化工进展 ›› 2020, Vol. 39 ›› Issue (S2): 362-371.DOI: 10.16085/j.issn.1000-6613.2020-1166
邹联沛1(), 宋琳1, 李小伟1(), 万雨岚1, 李曼1, 刘建勇1, 欧阳创2, 奚慧2, 钱光人1, 戴晓虎3
收稿日期:
2020-06-23
出版日期:
2020-11-20
发布日期:
2020-11-17
通讯作者:
李小伟
作者简介:
邹联沛(1965—),男,博士,副教授,研究方向为有机固体废弃物处理与资源利用。E-mail:基金资助:
Lianpei ZOU1(), Lin SONG1, Xiaowei LI1(), Yulan WAN1, Man LI1, Jianyong LIU1, Chuang OUYANG2, Hui XI2, Guangren QIAN1, Xiaohu DAI3
Received:
2020-06-23
Online:
2020-11-20
Published:
2020-11-17
Contact:
Xiaowei LI
摘要:
随着人民生活水平的提高以及垃圾分类工作的开展,我国湿垃圾产量预计将进一步增大,这对湿垃圾的处理处置形成新的挑战。厌氧消化可以实现湿垃圾的资源利用,是目前主流的处理工艺,但湿垃圾组分理化特性可能会对其厌氧消化产生抑制作用。通过文献调研,本文总结了国内外湿垃圾的理化特性,发现不同地区湿垃圾的组分差异较大,并且湿垃圾具有高易腐有机物、高蛋白、高油脂、高盐分、高粗纤维等特性,这会使厌氧消化系统容易产生酸化、氨抑制、反应速率慢等问题。在此基础上,针对湿垃圾组分特性带来的抑制问题,本文提出了共消化、投加添加剂、去除抑制因子和选用合适的工艺形式等优化缓解方法,最后对未来的研究方向提出了展望,以期为湿垃圾资源化提供参考。
中图分类号:
邹联沛, 宋琳, 李小伟, 万雨岚, 李曼, 刘建勇, 欧阳创, 奚慧, 钱光人, 戴晓虎. 湿垃圾组分对厌氧消化抑制作用的研究进展[J]. 化工进展, 2020, 39(S2): 362-371.
Lianpei ZOU, Lin SONG, Xiaowei LI, Yulan WAN, Man LI, Jianyong LIU, Chuang OUYANG, Hui XI, Guangren QIAN, Xiaohu DAI. Research progress of the inhibition of components of food waste on anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 362-371.
垃圾类型 | 地点 | 年份② | 采样 类型 | 含水率 /% | pH | 总固体含量 /% | 挥发性 固体含量 /% | 有机质 含量 /% | 碳水 化合物 /% | 粗蛋白 /% | 粗脂肪 /% | 粗纤维 /% | Na+③ /g·L-1 | C /% | H /% | O /% | N /% | S /% | C/N | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
餐厨垃圾 | ||||||||||||||||||||
国内 | 北京 | 2010 | 食堂 | 77.26 | 5.43 | 22.74 | 20.27 | 89.14 | 32.94 | 15.26 | 25.39 | 8.32 | 1.84 | 47.66 | — | — | 2.24 | — | 21.28 | [ |
西安 | 2018 | 食堂 | — | 5.10 | 6.64 | 4.02 | 88.20 | — | 21.00 | 15.00 | 9.00 | 1.46 | — | — | — | — | — | 18.50 | [ | |
拉萨 | 2019 | 食堂 | 80.00 | — | 20.00 | 18.60 | 93.00 | — | 15.00 | 5.00 | — | 0.40~2.00 | 36.00 | — | — | — | — | — | [ | |
大连 | 2019 | 食堂 | — | 5.70 | — | — | 89.20 | — | — | — | — | — | 50.30 | 7.10 | 29.10 | 2.70 | — | 18.60 | [ | |
国外 | 美国 | 2016 | 餐馆 | 84.50 | — | — | — | 90.90 | — | 22.30 | 38.30 | 17.40 | — | 50.90 | — | — | — | — | — | [ |
印度 | 2018 | 食堂 | 77.00 | 5.50 | 23.00 | 21.00 | 91.00 | — | — | — | — | — | 22.50 | 7.30 | — | — | — | 24.00 | [ | |
厨余垃圾 | ||||||||||||||||||||
国内 | 上海 | 2015 | 家庭 | 80.12 | — | 19.88 | — | — | — | 15.59 | 8.00 | — | 0.87 | 46.53 | 8.80 | 32.65 | 3.02 | 0.55 | 16.44 | [ |
哈尔滨 | 2019 | 家庭 | — | 4.80~5.90 | — | — | — | 39.20~65.60 | 6.20~18.50 | 0.80~7.30 | — | — | 40.90~61.30 | 2.80~6.10 | — | — | — | 14.60~17.70 | [ | |
宁波 | 2019 | 生产线 | 72.10 | 4.80~5.30 | 27.90 | — | — | — | — | — | — | — | — | — | — | — | — | 24.80 | [ | |
国外 | 瑞典 | 2014 | 家庭 | — | — | — | — | — | — | 10.51 | 11.91 | 28.01 | — | — | — | — | — | — | — | [ |
英国 | 2019 | 家庭 | — | — | 26.00 | 23.40 | 90.00 | — | 11.00 | — | — | — | 47.50 | 6.40 | 36.1 | 3.30 | 0.50 | 14.39 | [ | |
菜场垃圾 | ||||||||||||||||||||
国内 | 成都 | 2017 | 菜市场 | — | 5.60 | 10.57 | — | 92.10 | 73.60 | 13.20 | 3.40 | 11.90 | — | 44.50 | 2.64 | — | — | — | 17.10 | [ |
兰州 | 2014 | 蔬菜库 | — | 5.10 | 6.80 | — | 81.30 | — | — | — | — | — | 36.30 | 4.90 | — | 3.90 | — | 9.50 | [ | |
北京 | 2010 | 菜市场 | 93.33 | 6.28 | 6.67 | 5.95 | 89.21 | — | 13.81 | 4.33 | 25.42 | — | 41.58 | — | — | 2.26 | — | 17.21 | [ | |
国外 | 墨西哥 | 2020 | 果蔬 | 89.81 | 5.52 | — | — | 87.66 | — | 12.63 | — | 47.46 | — | 51.69 | 3.43 | 42.69 | 2.19 | — | 23.60 | [ |
巴西 | 2018 | 果蔬 | — | 3.90 | — | — | 93.80 | 51.78 | 14.82 | 2.53 | 24.67 | — | — | — | — | — | — | — | [ |
表1 国内外湿垃圾理化特征①
垃圾类型 | 地点 | 年份② | 采样 类型 | 含水率 /% | pH | 总固体含量 /% | 挥发性 固体含量 /% | 有机质 含量 /% | 碳水 化合物 /% | 粗蛋白 /% | 粗脂肪 /% | 粗纤维 /% | Na+③ /g·L-1 | C /% | H /% | O /% | N /% | S /% | C/N | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
餐厨垃圾 | ||||||||||||||||||||
国内 | 北京 | 2010 | 食堂 | 77.26 | 5.43 | 22.74 | 20.27 | 89.14 | 32.94 | 15.26 | 25.39 | 8.32 | 1.84 | 47.66 | — | — | 2.24 | — | 21.28 | [ |
西安 | 2018 | 食堂 | — | 5.10 | 6.64 | 4.02 | 88.20 | — | 21.00 | 15.00 | 9.00 | 1.46 | — | — | — | — | — | 18.50 | [ | |
拉萨 | 2019 | 食堂 | 80.00 | — | 20.00 | 18.60 | 93.00 | — | 15.00 | 5.00 | — | 0.40~2.00 | 36.00 | — | — | — | — | — | [ | |
大连 | 2019 | 食堂 | — | 5.70 | — | — | 89.20 | — | — | — | — | — | 50.30 | 7.10 | 29.10 | 2.70 | — | 18.60 | [ | |
国外 | 美国 | 2016 | 餐馆 | 84.50 | — | — | — | 90.90 | — | 22.30 | 38.30 | 17.40 | — | 50.90 | — | — | — | — | — | [ |
印度 | 2018 | 食堂 | 77.00 | 5.50 | 23.00 | 21.00 | 91.00 | — | — | — | — | — | 22.50 | 7.30 | — | — | — | 24.00 | [ | |
厨余垃圾 | ||||||||||||||||||||
国内 | 上海 | 2015 | 家庭 | 80.12 | — | 19.88 | — | — | — | 15.59 | 8.00 | — | 0.87 | 46.53 | 8.80 | 32.65 | 3.02 | 0.55 | 16.44 | [ |
哈尔滨 | 2019 | 家庭 | — | 4.80~5.90 | — | — | — | 39.20~65.60 | 6.20~18.50 | 0.80~7.30 | — | — | 40.90~61.30 | 2.80~6.10 | — | — | — | 14.60~17.70 | [ | |
宁波 | 2019 | 生产线 | 72.10 | 4.80~5.30 | 27.90 | — | — | — | — | — | — | — | — | — | — | — | — | 24.80 | [ | |
国外 | 瑞典 | 2014 | 家庭 | — | — | — | — | — | — | 10.51 | 11.91 | 28.01 | — | — | — | — | — | — | — | [ |
英国 | 2019 | 家庭 | — | — | 26.00 | 23.40 | 90.00 | — | 11.00 | — | — | — | 47.50 | 6.40 | 36.1 | 3.30 | 0.50 | 14.39 | [ | |
菜场垃圾 | ||||||||||||||||||||
国内 | 成都 | 2017 | 菜市场 | — | 5.60 | 10.57 | — | 92.10 | 73.60 | 13.20 | 3.40 | 11.90 | — | 44.50 | 2.64 | — | — | — | 17.10 | [ |
兰州 | 2014 | 蔬菜库 | — | 5.10 | 6.80 | — | 81.30 | — | — | — | — | — | 36.30 | 4.90 | — | 3.90 | — | 9.50 | [ | |
北京 | 2010 | 菜市场 | 93.33 | 6.28 | 6.67 | 5.95 | 89.21 | — | 13.81 | 4.33 | 25.42 | — | 41.58 | — | — | 2.26 | — | 17.21 | [ | |
国外 | 墨西哥 | 2020 | 果蔬 | 89.81 | 5.52 | — | — | 87.66 | — | 12.63 | — | 47.46 | — | 51.69 | 3.43 | 42.69 | 2.19 | — | 23.60 | [ |
巴西 | 2018 | 果蔬 | — | 3.90 | — | — | 93.80 | 51.78 | 14.82 | 2.53 | 24.67 | — | — | — | — | — | — | — | [ |
1 | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社,2009-2019. |
National Bureau of Statistics of the People's Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2009-2019. | |
2 | YANG N, DAMGAARD A, SCHEUTZ C, et al. A comparison of chemical MSW compositional data between China and Denmark[J]. Journal of Environmental Sciences (China), 2018, 74:1-10. |
3 | 中国国家标准化管理委员会. 生活垃圾分类标志: [S]. 北京: 中国建筑工业出版社,2019. |
China National Standardization AdministraStion. Classification mark for domestic waste: [S]. Beijing: China Construction Industry Press, 2019. | |
4 | REN Y Y, YU M, WU C F, et al. A comprehensive review on food waste anaerobic digestion: research updates and tendencies[J]. Bioresource Technology, 2018, 247:1069-1076. |
5 | 新华社. 我国自2019年起在全国地级及以上城市全面启动生活垃圾分类[J]. 大社会, 2019(S1):13. |
Xinhua News Agency. Our country has fully launched domestic garbage classification in prefecture-level and above cities nationwide since 2019[J]. Large Society, 2019(S1):13 | |
6 | 王凯军, 王婧瑶, 左剑恶, 等. 我国餐厨垃圾厌氧处理技术现状分析及建议[J]. 环境工程学报, 2020, 14(7): 1735-1742. |
WANG K J, WANG J Y, ZUO J E, et al. Analysis and suggestion of current food waste anaerobic digestion technology in China[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1735-1742. | |
7 | 王小铭, 陈江亮, 谷萌, 等. “无废城市”建设背景下我国餐厨垃圾管理现状、问题与建议[J]. 环境卫生工程, 2019, 27(6): 1-10, 15. |
WANG X M, CHEN J L, GU M, et al. Status quo,problems and countermeasures faced by China’s food waste management under the background of “Zero Waste City” construction[J]. Environmental Sanitation Engineering, 2019, 27(6): 1-10, 15[EB/OL]. [2020-01-15]. . | |
8 | 陈静, 王笈. 上海市居民区垃圾分类达标率从15%提高至90% [EB/OL]. [2020-01-15]. . |
CHEN J, WANG J. The compliance rate of garbage classification in residential areas in Shanghai has been increased from 15% to 90% [EB/OL]. [2020-01-15]. . | |
9 | ZHAO J, HOU T, ZHANG Z, et al. Anaerobic co-digestion of hydrolysate from anaerobically digested sludge with raw waste activated sludge: Feasibility assessment of a new sewage sludge management strategy in the context of a local wastewater treatment plant[J]. Bioresource Technology, 2020, 314: 123748. |
10 | YE M, LIU J Y, MA C N, et al. Improving the stability and efficiency of anaerobic digestion of food waste using additives: a critical review [J]. Journal of Cleaner Production, 2018, 192: 316-326. |
11 | ZHAO Y, SUN F, YU J, et al. Co-digestion of oat straw and cow manure during anaerobic digestion: stimulative and inhibitory effects on fermentation [J]. Bioresource Technology, 2018, 269: 143-152. |
12 | 刘越, 袁海荣, 左晓宇, 等. 接种比对玉米秸秆水解产酸过程VFA浓度和产气量的影响[J]. 中国沼气, 2019, 37(3): 21-27. |
LIU Y, YUAN H R, ZUO X Y,et al. Effect of inoculation ratio on VFA concentration and gas yield in hydrolytic acidification process of corn straw[J]. China Biogas, 2019, 37(3): 21-27. | |
13 | 江志坚. 果蔬与餐厨垃圾混合两相厌氧消化性能的试验研究[D]. 北京: 北京化工大学, 2013. |
JIANG Z J. Performance of two-phasw anaerobic digestion co-digestion of fruit and vegetable waste and kitchen waste[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
14 | 张念瑞, 李倩, 许曼娟, 等. 进料频率对餐厨垃圾与剩余污泥中温共发酵系统稳定性的影响[J]. 环境工程学报, 2018, 12(2): 638-644. |
ZHANG N D, LI Q, XU M J, et al. Effect of feeding frequency on stability of mesophilic co-digestion of food waste and waste activated sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 638-644. | |
15 | 周文武, 陈冠益, 周鹏, 等. 西藏拉萨市区餐厨垃圾现状分析及建议[J]. 环境与可持续发展, 2019, 44(1): 60-63. |
ZHOU W W, CHEN G Y, ZHOU P, et al. Situation analysis and suggestion on food waste in Lhasa city of Tibet[J]. Environment and Sustainable Development, 2019, 44(1): 60-63. | |
16 | ZHANG W L, ZHANG L, LI A M. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability[J]. Water Research, 2015, 84: 266-277. |
17 | LOPEZ V M, DE LA CRUZ F B, BARLAZ M A. Chemical composition and methane potential of commercial food wastes[J]. Waste Management, 2016, 56: 477-490. |
18 | ARELLI V, BEGUM S, ANUPOJU G R, et al. Dry anaerobic co-digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pre treatment on methane yield and quality of biomanure[J]. Bioresource Technology, 2018, 253: 273-280. |
19 | 夏旻, 邰俊, 余召辉. 上海市分类后家庭厨余垃圾理化特性分析[J]. 安徽农业科学, 2015, 43(7): 276-278. |
XIA M, TAI J, YU Z H. Physical and chemical characteristics analysis of the kitchen waste in shanghai[J]. Anhui Agricultural Sciences, 2015, 43(7): 276-278. | |
20 | 杜洋. 源头破碎沥水-两相厌氧发酵处理厨余垃圾的研究[D]. 哈尔滨:哈尔滨工业大学, 2019. |
DU Y. Two phase anaerobic digestion of shredded and dewatered household kitchen waste[D]. Harbin: Harbin Institute of Technology, 2019. | |
21 | 王冰洁, 王金辉, 黄怡然, 等. 餐厨垃圾固相物料与厨余垃圾混合中温厌氧消化工程中试研究[J]. 中国沼气, 2019, 37(1): 75-79. |
WANG B J, WANG J H, HUANG Y R,et al. Pilot-scale study on mesophilic anaerobic co-digestion of solid-phase material of food waste and kitchen waste[J]. China Biogas, 2019, 37(1): 75-79. | |
22 | MATSAKAS L, KEKOS D, LOIZIDOU M, et al. Utilization of household food waste for the production of ethanol at high dry material content[J]. Biotechnology for Biofuels, 2014, 7(4): 1-9. |
23 | SLORACH P C, JESWANI H K, CUéLLAR-FRANCA R, et al. Environmental sustainability of anaerobic digestion of household food waste [J]. Journal of Environmental Management, 2019, 236:798-814. |
24 | LI D, CHEN L, LIU X F, et al. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste[J]. Bioresource Technology, 2017, 245: 90-97. |
25 | YAO Y Q, LUO Y, YANG Y X, et al. Water free anaerobic co-digestion of vegetable processing waste with cattle slurry for methane production at high total solid content[J]. Energy, 2014, 74: 309-313. |
26 | RODRIGUEZ-VALDERRAMA S, ESCAMILLA-ALVARADO C, RIVAS-GARCIA P, et al. Biorefinery concept comprising acid hydrolysis, dark fermentation, and anaerobic digestion for co-processing of fruit and vegetable wastes and corn stover[J]. Environmental Science and Pollution Research, 2020: 1-12. |
27 | EDWIGES T, FRARE L M, LIMA ALINO J H, et al. Methane potential of fruit and vegetable waste: an evaluation of the semi-continuous anaerobic mono-digestion [J]. Environmental Technology, 2020, 41(7): 921-930. |
28 | 毕珠洁. 2014年餐厨垃圾处理进展[N]. 固废观察, 2015-12-12. |
29 | 吕凡, 章骅, 邵立明, 等. 基于物质流分析餐厨垃圾厌氧消化工艺的问题与对策[J]. 环境卫生工程, 2017, 25(1): 1-9. |
LÜ F, ZHANG H, SHAO L M, et al. Problems of anaerobic digestion process to deal with food waste and its countermeasures through material flow analysis[J]. Environmental Sanitation Engineering, 2017, 25(1): 1-9. | |
30 | MOLINO A, NANNA F, DING Y, et al. Biomethane production by anaerobic digestion of organic waste [J]. Fuel, 2013, 103: 1003-1009. |
31 | APPELS L, ASSCHE A V, WILLEMS K, et al. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge [J]. Bioresource Technology, 2011, 102(5): 4124-4130. |
32 | 王暾. 油脂和盐分对餐厨垃圾单级厌氧消化影响的试验研究[D]. 重庆: 重庆大学, 2008. |
WANG T. Study on effects of Grease and salt in single-stage anaerobic figestion of food waste[D]. Chongqing: Chongqing University, 2008. | |
33 | YUAN H P, ZHU N W. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 429-438. |
34 | WANG Y Y, ZHANG Y L, WANG J B, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass and Bioenergy, 2009, 33(5): 848-853. |
35 | ZHANG W, LI L, WANG X, et al. Role of trace elements in anaerobic digestion of food waste: process stability, recovery from volatile fatty acid inhibition and microbial community dynamics[J]. Bioresource Technology, 2020, 315: 123796. |
36 | TONANZI B, GALLIPOLI A, GIANICO A, et al. Long-term anaerobic digestion of food waste at semi-pilot scale: relationship between microbial community structure and process performances[J]. Biomass and Bioenergy, 2018, 118: 55-64. |
37 | WANG Q H, KUNINOBU M, OGAWA H I, et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion[J]. Biomass and Bioenergy, 1999, 16(6): 407-416. |
38 | LIN J, ZUO J E, GAN L L, et al. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China[J]. Journal of Environmental Sciences, 2011, 23(8): 1403-1408. |
39 | KAYHANIAN M. Ammonia inhibition in high-solids biogasification: an overview and practical solutions[J]. Environmental Technology, 1999, 20(4): 355-365. |
40 | AKINDELE A A, SARTAJ M. The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste[J]. Waste Management, 2018, 71: 757-776. |
41 | JIANG Y, MCADAM E, ZHANG Y, et al. Ammonia inhibition and toxicity in anaerobic digestion: a critical review[J]. Journal of Water Process Engineering, 2019, 32: 100899. |
42 | 万红, 黄高杰, 刘虎成. 油脂对污泥和餐厨垃圾厌氧消化的影响[J]. 工业安全与环保, 2018, 44(5): 95-98. |
WANG H, HUANG G J, LIU H C. Effects of lipid on anaerobic digestion of sludge and food waste[J]. Industrial Safety and Environmental Protection, 2018, 44(5): 95-98. | |
43 | NOUTSOPOULOS C, MAMAIS D, ANTONIOU K, et al. Anaerobic co-digestion of grease sludge and sewage sludge: the effect of organic loading and grease sludge content[J]. Bioresource Technology, 2013, 131: 452-459. |
44 | TIAN H, KARACHALIOS P, ANGELIDAKI I, et al. A proposed mechanism for the ammonia-LCFA synergetic co-inhibition effect on anaerobic digestion process[J]. Chemical Engineering Journal, 2018, 349: 574-580. |
45 | PEREIRA M A, PIRES O C, MOTA M, et al. Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge[J]. Biotechnology and Bioengineering, 2005, 92(1): 15-23. |
46 | TIAN J H, POURCHER A M, BUREAU C, et al. Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw[J]. Bioresource Technology, 2017, 223: 192-201. |
47 | JEIHANIPOUR A, NIKLASSON C, TAHERZADEH M J. Enhancement of solubilization rate of cellulose in anaerobic digestion and its drawbacks[J]. Process Biochemistry, 2011, 46 (7): 1509-1514. |
48 | LI W, KHALID H, ZHU Z, et al. Methane production through anaerobic digestion: participation and digestion characteristics of cellulose, hemicellulose and lignin[J]. Applied Energy, 2018, 226: 1219-1128. |
49 | DAUWE R, MORREEL K, GOEMINNE G, et al. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration[J]. Plant Journal, 2007, 52(2): 263-285. |
50 | JEIHANIPOUR A, NIKLASSON C, TAHERZADEH M J. Enhancement of solubilization rate of cellulose in anaerobic digestion and its drawbacks[J]. Process Biochemistry, 2011, 46(7): 1509-1514. |
51 | ANWAR N, WANG W, ZHANG J, et al. Effect of sodium salt on anaerobic digestion of kitchen waste[J]. Water Science Technology, 2016, 73(8): 1865-1871. |
52 | LIU N, WANG Q, JIANG J, et al. Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation[J]. Renewable Energy, 2017, 113: 1523-1528. |
53 | CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: a review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. |
54 | ZHEN G Y, LU X Q, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 559-577. |
55 | 严媛媛, 刘晓光, 戴晓虎. 污泥厌氧消化预处理技术综述[J]. 四川环境, 2012, 31(2): 113-118. |
YAN Y Y, LIU X G, DAI X H. Review on pretreatment of anaerobic sludge digestion[J]. Sichuan Environment, 2012, 31(2): 113-118. | |
56 | 马超男. 利用酶预处理促进餐厨垃圾固相水解强化厌氧产甲烷性能[D]. 上海: 上海大学, 2018 |
MA C N. Enzymatic pretreatment to promote food waste solid phase hydrolysis towards conversion performance enhancement by anaerobic digestion[D]. Shanghai: Shanghai University, 2018. | |
57 | LI C, CHAMPAGNE P, ANDERSON B C. Effects of ultrasonic and thermo-chemical pre-treatments on methane production from fat, oil and grease (FOG) and synthetic kitchen waste (KW) in anaerobic co-digestion[J]. Bioresource Technology, 2013, 130: 187-197. |
58 | SAHA S, B-H JEON, KURADE M B, et al. Optimization of dilute acetic acid pretreatment of mixed fruit waste for increased methane production[J]. Journal of Cleaner Production, 2018, 190: 411-421. |
59 | ARIUNBAATAR J, PANICO A, ESPOSITO G, et al. Pretreatment methods to enhance anaerobic digestion of organic solid waste[J]. Applied Energy, 2014, 123: 143-156. |
60 | LO H M, KURNIAWAN T A, SILLANPAA M E, et al. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors[J]. Bioresource Technology, 2010, 101(16): 6329-6335. |
61 | DAI X H, DUAN N N, DONG B, et al. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance[J]. Waste Management, 2013, 33(2): 308-316. |
62 | 吕琛, 袁海荣, 王奎升, 等. 果蔬垃圾与餐厨垃圾混合厌氧消化产气性能[J]. 农业工程学报, 2011, 27(S1): 91-95. |
LV C, YUAN H R, WANG K S, et al. Anaerobic digestion performances of fruit and vegetable waste and kitchen waste[J]. Transactions of the CSAE, 2011, 27(Supp.1): 91-95. | |
63 | YONG Z H, DONG Y L, ZHANG X, et al. Anaerobic co-digestion of food waste and straw for biogas production[J]. Renewable Energy, 2015, 78: 527-530. |
64 | LIU Y P, YUAN Y, WANG W, et al. Effects of adding osmoprotectant on anaerobic digestion of kitchen waste with high level of salinity[J]. Journal of Bioscience and Bioengineering, 2019, 128(6): 723-732. |
65 | 王星, 王德汉, 徐菲. 矿物材料对餐厨垃圾厌氧消化的影响研究[J]. 环境科学学报, 2006(2): 256-261. |
WANG X, WANG D H, XU F, et al. Effect of minerals on anaerobic digestion of food waste[J]. Acta Scientiae Circumstantiae, 2006, 02: 256-261. | |
66 | SALAMA E S, JEON B H, KURADE M B, et al. Enhanced anaerobic co-digestion of fat, oil, and grease by calcium addition: boost of biomethane production and microbial community shift[J]. Bioresource Technology, 2020, 296: 122353. |
67 | HUANG J, PINDER K L. Effects of calcium on development of anaerobic acidogenic biofilms[J]. Biotechnology and Bioengineering, 1994, 45:212-218. |
68 | ZHANG L, JAHNG D. Long-term anaerobic digestion of food waste stabilized by trace elements[J]. Waste Management, 2012, 32(8): 1509-1515. |
69 | WANG X, YUAN T, LEI Z, et al. Supplementation of O2-containing gas nanobubble water to enhance methane production from anaerobic digestion of cellulose[J]. Chemical Engineering Journal, 2020, 398:125652. |
70 | YAO Y Q, YU L, GHOGARE R, et al. Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic coversion of dairy manure at high solids concentration[J]. Energy, 2017, 141: 179-188. |
71 | SERNA-MAZA A, HEAVEN S, BANKS C J. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process[J]. Bioresource Technology, 2014, 152: 307-315. |
72 | JEON Y S, YANG J S, PARK E R, et al. Continuous electrochemical removal of salts from Korean food wastes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 142-145. |
73 | SRISOWMEYA G, CHAKRAVARTHY M, NANDHINI DEVI G. Critical considerations in two-stage anaerobic digestion of food waste—A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109587. |
74 | 史绪川, 左剑恶, 阎中, 等. 新型两相一体厌氧消化反应器处理餐厨垃圾中试研究[J]. 中国环境科学, 2018, 38(9): 3447-3454. |
SHI X C, ZUO J E, YAN Z, et al. A pilot study on integrated two-stage anaerobic digestion of food waste in an innovative dual-cylinder reactor[J]. China Environmental Science, 2018, 38(9): 3447-3454. | |
75 | MICOLUCCI F, GOTTARDO M, PAVAN P, et al. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste[J]. Journal of Cleaner Production, 2018, 171: 1376-1385. |
[1] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[2] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[3] | 刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759. |
[4] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[5] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[6] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[7] | 蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945. |
[8] | 邵明帅, 张超, 吴华南, 王宁, 陈钦冬, 徐期勇. 水热耦合厌氧消化技术处理餐厨垃圾沼渣沼液及工艺能耗分析[J]. 化工进展, 2022, 41(5): 2733-2742. |
[9] | 郑小梅, 林茹晶, 周文静, 徐泠, 张洪宁, 张昕颖, 谢丽. 微生物电解池辅助CO2甲烷化阴极材料的研究进展[J]. 化工进展, 2022, 41(5): 2476-2486. |
[10] | 邓亚玲, 舒建成, 陈梦君, 雷天涯, 曾祥菲, 杨勇, 刘作华. 不同堆存时间电解锰渣的理化特性分析[J]. 化工进展, 2022, 41(4): 2161-2170. |
[11] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[12] | 陈国栋, 刘海成, 孟无霜, 尤雨, 张皓, 曹梦茹. 微塑料老化的人工干预及理化特性表征研究进展[J]. 化工进展, 2022, 41(12): 6443-6453. |
[13] | 苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响[J]. 化工进展, 2022, 41(11): 5731-5736. |
[14] | 隋金昊, 王智, 梁璇玑, 张烜玮, 朱羽墨, 宋尚飞, 史博会, 宫敬, LOU Xia. 动力学抑制剂与乙二醇协同作用下甲烷水合物再生成[J]. 化工进展, 2022, 41(10): 5373-5380. |
[15] | 王云飞, 孙长宇, 喻西崇, 王清, 李清平, 陈光进. 中试装置内水合物注抑制剂的分解规律[J]. 化工进展, 2022, 41(10): 5354-5362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |