化工进展 ›› 2020, Vol. 39 ›› Issue (S2): 352-361.DOI: 10.16085/j.issn.1000-6613.2020-1210
王申宛1,2(), 郑晓燕1,3, 校导1,3, 郑丽丽1,3, 杨旸1,3, 艾斌凌1,3, 钟爽1,3(), 盛占武1,3()
收稿日期:
2020-06-29
出版日期:
2020-11-20
发布日期:
2020-11-17
通讯作者:
钟爽,盛占武
作者简介:
王申宛(1996—),女,硕士研究生,研究方向为食品工程。E-mail: 基金资助:
Shenwan WANG1,2(), Xiaoyan ZHENG1,3, Dao XIAO1,3, Lili ZHENG1,3, Yang YANG1,3, Binling AI1,3, Shuang ZHONG1,3(), Zhanwu SHENG1,3()
Received:
2020-06-29
Online:
2020-11-20
Published:
2020-11-17
Contact:
Shuang ZHONG,Zhanwu SHENG
摘要:
介绍了生物炭的制备、改性及表征,尤其是在环境修复中的应用。阐述了生物炭常用的制备方法包括热解法、气化法和水热碳化法,指出生物炭的制备原料和条件决定了生物炭的吸附性能。为了提高生物炭的吸附性能,常通过酸、碱、氧化剂、金属氧化物、有机化合物、紫外辐射、等离子体、复合材料、蒸汽及气体吹扫等方式对其进行改性处理,而改性方法的选择主要取决于应用的环境领域。虽然生物炭已在土壤修复及改良、固碳、有机固废堆肥、废水净化及大气污染治理等领域取得了良好的效果,但是生物炭的固碳效果还需要在不同土壤条件进一步验证,生物炭提高土壤质量的原因还需要进一步研究,生物炭去除土壤中有机污染物的作用机理也有待进一步探明。此外,利用生物炭进行环境修复时,应注意生物炭的稳定性问题,以免造成二次污染。综上所述,生物炭在环境修复中具有广阔的应用前景,但也存在一些问题和挑战需要解决。
中图分类号:
王申宛, 郑晓燕, 校导, 郑丽丽, 杨旸, 艾斌凌, 钟爽, 盛占武. 生物炭的制备、改性及其在环境修复中应用的研究进展[J]. 化工进展, 2020, 39(S2): 352-361.
Shenwan WANG, Xiaoyan ZHENG, Dao XIAO, Lili ZHENG, Yang YANG, Binling AI, Shuang ZHONG, Zhanwu SHENG. Research progress of production, modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361.
制备方法 | 温度 | 产物 | 操作 | 特点 |
---|---|---|---|---|
热解 | 300~900℃ | 固体、液体、气体 | 限氧条件下,将原料放入反应容器,达到所需温度后反应或待原料达到所需温度后放入反应容器 | 速度慢、产量高 |
气化 | >700℃ | 固体、液体、气体 | 利用气化剂氧化原料 | 产量低于热解法 |
水热炭化 | <250℃ | 固体、液体 | 将原料放在反应容器中与水混合,然后升高温度和压力 | 产量高于热解和气化法 |
快速炭化 | 300~600℃ | 固体、气体 | 在1~2MPa压力条件下反应 | 反应时间通常为30min |
烘焙炭化 | 200~300℃ | 疏水性固体 | 在限氧条件下反应 | 产物氧碳比低、吸附性差 |
表1 生物炭制备工艺对比
制备方法 | 温度 | 产物 | 操作 | 特点 |
---|---|---|---|---|
热解 | 300~900℃ | 固体、液体、气体 | 限氧条件下,将原料放入反应容器,达到所需温度后反应或待原料达到所需温度后放入反应容器 | 速度慢、产量高 |
气化 | >700℃ | 固体、液体、气体 | 利用气化剂氧化原料 | 产量低于热解法 |
水热炭化 | <250℃ | 固体、液体 | 将原料放在反应容器中与水混合,然后升高温度和压力 | 产量高于热解和气化法 |
快速炭化 | 300~600℃ | 固体、气体 | 在1~2MPa压力条件下反应 | 反应时间通常为30min |
烘焙炭化 | 200~300℃ | 疏水性固体 | 在限氧条件下反应 | 产物氧碳比低、吸附性差 |
原料 | 制备温度/℃ | pH | 有机碳含量/% | 官能团 | 比表面积/m-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|
小麦秸秆 | 450 | 8.34 | 42.90 | OH、CO、CC、CO、CH、CC、SO | 0.93 | [ |
污泥 | 500 | 6.76 | 16.82 | CC、CO、CO、CN | 34.348 | [ |
竹子 | 675 | 9.4 | 58.43 | OH、CH、CO | 13.9 | [ |
牛粪 | 700 | 6.04 | 47.66 | CH、OH、COOH、CO | 3.153 | [ |
核桃 | 700 | 9.42 | 47.67 | CH、OH、COOH、CO | 4.631 | |
木屑 | 550 | 6.2 | 41.00 | CC、CO、CO、CN、CO、COH | 9.6 | [ |
山核桃 | 600 | 8.4 | 83.50 | CC、CO、COH、CC、FeO、OH | 277.4 | [ |
山核桃木 | 600 | 7.1 | 69.10 | OH、CH、CC、CO | 221.5 | [ |
表2 不同原料生物炭理化性质对比
原料 | 制备温度/℃ | pH | 有机碳含量/% | 官能团 | 比表面积/m-1·g-1 | 参考文献 |
---|---|---|---|---|---|---|
小麦秸秆 | 450 | 8.34 | 42.90 | OH、CO、CC、CO、CH、CC、SO | 0.93 | [ |
污泥 | 500 | 6.76 | 16.82 | CC、CO、CO、CN | 34.348 | [ |
竹子 | 675 | 9.4 | 58.43 | OH、CH、CO | 13.9 | [ |
牛粪 | 700 | 6.04 | 47.66 | CH、OH、COOH、CO | 3.153 | [ |
核桃 | 700 | 9.42 | 47.67 | CH、OH、COOH、CO | 4.631 | |
木屑 | 550 | 6.2 | 41.00 | CC、CO、CO、CN、CO、COH | 9.6 | [ |
山核桃 | 600 | 8.4 | 83.50 | CC、CO、COH、CC、FeO、OH | 277.4 | [ |
山核桃木 | 600 | 7.1 | 69.10 | OH、CH、CC、CO | 221.5 | [ |
1 | RIZWAN Muhammad, Shafaqat ALI, QAYYUM Muhammad Farooq, et al. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review[J]. Environmental Science and Pollution Research International, 2015, 23(3): 2230-2248. |
2 | YI Yunqiang, HUANG Zhexi, LU Baizhou, et al. Magnetic biochar for environmental remediation: a review[J]. Bioresource Technology, 2020, 298: 122468. |
3 | Jin-Sun CHA, PARK Sung-Hoon, JUNG Sang-Chu, et al. Production and utilization of biochar: a review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15. |
4 | PONNUSAMY Vinoth Kumar, SENTHIL Nagappan, BHOSALE Rahul R, et al. Review on sustainable production of biochar through hydrothermal liquefaction: physico-chemical properties and applications[J]. Bioresource Technology, 2020, 310: 123414. |
5 | BENAVENTE Verónica, FULLANA Andres. Torrefaction of olive mill waste[J]. Biomass and Bioenergy, 2015, 73: 186-194. |
6 | 王思源, 申健, 李盟军, 等. 不同改性生物炭功能结构特征及其对铵氮吸附的影响[J]. 生态环境学报, 2019, 28(5): 1037-1045. |
WANG Siyuan, SHEN Jian, LI Mengjun, et al. Functional and structural characteristics of different modified biochar and its impacts on ammonium nitrogen adsorption[J]. Ecology and Environmental Sciences, 2019, 28(5): 1037-1045. | |
7 | 徐大勇,张苗,杨伟伟,等. 氧化铝改性污泥生物炭粒制备及其对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2020, 39(3): 1153-1166. |
XU Dayong,ZHANG Miao,YANG Weiwei, et al. Preparation of alumina modified sludge biochar coal particles and their adsorption characteristics for Pb(Ⅱ)[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1153-1166. | |
8 | HE Rao, YUAN Xingzhong, HUANG Zhongliang, et al. Activated biochar with iron-loading and its application in removing Cr(Ⅵ) from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123642. |
9 | ZHANG Junjie, SHAO Jingai, JIN Qianzheng, et al. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar[J]. Science of the Total Environment, 2020, 716:137016. |
10 | GHANIM Bashir, MUENANE John G, Lisa O'DONGHUE, et al. Removal of vanadium from aqueous solution using a red mud modified saw dust biochar[J]. Journal of Water Process Engineering, 2020, 33: 101076. |
11 | LI Yanfei, ZIMMERMAN Andrew R, HE Feng, et al. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue[J]. Science of the Total Environment, 2020, 722: 137972. |
12 | XIANG Wei, ZHANG Xueyang, CHEN Kuiqing, et al. Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs)[J]. Chemical Engineering Journal, 2020, 385: 123842. |
13 | WANG Shuqi, ZHANG Han, HUANG Haiyan, et al. Influence of temperature and residence time on characteristics of biochars derived from agricultural residues: a comprehensive evaluation[J]. Process Safety and Environmental Protection, 2020, 139: 218-229. |
14 | ZHANG Peng, LIU Shaobo, TAN Xiaofei, et al. Microwave-assisted chemical modification method for surface regulation of biochar and its application for estrogen removal[J]. Process Safety and Environmental Protection, 2019, 128: 329-341. |
15 | PENG Peng, LANG Yinhai, WANG Xiaomei. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms[J]. Ecological Engineering, 2016, 90: 225-233. |
16 | MAHDI Zainab, HANANDEH Ali El, YU Qiming Jimmy. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103379. |
17 | WANG Yan, LIU Ronghou. H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions[J]. Science of the Total Environment, 2018, 628/629: 1139-1148. |
18 | HUFF Matthew D, James W LEE. Biochar-surface oxygenation with hydrogen peroxide[J]. Journal of Environmental Management, 2016, 165(1): 17-21. |
19 | 余伟光,黎吉辉,王敦,等. 香蕉茎秆生物炭的制备及其对铜离子的吸附特性[J]. 化工进展, 2017, 36(4): 1499-1505. |
YU Weiguang,LI Jihui,WANG Dun, et al. The preparation of biochar from pre-oxidation of banana stem and its adsorption of Cu2+[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1499-1505. | |
20 | ODRIGUEZ-NARVAEZ Oscar M, PERALTA-HERNANDEZ Juan Manuel, GOONETILLEKE Ashantha, et al. Biochar-supported nanomaterials for environmental applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 21-33. |
21 | TURAN Veysel, KHAN Shahbaz Ali, MAHMOOD Ur Rahman, et al. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan[J]. Ecotoxicology and Environmental Safety, 2018, 161(10): 409-419. |
22 | 李桥, 高屿涛, 姜蔚, 等. 紫外辐照改性生物炭对土壤中Cd的稳定化效果[J]. 环境工程学报, 2017, 11(10): 5708-5714. |
LI Qiao, GAO Yutao, JIANG Wei, et al. Stabilization of Cd contaminated soil by ultraviolet irradiation modified biochar[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5708-5714. | |
23 | ZHANG Huicong, WANG Tao, Zifeng SUI, et al. Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma[J]. Fuel, 2019, 253: 703-712. |
24 | WANG Tao, LIU Jun, ZHANG Yongsheng, et al. Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal[J]. Chemical Engineering Journal, 2018, 331: 536-544. |
25 | ZHANG Huicong, WANG Tao, ZHANG Yongsheng, et al. Promotional effect of NH3 on mercury removal over biochar thorough chlorine functional group transformation[J]. Journal of Cleaner Production, 2020, 257: 120598. |
26 | 高瑞丽, 唐茂, 付庆灵, 等. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响[J]. 环境科学, 2017, 38(1):361-367. |
GAO Ruili, TANG Mao, FU Qingling, et al. Fractions transformation of heavy metals in compound contaminated soil treated with biochar, montmorillonite and mixed addition[J]. Environmental Science, 2017, 38(1): 361-367. | |
27 | 王海, 阳柠灿, 邱木清. 花生壳生物炭-黏土吸附水中的Cr(Ⅵ)(英文)[J]. 无机材料学报, 2020, 35(3):301-307. |
WANG Hai, YANG Ningcan, QIU Muqing. Adsorption of Cr(Ⅵ) from aqueous solution by biochar-clay derived from clay and peanut shell[J]. Journal of Inorganic Materials, 2020, 35(3):301-307. | |
28 | 王靖宜, 王丽, 张文龙, 等. 生物炭基复合材料制备及其对水体特征污染物的吸附性能[J]. 化工进展. 2019, 38(8): 3838-3851. |
WANG Jingyi,WANG Li,ZHANG Wenlong, et al. Preparation of biochar-based composites and their adsorption performances for characteristic contaminants in wastewater[J]. Chemical Industry and Engineering Progress. 2019, 38(8): 3838-3851. | |
29 | 陈雪娇, 林启美, 肖弘扬, 等. 改性油菜秸秆生物质炭吸附/解吸Cd2+特征[J]. 农业工程学报, 2019, 35(18): 220-227. |
CHEN Xuejiao, LIN Qimei, XIAO Hongyang, et al. Characteristics of Cd2+ sorption/desorption of modified oilrape straw biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 220-227. | |
30 | KIM Youkwan, Jeong-Ik OH, VITHANAGE Meththika, et al. Modification of biochar properties using CO2[J]. Chemical Engineering Journal, 2019, 372: 383-389. |
31 | MIAN Md Manik, LIU Guijian, YOUSAF Balal, et al. Simultaneous functionalization and magnetization of biochar via NH3 ambiance pyrolysis for efficient removal of Cr(Ⅵ)[J]. Chemosphere, 2018, 208: 712-721. |
32 | Seunghyun YOO, KELLEY Stephen S, TILOTTA David C, et al. Structural characterization of loblolly pine derived biochar by X-ray diffraction and electron energy loss spectroscopy[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2621-2629. |
33 | WANG Jia, LIAO Zhuwei, IFTHIKAR Jerosha, et al. One-step preparation and application of magnetic sludge-derived biochar on acid orange 7 removal via both adsorption and persulfate-based oxidation[J]. RSC Advances, 2017, 7(30): 18696-18796. |
34 | Ling Yu KAI, BENG Fye Lau, Loke Show PAU. Recent developments on algal biochar production and characterization[J]. Bioresource Technology, 2017, 246: 2-11. |
35 | YU Zhihong, QIU Weiwen, WANG Fei, et al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar[J]. Chemosphere, 2017, 168: 341-349. |
36 | Beatriz GÁMIZ, VELARDE Pilar, SPOKAS Kurt A, et al. Biochar soil additions affect herbicide fate: importance of application timing and feedstock species[J]. Journal of Agricultural and Food Chemistry, 2017, 65(15): 3109-3117. |
37 | JIA Hui, LI Jian, LI Yi, et al. The remediation of PAH contaminated sediment with mangrove plant and its derived biochars[J]. Journal of Environmental Management, 2020, 268: 285-292. |
38 | CEDERLUND Harald, Elisabet BÖRJESSON, John STENSTRÖM. Effects of a wood-based biochar on the leaching of pesticides chlorpyrifos, diuron, glyphosate and MCPA[J]. Journal of Environmental Management, 2017, 191: 28-34. |
39 | GAO Ruili, HU Hongqing, FU Qingling, et al. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: speciation transformation, risk evaluation and mechanism inquiry[J]. Science of the Total Environment, 2020, 730: 139119. |
40 | LU Kouping, YANG Xing, GERTY Gielen, et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil[J]. Journal of Environmental Management, 2017, 186(2): 285-292. |
41 | SUO Fengyue, YOU Xiangwei, MA Yongqiang, et al. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism[J]. Chemosphere, 2019, 235(9): 918-925. |
42 | Honghong LYU, ZHAO Hang, TANG Jingchun, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J]. Chemosphere, 2018, 194: 360-369. |
43 | HUFF Matthew D, MARSHALL Sarah, SAEED Haitham A, et al. Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity[J]. Bioresources and Bioprocessing, 2018, 5(1):1-9. |
44 | HE Kang, HE Guo, WANG Congpeng, et al. Biochar amendment ameliorates soil properties and promotes miscanthus growth in a coastal saline-alkali soil[J]. Applied Soil Ecology, 2020, 155(10): 103674. |
45 | ZHU Qian, KONG Lingjian, SHAN Yuzi, et al. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies[J]. Journal of Integrative Agriculture, 2019, 18(10): 2242-2254. |
46 | FARRAR Michael B, WALLACE Helen M, XU Chengyuan, et al. Short-term effects of organo-mineral enriched biochar fertiliser on ginger yield and nutrient cycling[J]. Journal of Soils and Sediments, 2019, 19(2): 668-682. |
47 | LIN Lu, JIANG Wenbin, XU Pei. Comparative study on pharmaceuticals adsorption in reclaimed water desalination concentrate using biochar: impact of salts and organic matter[J]. The Science of the Total Environment, 2017, 601/602: 857-864. |
48 | 刘剑楠, 封吉猛, 李丹, 等. 牛粪和核桃壳生物炭对水溶液中Cd2+和Zn2+的吸附研究[J]. 农业环境科学学报, 2019, 38(5): 1142-1150. |
LIU Jiannan, FENG Jimeng, LI Dan, et al. The adsorption of Cd2+and Zn2+in aqueous solutions by dairy manure and walnut shell biochar[J]. Journal of Agro-Environment Science, 2019,38(5):1142-1150. | |
49 | WEI Anlei, MA Jing, CHEN Jingjing, et al. Enhanced nitrate removal and high selectivity towards dinitrogen for groundwater remediation using biochar-supported nano zero-valent iron[J]. Chemical Engineering Journal, 2018, 353: 595-605. |
50 | LIU Juan, CHENG Wanyi, YANG Xiaoyu, et al. Modification of biochar with silicon by one-step sintering and understanding of adsorption mechanism on copper ions[J]. The Science of the Total Environment, 2020, 704: 135252. |
51 | WANG Zhanghong, SHEN Dekui, SHEN Fei, et al. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere, 2016, 150: 1-7. |
52 | HUANG Jinsheng, ZIMMERMAN Andrew R, CHEN Hao, et al. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater[J]. Environmental Pollution, 2020, 258: 113809. |
53 | 牛强. 等离子体氧化-活性炭吸附技术脱除燃煤烟气中SO2、NO和Hg0的实验研究[D]. 厦门: 厦门大学, 2017. |
NIU Qiang. Experimental study on the removal of SO2, NO and Hg0 from coal-fired flue gas by plasma oxidation-activated carbon adsorption technology[D]. Xiamen: Xiamen University, 2017. | |
54 | LIU Yuxue, GAO Chengxiang, WANG Yuying, et al. Vermiculite modification increases carbon retention and stability of rice straw biochar at different carbonization temperatures[J]. Journal of Cleaner Production, 2020, 254: 120111. |
55 | GAO Suduan, DOLL David A, STANGHELLINI Michael S, et al. Deep injection and the potential of biochar to reduce fumigant emissions and effects on nematode control[J]. Journal of Environmental Management, 2018, 223: 469-477. |
56 | SÁNCHEZ-MONEDERO M A, SÁNCHEZ-GARCÍA M, ALBURQUERQUE J A, et al. Biochar reduces volatile organic compounds generated during chicken manure composting[J]. Bioresource Technology, 2019, 288: 121584. |
57 | ZAINUDIN Mohd Huzairi, MUSTAPHA Nurul Asyifah, MAEDA Toshinari, et al. Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw[J]. Waste Management, 2020, 106: 240-249. |
58 | HUANG Mei, LI Zhongwu, LUO Ninglin, et al. Application potential of biochar in environment: insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of the Total Environment, 2019, 646: 220-228. |
59 | RUAN Xiuxiu, SUN Yuqing, DU Weimeng, et al. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review[J]. Bioresource Technology, 2019, 281: 457-468. |
60 | DONG Chengdi, CHEN Chiuwen, TSAI Meiling, et al. Degradation of 4-nonylphenol in marine sediments by persulfate over magnetically modified biochars[J]. Bioresource Technology, 2019, 281: 143-148. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[4] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[5] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[8] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[9] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[10] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[11] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[15] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |