮的研究现状与发展趋势。最后基于节能、高效、持续健康的发展理念,探讨了未来煤化工废水中油类物质、酚类物质以及氨氮回收的前景。
中图分类号:
刘兴社, 刘永军, 刘喆, 李鹏飞, 张婷婷, 孙小琴. 煤化工废水中油、酚、氨回收研究进展[J]. 化工进展, 2021, 40(2): 1048-1057.
Xingshe LIU, Yongjun LIU, Zhe LIU, Pengfei LI, Tingting ZHANG, Xiaoqin SUN. Research advances on recovery of oil, phenols, and ammonia in coal chemical wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1048-1057.
项目 | 数值 |
---|---|
COD/mg·L-1 | 15000~30000 |
pH | 8~10 |
BOD/mg·L-1 | 3000~4000 |
NH3-N/mg·L-1 | 3000~5000 |
挥发酚/mg·L-1 | 2000~4000 |
油类/mg·L-1 | 500~1000 |
色度/倍 | 100000 |
表1 兰炭废水综合水质
项目 | 数值 |
---|---|
COD/mg·L-1 | 15000~30000 |
pH | 8~10 |
BOD/mg·L-1 | 3000~4000 |
NH3-N/mg·L-1 | 3000~5000 |
挥发酚/mg·L-1 | 2000~4000 |
油类/mg·L-1 | 500~1000 |
色度/倍 | 100000 |
项目 | 数值 |
---|---|
COD/mg·L-1 | 20000~30000 |
pH | 8~10 |
脂肪酸/mg·L-1 | 2000~3500 |
NH3-N/mg·L-1 | 3000~9000 |
挥发酚/mg·L-1 | 2900~3900 |
不挥发酚/mg·L-1 | 1600~3600 |
硫化氢/mg·L-1 | 50~200 |
表2 煤气化废水综合水质[5]
项目 | 数值 |
---|---|
COD/mg·L-1 | 20000~30000 |
pH | 8~10 |
脂肪酸/mg·L-1 | 2000~3500 |
NH3-N/mg·L-1 | 3000~9000 |
挥发酚/mg·L-1 | 2900~3900 |
不挥发酚/mg·L-1 | 1600~3600 |
硫化氢/mg·L-1 | 50~200 |
工艺 | 主要特点 | 处理效果 | 参考文献 |
---|---|---|---|
phenosolvan-CLL工艺 | 酚回收单元在氨回收单元之前;萃取剂酚为DIPE,采用逆流萃取技术 | 单元酚含量小于20μg/g,多元酚萃取率达到85%,总萃取率大于99%;游离氨含量小于50μg/g,COD含量小于3000mg/L | 付国忠等[ |
去除酸性气体-酚-氨的双塔工艺 | 酚回收单元在氨回收单元之前;先脱去酸性气体,接着萃取,最后在碱性条件下脱氨;萃取剂采用DIPE | 进水水质:挥发酚2900~3900mg/L;非挥发性酚类1600~3600mg/L,挥发性氨3000~9000mg/L;非挥发性氨1500~4000mg/L;COD 20000~30000mg/L。 | Yu等[ |
出水水质:挥发酚>600mg/L;非挥发性酚类 >600mg/L,挥发性氨50~100mg/L;非挥发性氨200~300mg/L;COD>6000mg/L | |||
去除酸性气体-氨-酚的单塔工艺 | 氨回收单元在酚回收单元之前;废水分两股进脱酸塔;萃取在酸性条件下进行;萃取剂为DIPE | 进水水质:总酚4800~6500mg/L;总氨6000~10000mg/L;COD 20000mg/L。 | Yu等[ |
出水水质:总酚800~900mg/L;总氨<200mg/L;COD<4000mg/L | |||
基于低压蒸汽的酚氨回收工艺 | 以去除酸性气体-氨-苯酚的单塔工艺为基础进行优化;利用双塔完成氨的汽提与浓缩;在低压条件下汽提氨(0.1~0.3MPa),在中压条件下(0.4~0.5MPa),将富含氨的水再次汽提进行浓缩;全过程对中压流的要求显著减少 | 苯酚、总酚和COD的浓度分别降低至约15mg/L、240mg/L和小于2400mg/L。另外,新工艺实施后,总蒸汽的消耗量减少约20kg,在处理1t废水时,超过170kg的中压蒸汽可以用低压蒸汽来代替 | Gai等[ |
基于热集成的酚氨回收工艺 | 以去除酸性气体-氨-苯酚的单塔工艺为基础进行优化;热集成了脱酸汽提塔和溶剂回收塔;酸性水汽提塔中部脱出的氨气作为热源与溶剂蒸馏塔和溶剂汽提塔进行热交换 | 出水酸性气体、氨、酚的浓度均可达到排放标准;与传统的去除酚-氨单塔工艺相比,运行成本费用可减少34%,年消费可节约30.8% | Gai等[ |
表3 酚、氨集成回收的不同工艺对比
工艺 | 主要特点 | 处理效果 | 参考文献 |
---|---|---|---|
phenosolvan-CLL工艺 | 酚回收单元在氨回收单元之前;萃取剂酚为DIPE,采用逆流萃取技术 | 单元酚含量小于20μg/g,多元酚萃取率达到85%,总萃取率大于99%;游离氨含量小于50μg/g,COD含量小于3000mg/L | 付国忠等[ |
去除酸性气体-酚-氨的双塔工艺 | 酚回收单元在氨回收单元之前;先脱去酸性气体,接着萃取,最后在碱性条件下脱氨;萃取剂采用DIPE | 进水水质:挥发酚2900~3900mg/L;非挥发性酚类1600~3600mg/L,挥发性氨3000~9000mg/L;非挥发性氨1500~4000mg/L;COD 20000~30000mg/L。 | Yu等[ |
出水水质:挥发酚>600mg/L;非挥发性酚类 >600mg/L,挥发性氨50~100mg/L;非挥发性氨200~300mg/L;COD>6000mg/L | |||
去除酸性气体-氨-酚的单塔工艺 | 氨回收单元在酚回收单元之前;废水分两股进脱酸塔;萃取在酸性条件下进行;萃取剂为DIPE | 进水水质:总酚4800~6500mg/L;总氨6000~10000mg/L;COD 20000mg/L。 | Yu等[ |
出水水质:总酚800~900mg/L;总氨<200mg/L;COD<4000mg/L | |||
基于低压蒸汽的酚氨回收工艺 | 以去除酸性气体-氨-苯酚的单塔工艺为基础进行优化;利用双塔完成氨的汽提与浓缩;在低压条件下汽提氨(0.1~0.3MPa),在中压条件下(0.4~0.5MPa),将富含氨的水再次汽提进行浓缩;全过程对中压流的要求显著减少 | 苯酚、总酚和COD的浓度分别降低至约15mg/L、240mg/L和小于2400mg/L。另外,新工艺实施后,总蒸汽的消耗量减少约20kg,在处理1t废水时,超过170kg的中压蒸汽可以用低压蒸汽来代替 | Gai等[ |
基于热集成的酚氨回收工艺 | 以去除酸性气体-氨-苯酚的单塔工艺为基础进行优化;热集成了脱酸汽提塔和溶剂回收塔;酸性水汽提塔中部脱出的氨气作为热源与溶剂蒸馏塔和溶剂汽提塔进行热交换 | 出水酸性气体、氨、酚的浓度均可达到排放标准;与传统的去除酚-氨单塔工艺相比,运行成本费用可减少34%,年消费可节约30.8% | Gai等[ |
工艺 | 萃取剂 | 总氨 /mg·L-1 | 总酚 /mg·L-1 | CO2 /mg·L-1 | pH |
---|---|---|---|---|---|
原水含量 | — | 6700~10200 | 5500~6500 | 3000~8000 | — |
原工艺处理后 | DIPE | 200~300 | 1000~1400 | 1500~2000 | 9~10.5 |
新工艺处理后 | MIBK | 100~250 | 350 | 极少 | 6~8 |
表4 新旧工艺处理后废水的水质情况比较
工艺 | 萃取剂 | 总氨 /mg·L-1 | 总酚 /mg·L-1 | CO2 /mg·L-1 | pH |
---|---|---|---|---|---|
原水含量 | — | 6700~10200 | 5500~6500 | 3000~8000 | — |
原工艺处理后 | DIPE | 200~300 | 1000~1400 | 1500~2000 | 9~10.5 |
新工艺处理后 | MIBK | 100~250 | 350 | 极少 | 6~8 |
1 | JIA Shengyong, HAN Hongjun, ZHUANG Haifeng, et al. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition[J]. Bioresource Technology, 2015, 192: 507-513. |
2 | GAI Hengjun, SONG Hongbing, XIAO Meng, et al. Conceptual design of a modified phenol and ammonia recovery process for the treatment of coal gasification wastewater[J]. Chemical Engineering Journal, 2016, 304: 621-628. |
3 | ZHAO Dongyan, Weijie LUN, WEI Junjie. Discussion on wastewater treatment process of coal chemical industry[J]. IOP Conference Series: Earth and Environmental Science, 2017, 100: 012067. |
4 | CUI Peizhe, Zihao MAI, YANG Siyu, et al. Integrated treatment processes for coal-gasification wastewater with high concentration of phenol and ammonia[J]. Journal of Cleaner Production, 2016, 142: 2218-2226. |
5 | GAI Hengjun, JIANG Yanbin, QIAN Yu, et al. Conceptual design and retrofitting of the coal-gasification wastewater treatment process[J]. Chemical Engineering Journal, 2008, 138(1/2/3): 84-94. |
6 | 赵玉良, 吕江, 谢凡, 等. 煤热解废水的气浮除油技术[J]. 煤炭加工与综合利用, 2019, 236(3): 76-80. |
ZHAO Yuliang, Jiang LYU, XIE Fan, et al. Removal oil for coal pyrolysis wastewater by air-floation technology[J]. Coal Processing &Comprehensive Utilization, 2019, 236(3): 76-80. | |
7 | WANG Wei, HAN Hongjun. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater[J]. Bioresource Technology, 2012, 103(1): 95-100. |
8 | BANDE R M, PRASAD B, MISHRA I M, et al. Oil field effluent water treatment for safe disposal by electroflotation[J]. Chemical Engineering Journal, 2008, 137(3): 503-509. |
9 | 晏雅婧. 煤化工废水预处理除油脱酚技术[D]. 北京: 华北电力大学, 2017. |
YAN Yajing. Pretreatment technologies for removal of oil and phenol from coal chemical industry wastewater[D]. Beijing: North China Electric Power University, 2017. | |
10 | KARHU M, LEIVISKÄ, T, TANSKANEN J. Enhanced DAF in breaking up oil-in-water emulsions[J]. Separation and Purification Technology, 2014, 122: 231-241. |
11 | BELOPE M-A A-B. The design and performance of offshore gas/oil water separation processes[D]. London: University of Surrey, 2010. |
12 | 毕可军, 王瑞, 闫杰栋, 等. 煤化工废水除油技术探讨[J]. 化肥设计, 2015, 289(6): 9-12. |
BI Kejun, WANG Rui, YAN Jiedong, et al. Discussion on oil removal technology of coal chemical wastewater[J]. Chemical Fertilizer Design, 2015, 289(6): 9-12. | |
13 | 耿俊峰, 韩义军. 气浮技术在处理哈尔滨气化厂煤加压气化废水中的应用[J]. 煤炭技术, 2002, 21(2): 52-53. |
GENG Junfeng, HAN Yijun. Application of gas floatation technology in coal pressure gasification waste water at Harbin Gasification Plant[J]. Coal Technology, 2002, 21(2): 52-53. | |
14 | 李丹阳. 基于氮气气浮除油与改善煤化工废水生化处理效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
LI Danyang. Research on improvement of treatment effectiveness of coal chemical wastewater based on nitrogen flotation degreasing[D]. Harbin: Harbin Institute of Technology, 2013. | |
15 | HAN Hongjun, ZHAO Qian, XU Chunyan, et al. Coal gasification wastewater pretreatment with coagulation and N2 flotation combined system[J]. Journal of Harbin Institute of Technology, 2013, 20(5): 20-24. |
16 | 罗文. 混凝-气浮法处理煤化工废水的试验研究[J]. 山西化工, 2018, 38(3): 202-204. |
LUO Wen. Experimental study on coal chemical wastewater treatment by coagulating-gas-suspension method[J]. Shanxi Chemical Industry, 2018, 38(3): 202-204. | |
17 | 洪磊, 陆曦, 梁文, 等. 用于煤化工高浓污水的复配除油破乳剂及工艺研究[J]. 水处理技术, 2016, 42(3): 56-59. |
HONG Lei, LU Xi, LIANG Wen, et al. Compound degreasing demulsifier for high-concentration wastewater in the coal chemical industry and its process research[J]. Technology of Water Treatment, 2016, 42(3): 56-59. | |
18 | YANG Sheng, MA Donghui, CUI Peizhe. Liquid-liquid equilibrium data and correlation for the quaternary systems water + polyphenol (hydroquinone, catechol, and resorcinol) + methyl isobutyl ketone + methylbenzene[J]. Journal of Chemical & Engineering Data, 2018, 63: 63-68. |
19 | 陈赟, 王慧敏, 熊康宁, 等. 甲基异丁基甲酮-苯酚-邻苯二酚-水液液相平衡数据测定与关联[J]. 华南理工大学学报(自然科学版), 2017, 45(10): 34-38. |
CHEN Yun, WANG Huimin, XIONG Kangning, et al. Determination and correlation of liquid-liquid equilibrium data of methyl isobutyl ketone-phenol-catechol-water[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(10): 34-38. | |
20 | CHEN Yun, WANG Huimin, Ran LYU, et al. Liquid-liquid equilibrium for ternary systems, methyl isobutyl ketone +(catechol, resorcinol and hydroquinone) + water at 333.15K, 343.15K and 353.15K[J]. Fluid Phase Equilibria, 2017, 433: 206-211. |
21 | 吕冉. 甲基(异)丙基甲酮萃取高浓煤化工含酚废水中酚类物质液液相平衡研究及过程模拟[D]. 广州: 华南理工大学, 2017. |
Ran LYU. Liquid-liquid phase equilibrium research and process simulation of extraction of highly concentrated phenols from coal chemical industry wastewater with methyl iso-or n-propyl ketone[D]. Guangzhou: South China University of Technology, 2017. | |
22 | WANG Huimin, LI Libo, Ran LYU, et al. Measurement and correlation of liquid-liquid equilibria for the ternary methylisobutyl ketone+ phenol+water system at (333.15, 343.15 and 353.15)K under atmospheric pressure[J]. Journal of Solution Chemistry, 2016, 45(6): 875-884. |
23 | CHEN Yun, WANG Huimin, Ran LYU, et al. Liquid-liquid equilibria for methyl isobutyl ketone + cresols + water at 333.15K, 343.15K and 353.15K: experimental results and data corre-lation[J]. Fluid Phase Equilibria, 2016, 427: 291-296. |
24 | YANG Chufen, QIAN Yu, ZHANG Lijuan, et al. Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater[J]. Chemical Engineering Journal, 2006, 117(2): 179-185. |
25 | YANG Chufen, GUO Jianwei, YANG Shiying, et al. Process simulation and optimization on phenol extraction for coal-gasification wastewater[J]. Advanced Materials Research, 2012, 550/551/552/553: 2349-2353. |
26 | YANG Chufen, YANG Shiying, QIAN Yu, et al. Simulation and operation cost estimate for phenol extraction and solvent recovery process of coal-gasification wastewater[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 12108-12115. |
27 | WANG Huimin, WANG Zhuo, LI Libo, et al. Ternary and quaternary liquid-liquid equilibria for systems of methyl butyl ketone +water + hydroquinone + phenol at 313.2K and atmospheric pressure[J]. Journal of Chemical & Engineering Data, 2016, 61: 1540-1546. |
28 | 刘东. 高浓煤化工废水中酚和有机羧酸酮萃取的相平衡测定及工艺模拟研究[D]. 广州: 华南理工大学, 2016. |
LIU Dong. The phase equilibria study and process simulation of extracting phenols and carboxylic acids from highly concentrated wastewaters in coal chemical industry with ketones as the extractant[D]. Guangzhou: South China University of Technology, 2016. | |
29 | 章丽萍, 戴瑾, 魏含宇, 等. 煤化工含酚废水高效萃取研究[J]. 煤炭科学技术, 2019, 47(6): 219-224. |
ZHANG Liping, DAI Jin, WEI Hanyu, et al. Study on high efficiency extraction of phenolic-containing wastewater from coal chemical industry[J]. Coal Science and Technology, 2019, 47(6): 219-224. | |
30 | FENG Yirong, SONG Hongbing, XIAO Meng, et al. Development of phenols recovery process from coal gasification wastewater with mesityl oxide as a novel extractant[J]. Journal of Cleaner Production, 2017, 166: 1314-1322. |
31 | HAO Xiaogang, PRITZKER M, FENG Xianshe. Use of pervaporation for the separation of phenol from dilute aqueous solutions[J]. Journal of Membrane Science, 2009, 335(2): 96-102. |
32 | ZHOU Haoli, SHI Ronghao, JIN Wanqin. Novel organic-inorganic pervaporation membrane with a superhydrophobic surface for the separation of ethanol from an aqueous solution[J]. Separation and Purification Technology, 2014, 127: 61-69. |
33 | YAO Jie, HE Zhiru, LUO Anguo, et al. Supported liquid membrane extraction to treat coal gasification wastewater containing high concentrations phenol[J]. Journal of Harbin Institute of Technology, 2012, 19(1): 55-57. |
34 | LI Dan, YAO Jie, SUN Hao, et al. Preparation and characterization of SiO2/PDMS/PVDF composite membrane for phenols recovery from coal gasification wastewater in pervaporation[J]. Chemical Engineering Research & Design, 2018, 132: 424-435. |
35 | FENG Dachun, YU Zhenjiang, CHEN Yun, et al. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation[J]. Industrial & Engineering Chemistry Research, 2009, 48(12): 5816-5823. |
36 | SUN Yetao, GUO Wali. Research on pretreatment of high concentrated ammonia-nitrogen wastewater from coal gasification process by air stripping[C]// International Conference on Intelligent Computation Technology & Automation. IEEE Computer Society, 2011. |
37 | 张璐, 杨忆新, 罗明生, 等. 天然沸石去除煤化工废水中氨氮的研究[J]. 工业水处理, 2018, 38(7): 46-49. |
ZHANG Lu, YANG Yixin, LUO Mingsheng, et al. Research on natural zeolite for the removal of ammonia nitrogen from coal chemical wastewater[J]. Industrial Water Treatment, 2018, 38(7): 46-49. | |
38 | 杨楠. 磷酸铵镁结晶法去除和回收煤气化废水中的氨氮[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
YANG Nan. Removal and recovery of ammonia nitrogen from coal gasification wastewater with magnesium ammonium phosphate crystallization[D]. Harbin: Harbin Institute of Technology, 2009. | |
39 | 付国忠, 朱继承. 鲁奇FBDB煤气化技术及其最新进展[J]. 中外能源, 2012, 17(1): 74-79. |
FU Guozhong, ZHU Jicheng. Lurgi FBDB coal gasification technology and latest advances[J]. Sino-Global Energy, 2012, 17(1): 74-79. | |
40 | YU Zhenjiang, CHEN Yun, FENG Dachun, et al. Process development, simulation, and industrial implementation of a new coal-gasification wastewater treatment installation for phenol and ammonia removal[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2874-2881. |
41 | GAI Hengjun, FENG Yirong, LIN Kaiqiang, et al. Heat integration of phenols and ammonia recovery process for the treatment of coal gasification wastewater[J]. Chemical Engineering Journal, 2017, 327: 1093-1101. |
42 | 吴限. 煤化工废水处理技术面临的问题与技术优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
WU Xian. Research on problems facing and technology optimization of coal chemical industry wastewater treatment technology[D]. Harbin: Harbin Institute of Technology, 2016. | |
43 | VAN DYK J C, KEYSER M J, COERTZEN M. Syngas production from South African coal sources using Sasol-Lurgi gasifiers[J]. International Journal of Coal Geology, 2006, 65(3/4): 243-253. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[3] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[4] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[5] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[6] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[7] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[8] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[9] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[10] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[11] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[12] | 李建雄, 耿爽, 胡树坚, 周明. 脂质体递送系统功能结构设计与应用研究进展[J]. 化工进展, 2023, 42(4): 2003-2012. |
[13] | 胡亚飞, 冯自平, 田佳垚, 黄冲, 宋文吉. 燃料驱动无电热泵系统的节能模拟与运行经济性分析[J]. 化工进展, 2023, 42(3): 1217-1227. |
[14] | 张群力, 黄昊天, 张琳, 赵文强, 张秋月. 喷淋式烟气源热泵冷凝余热回收系统性能分析[J]. 化工进展, 2023, 42(2): 650-657. |
[15] | 王毅斌, 冯敬武, 谭厚章, 李良钰. 市政污泥热化学处置中磷元素形态转变与回收利用研究进展[J]. 化工进展, 2023, 42(2): 985-999. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |