1 |
REN S, BOO C, GUO N, et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science & Technology, 2018, 52(15): 8666-8673.
|
2 |
杜晓晴, 马秀兰, 王玉军, 等. 响应面优化 Ge/TiO2 催化剂降解环丙沙星的初步研究[J]. 中国抗生素杂志, 2019, 44(6): 750-757.
|
|
DU Xiaoqian, MA Xiulan, WANG Yujun, et al. Optimization of the Ge/TiO2 catalyst for the degradation of ciprofloxacin by the response surface methodology[J]. Chinese Journal of Antibiotics, 2019, 44(6): 750-757.
|
3 |
HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices—A review[J]. Journal of Environmental Management, 2011, 92(10): 2304-2347.
|
4 |
KARTHIK R, VINOTH K J, CHEN S M, et al. A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6547-6559.
|
5 |
PAUL T, MILLER P L, STRANTHMANN T J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents[J]. Environmental Science & Technology, 2007, 41(13): 4720-4727.
|
6 |
CHEN P, BLANEY L, CAGNETTA G, et al. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis[J]. Environmental Science & Technology, 2019, 53(3): 1564-1575.
|
7 |
DASS R, SARKAR S, CHAKRABORTY S, et al. Remediation of antiseptic components in wastewater by photocatalysis using TiO2 nanoparticles[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 3012-3020.
|
8 |
诸葛星辰. 二氧化钛纳米光催化材料的修饰改性[J]. 西部皮革, 2019, 41(11): 136.
|
|
ZHUGE Xingchen. Modification of titanium dioxide nanometer photocatalytic materials[J]. West Leather, 2019, 41(11): 136.
|
9 |
FUJISHIMA A, ZHANG X, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515-582.
|
10 |
NI M, LEUNG M K H, LEUNG D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2007, 11(3): 401-425.
|
11 |
LAI C, WANG M M, ZENG G M, et al. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation[J]. Applied Surface Science, 2016, 390: 368-376.
|
12 |
LU Z, CHEN F, HE M, et al. Microwave synthesis of a novel magnetic imprinted TiO2 photocatalyst with excellent transparency for selective photodegradation of enrofloxacin hydrochloride residues solution[J]. Chemical Engineering Journal, 2014, 249: 15-26.
|
13 |
ZHOU J, WANG Y, MA Y, et al. Surface molecularly imprinted thermo-sensitive polymers based on light-weight hollow magnetic microspheres for specific recognition of BSA[J]. Applied Surface Science, 2019, 486: 265-273.
|
14 |
LI J, JI F, NICKON H L N, et al. Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water[J]. Chemical Engineering Journal, 2019, 369: 611-620.
|
15 |
ZHAO P, NI M, CHEM C, et al. Stimuli-enabled switch-like paracetamol electrochemical sensor based on thermosensitive polymer and MWCNTs-GQDs composite nanomaterial[J]. Nanoscale, 2019, 11(15): 7394-7403.
|
16 |
HENTHOM D B, PEPPAS N A. Molecular simulations of recognitive behavior of molecularly imprinted intelligent polymeric networks[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6084-6091.
|
17 |
QIN L, HE X W, ZHANG W, et al. Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction[J]. Analytical Chemistry, 2009, 81(17): 7206-7216.
|
18 |
LIU B, HAN M, GUAN G, et al. Highly-controllable molecular imprinting at superparamagnetic iron oxide nanoparticles for ultrafast enrichment and separation[J]. The Journal of Physical Chemistry C, 2011, 115(35): 17320-17327.
|
19 |
ZHAO K, FENG L, LI Z, et al. Preparation, characterization and photocatalytic degradation properties of a TiO2/calcium alginate composite film and the recovery of TiO2 nanoparticles[J]. RSC Advances, 2014, 4(93): 51321-51329.
|
20 |
FENG Q, TANG D, LV H, et al. Surface-initiated ATRP to modify ZnO nanoparticles with poly(N-isopropylacrylamide): temperature-controlled switching of photocatalysis[J]. Journal of Alloys and Compounds, 2017, 691: 185-194.
|
21 |
FENG Q, TANG D, LV H, et al. Temperature-responsive zinc oxide nanorods arrays grafted with poly(N-isopropylacrylamide) via SI-ATRP[J]. RSC Advances, 2015, 5(76): 62024-62032.
|
22 |
De ESCOBOR C C, LANSARIN M A, DOSSANTOS J H Z, et al. Molecularly imprinted photocatalyst for glyceraldehyde production[J]. Journal of Sol-Gel Science and Technology, 2018, 88(1): 220-226.
|
23 |
李秀媛. 基于金属离子枢纽的分子印迹整体柱的制备及评价[D]. 天津: 天津医科大学, 2016.
|
|
LI Xiuyuan. Preparation and evaluation of molecularly imprinted monoliths with metal ion as pivot[D]. Tianjing: Tianjin Medical University, 2016.
|
24 |
XING W, NI L, LIU X, et al. Synthesis of thermal-responsive photocatalysts by surface molecular imprinting for selective degradation of tetracycline[J]. RSC Advances, 2013, 3(48): 26334-26342.
|
25 |
ZHANG M, LI Y, YANG Q, et al. Adsorption of methyl violet using pH-and temperature-sensitive cellulose filament/poly(NIPAM-co-AAc) hybrid hydrogels[J]. Journal of Materials Science, 2018, 53(16): 11837-11854.
|
26 |
邓燕萍, 杨达, 乔洪舰, 等. 石墨烯/TiO2复合材料光催化降解模拟染料废水的研究[J].首都师范大学学报(自然科学版), 2019, 40(4): 28-32.
|
|
DENG Yanping, YANG Da, QIAO Hongjian, et al. The study of photocatalytic degradation of simulated wastewater by graphene/TiO2 composites[J]. Journal of Capital Normal University (Natural Science Edition), 2019, 40(4): 28-32.
|
27 |
NAKATA K, FUJISHIMA A. TiO2 photocatalysis: design and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189.
|