化工进展 ›› 2020, Vol. 39 ›› Issue (S2): 291-299.DOI: 10.16085/j.issn.1000-6613.2020-0593
收稿日期:
2020-04-15
出版日期:
2020-11-20
发布日期:
2020-11-17
通讯作者:
张琳,祖元刚
作者简介:
张圆圆(1991—),女,博士研究生,研究方向为绿色化学制备工艺。E-mail:基金资助:
Yuanyuan ZHANG1(), Yongbin MENG2, Lin ZHANG1(), Yuangang ZU1()
Received:
2020-04-15
Online:
2020-11-20
Published:
2020-11-17
Contact:
Lin ZHANG,Yuangang ZU
摘要:
为了解决油樟精油传统提取工艺时间长、效率低、耗能高和成本高等问题,本文遵循绿色提取理念,采用微波辅助水蒸气蒸馏法提取油樟精油并优化最佳提取工艺。根据单因素试验并结合响应面法建立二次回归模型进行方差分析和诊断,考察物料粒度、微波提取时间和微波提取功率对油樟精油得率的影响,确定最佳提取工艺并对理论结果进行实验验证。结果表明,在油樟精油得率相似的情况下,与传统的水蒸气蒸馏法(2h)相比,微波辅助水蒸气蒸馏法(10min)具有提取时间更短、效率更高和更节约能源的优势。通过二次多项式回归模型极显著(P<0.01),失拟项不显著(P>0.05),决定系数为R2=0.989等分析结合诊断图表明该模型对数据拟合良好。微波辅助水蒸气蒸馏法提取油樟精油最佳提取工艺为:物料粒度10目,微波提取时间11min,微波提取功率630W,此条件下油樟精油得率为4.479%,与实验验证结果(4.442%±0.16%)基本一致,验证了二次回归模型的可靠性。该技术较传统工艺提取时间短、效率高、耗能少、成本低,更加绿色安全且容易实现产业化,有望提高油樟精油在日化、美容、医药等各个领域的应用价值。
中图分类号:
张圆圆, 孟永斌, 张琳, 祖元刚. 响应面法优化微波辅助水蒸气蒸馏法提取油樟精油工艺[J]. 化工进展, 2020, 39(S2): 291-299.
Yuanyuan ZHANG, Yongbin MENG, Lin ZHANG, Yuangang ZU. Optimization of microwave-assisted steam distillation extraction of Cinnamomum longepaniculatum essential oil by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 291-299.
因素 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
物料粒度A/目 | 10 | 20 | 30 |
微波提取时间B/min | 8 | 10 | 12 |
微波提取功率C/W | 400 | 600 | 800 |
表1 Box-Behnken设计因素水平
因素 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
物料粒度A/目 | 10 | 20 | 30 |
微波提取时间B/min | 8 | 10 | 12 |
微波提取功率C/W | 400 | 600 | 800 |
实验号 | 因素 | 响应值Y | |||
---|---|---|---|---|---|
A/目 | B/min | C/W | 实际值 | 预测值 | |
1 | -1 | -1 | 0 | 2.86 | 2.99 |
2 | 1 | -1 | 0 | 2.09 | 2.08 |
3 | -1 | 1 | 0 | 4.30 | 4.30 |
4 | 1 | 1 | 0 | 3.66 | 3.52 |
5 | -1 | 0 | -1 | 3.26 | 3.22 |
6 | 1 | 0 | -1 | 2.04 | 2.14 |
7 | -1 | 0 | 1 | 3.91 | 3.81 |
8 | 1 | 0 | 1 | 3.15 | 3.19 |
9 | 0 | -1 | -1 | 1.51 | 1.42 |
10 | 0 | 1 | -1 | 2.88 | 2.92 |
11 | 0 | -1 | 1 | 2.40 | 2.36 |
12 | 0 | 1 | 1 | 3.52 | 3.62 |
13 | 0 | 0 | 0 | 4.15 | 3.99 |
14 | 0 | 0 | 0 | 3.97 | 3.99 |
15 | 0 | 0 | 0 | 3.89 | 3.99 |
16 | 0 | 0 | 0 | 3.91 | 3.99 |
17 | 0 | 0 | 0 | 4.05 | 3.99 |
表2 Box-Behnken实验方案及结果
实验号 | 因素 | 响应值Y | |||
---|---|---|---|---|---|
A/目 | B/min | C/W | 实际值 | 预测值 | |
1 | -1 | -1 | 0 | 2.86 | 2.99 |
2 | 1 | -1 | 0 | 2.09 | 2.08 |
3 | -1 | 1 | 0 | 4.30 | 4.30 |
4 | 1 | 1 | 0 | 3.66 | 3.52 |
5 | -1 | 0 | -1 | 3.26 | 3.22 |
6 | 1 | 0 | -1 | 2.04 | 2.14 |
7 | -1 | 0 | 1 | 3.91 | 3.81 |
8 | 1 | 0 | 1 | 3.15 | 3.19 |
9 | 0 | -1 | -1 | 1.51 | 1.42 |
10 | 0 | 1 | -1 | 2.88 | 2.92 |
11 | 0 | -1 | 1 | 2.40 | 2.36 |
12 | 0 | 1 | 1 | 3.52 | 3.62 |
13 | 0 | 0 | 0 | 4.15 | 3.99 |
14 | 0 | 0 | 0 | 3.97 | 3.99 |
15 | 0 | 0 | 0 | 3.89 | 3.99 |
16 | 0 | 0 | 0 | 3.91 | 3.99 |
17 | 0 | 0 | 0 | 4.05 | 3.99 |
来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 11.294 | 9 | 1.255 | 69.101 | <0.0001 |
A | 1.435 | 1 | 1.435 | 79.008 | <0.0001 |
B | 3.772 | 1 | 3.772 | 207.685 | <0.0001 |
C | 1.347 | 1 | 1.347 | 74.187 | <0.0001 |
AB | 0.004 | 1 | 0.004 | 0.212 | 0.659 |
AC | 0.052 | 1 | 0.052 | 2.863 | 0.135 |
BC | 0.015 | 1 | 0.015 | 0.813 | 0.397 |
A2 | 0.070 | 1 | 0.070 | 3.851 | 0.091 |
B2 | 1.725 | 1 | 1.725 | 95.004 | <0.0001 |
C2 | 2.530 | 1 | 2.530 | 139.302 | <0.0001 |
残差 | 0.127 | 7 | 0.018 | — | — |
失拟项 | 0.081 | 3 | 0.027 | 2.358 | 0.213 |
纯误差 | 0.046 | 4 | 0.011 | — | — |
总离差 | 11.421 | 16 | — | — | — |
表3 响应面二次模型的方差分析
来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 11.294 | 9 | 1.255 | 69.101 | <0.0001 |
A | 1.435 | 1 | 1.435 | 79.008 | <0.0001 |
B | 3.772 | 1 | 3.772 | 207.685 | <0.0001 |
C | 1.347 | 1 | 1.347 | 74.187 | <0.0001 |
AB | 0.004 | 1 | 0.004 | 0.212 | 0.659 |
AC | 0.052 | 1 | 0.052 | 2.863 | 0.135 |
BC | 0.015 | 1 | 0.015 | 0.813 | 0.397 |
A2 | 0.070 | 1 | 0.070 | 3.851 | 0.091 |
B2 | 1.725 | 1 | 1.725 | 95.004 | <0.0001 |
C2 | 2.530 | 1 | 2.530 | 139.302 | <0.0001 |
残差 | 0.127 | 7 | 0.018 | — | — |
失拟项 | 0.081 | 3 | 0.027 | 2.358 | 0.213 |
纯误差 | 0.046 | 4 | 0.011 | — | — |
总离差 | 11.421 | 16 | — | — | — |
平均值 /% | 标准 偏差 | R2 | 调整后的R2 | 预测的R2 | 变异系数C.V./% | 精密度 |
---|---|---|---|---|---|---|
3.267 | 0.135 | 0.989 | 0.975 | 0.880 | 4.124 | 27.895 |
表4 模型的可信度分析
平均值 /% | 标准 偏差 | R2 | 调整后的R2 | 预测的R2 | 变异系数C.V./% | 精密度 |
---|---|---|---|---|---|---|
3.267 | 0.135 | 0.989 | 0.975 | 0.880 | 4.124 | 27.895 |
物料粒度 /目 | 微波提取时间 /min | 微波提取功率 /W | 油樟精油得率 /% | 验证结果 /% |
---|---|---|---|---|
10 | 11 | 630 | 4.479 | 4.442±0.16 |
表5 油樟精油提取工艺验证
物料粒度 /目 | 微波提取时间 /min | 微波提取功率 /W | 油樟精油得率 /% | 验证结果 /% |
---|---|---|---|---|
10 | 11 | 630 | 4.479 | 4.442±0.16 |
1 | LUO Tong, DENG Wuyuan, ZENG Jin, et al. Cloning and characterization of a stearoyl-acyl carrier protein desaturase gene from Cinnamomum longepaniculatum[J]. Plant Molecular Biology Reporter, 2009, 27(1): 13-19. |
2 | 周宇科, 林永露, 魏琴. 在“两化”互动中提升宜宾油樟产业[J]. 四川农业科技, 2012(9): 54-55. |
ZHOU Yuke, LIN Yonglu, WEI Qin. Promoting Yibin industry of Cinnamomum longepaniculatum in the interaction of “two industrializations” [J]. Science and Technology of Sichuan Agriculture, 2012(9): 54-55. | |
3 | 李锡文. 中国植物志(三十一卷)[M]. 北京: 科学出版社, 1982: 184. |
LI Xiwen. Flora reipublicae popularis sinicae (Vol. 31)[M]. Beijing: Science Press, 1982: 184. | |
4 | 尹礼国, 凌跃, 杜永华, 等. 宜宾油樟营养器官精油主成分分析[J]. 江苏农业科学, 2014, 42(11): 348-350, 355. |
YIN Liguo, LING Yue, DU Yonghua, et al. Principal component analysis of Cinnamomum longepaniculatum essential oil from vegetative organs in Yibin[J]. Jiangsu Agricultural Sciences, 2014, 42(11): 348-350, 355. | |
5 | 胥译心, 文明, 蔡凡隆. 宜宾县油樟产业现状分析及发展对策[J]. 四川林业科技, 2017, 38(6): 69-71, 109. |
XU Yixin, WEN Ming, CAI Fanlong. The present situation analysis and development countermeasures of Cinnamomum longepaniculatum industry in Yibin County [J]. Sichuan Forestry Science and Technology, 2017, 38(6): 69-71, 109. | |
6 | LI Li, LI Zhengwen, YIN Zhongqiong, et al. Antibacterial activity of leaf essential oil and its constituents from Cinnamomum longepaniculatum[J]. International Journal of Clinical and Experimental Medicine, 2014, 7(7): 1721-1727. |
7 | DU Yonghua, FENG Ruizhang, LI Qun, et al. Anti-inflammatory activity of leaf essential oil from Cinnamomum longepaniculatum (Gamble) N. Chao[J]. International Journal of Clinical and Experimental Medicine, 2014, 7(12): 5612-5620. |
8 | 丛赢, 张琳, 祖元刚, 等. 油樟(Cinnamomum longepaniculatum)精油的抗炎及抗氧化活性初步研究[J]. 植物研究, 2016, 36(6): 949-954, 960. |
CONG Ying, ZHANG Lin, ZU Yuangang, et al. Anti-inflammatory and antioxidant activity of Cinnamomum longepaniculatum essential oil[J]. Bulletin of Botanical Research, 2016, 36(6): 949-954, 960. | |
9 | 史峻铭, 李婷婷, 宋诗政, 等. 低共熔溶剂微波辅助萃取油樟精油及抗氧化特性分析[J]. 植物学研究, 2019, 8(3): 307-318. |
SHI Junming, LI Tingting, SONG Shizheng, et al. Study on the microwave-assisted extraction of essential oil from Cinnamomum longipaniculatum with deep eutectic solvents[J]. Botanical Research, 2019, 8(3): 307-318. | |
10 | SONG Xu, YIN Zhongqiong, YE Kuichuan, et al. Anti-hepatoma effect of safrole from Cinnamomum longepaniculatum leaf essential oil in vitro[J]. International Journal of Clinical and Experimental Pathology, 2014, 7(5): 2265-2272. |
11 | 丛赢. 酶辅助提取油樟精油及其抗菌活性研究[D]. 哈尔滨:东北林业大学, 2016. |
CONG Ying. Enzyme-assisted extraction of Cinnamomum longepaniculatum essential oils and its antibacterial activity[D].Harbin: Northeast Forestry University, 2016. | |
12 | 胡文杰, 朱立成, 殷帅文, 等. 油樟叶精油不同馏分化学成分及其抗氧化能力评价[J]. 井冈山大学学报(自然科学版), 2019, 40(5): 26-33. |
HU Wenjie, ZHU Licheng, YIN Shuaiwen, et al. Chemical constituents and antioxidant capacity of the essential oil and its distill ations from Cinnamomum longepaniculatum leaves[J]. Journal of Jinggangshan University(Natural Science), 2019, 40(5): 26-33. | |
13 | 胡文杰, 戴彩华, 周升团. 油樟叶精油馏分的主要成分、抑菌活性及其主要单体成分抑菌机理研究[J]. 安徽农学通报, 2019, 25(15): 14-19. |
HU Wenjie, DAI Caihua, ZHOU Shengtuan. Research on major constituents, bacteriostatic effect and antibacterial mechanism of fractions from Cinnamomum longepaniculatum leaves essential oils and its major monomer components[J]. Anhui Agricultural Science Bulletin, 2019, 25(15): 14-19. | |
14 | 罗中杰, 李维一, 魏琴, 等. 宜宾油樟的现状及未来[J]. 四川师范大学学报(自然科学版), 2001, 24(3): 317-319. |
LUO Zhongjie, LI Weiyi, WEI Qin, et al. The status quo and future of Cinnamomum longepaniculatum in Yibin[J]. Journal of Sichuan Normal University(Natural Science), 2001, 24(3): 317-319. | |
15 | CHEMAT Farid, ABERTVIAN Maryline, FABIANOTIXIER Anne Sylvie, et al. Green extraction of natural products. origins, current status, and future challenges[J]. Trends in Analytical Chemistry, 2019, 118: 248-263. |
16 | VINATORU M, MASON T J, CALINESCU I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials[J]. Trends in Analytical Chemistry, 2017, 97: 159-178. |
17 | 李双阳. 油樟精油和种仁油的提取及提取剩余物的热解[D]. 哈尔滨: 东北林业大学, 2017. |
LI Shuangyang. Extraction of essential oil and kernel oil from Cinnamomum longepaniculatum and pyrolysis of residues[D].Harbin: Northeast Forestry University, 2017. | |
18 | HALOUI Ismahane, MENIAI Abdeslam Hassen. Supercritical CO2 extraction of essential oil from Algerian Argan (Argania spinosa L.) seeds and yield optimization[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12912-12919. |
19 | LIU Zaizhi, MO Kailin, FEI Shimin, et al. Efficient approach for the extraction of proanthocyanidins from Cinnamomum longepaniculatum leaves using ultrasonic irradiation and an evaluation of their inhibition activity on digestive enzymes and antioxidant activity in vitro[J]. Journal of Separation Science, 2017, 40(15): 3100-3113. |
20 | HAMID Hashemi Moghaddam, MAJID Mohammadhosseini, ZAHRA Azizi. Impact of amine-and phenyl-functionalized magnetic nanoparticles impacts on microwave-assisted extraction of essential oils from root of Berberis integerrima Bunge[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2018, 10: 1-8. |
21 | ABDELLATIF F, HASSANI A. Chemical composition of the essential oils from leaves of Melissa officinalis extracted by hydrodistillation, steam distillation, organic solvent and microwave hydrodistillation[J]. Journal of Materials and Environmental Science, 2015, 6: 207-213. |
22 | Zorica DRINIĆ, PLJEVLJAKUSIC Dejan, Jelena ŽIVKOVIC, et al. Microwave-assisted extraction of O. vulgare L. spp. hirtum essential oil: comparison with conventional hydro-distillation[J]. Food and Bioproducts Processing, 2020, 120: 158-165. |
23 | 孙毅, 张峻松, 罗海涛, 等. 响应面法优化微波辅助提取香茅精油工艺研究[J]. 安徽农业科学, 2019, 47(17): 190-193. |
SUN Yi, ZHANG Junsong, LUO Haitao, et al. Study on the optimization of microwave-assisted extraction of citronella oil from cymbopogon by response surface methodology[J]. Journal of Anhui Agricultural Sciences, 2019, 47(17): 190-193. | |
24 | AKHTAR Iqra, JAVAD Sumera, ANSARI Madeeha, et al. Process optimization for microwave assisted extraction of Foeniculum vulgare mill using response surface methodology[J]. Journal of King Saud University Science, 2020, 32(2): 1451-1458. |
25 | CHEN Fengli, ZU Yuangang, YANG Lei. A novel approach for isolation of essential oil from fresh leaves of Magnolia sieboldii using microwave-assisted simultaneous distillation and extraction[J]. Separation and Purification Technology, 2015, 154: 271-280. |
26 | KOSAR Muberra, ÖZEK T, KVRKCVOGLU M, et al. Comparison of microwave-assisted hydrodistillation and hydrodistillation methods for the fruit essential oils of Foeniculum vulgare[J]. Journal of Essential Oil Research, 2007, 19(5): 426-429. |
27 | 刘再枝. 油樟精油的高效分离及剩余物多级利用的研究[D]. 哈尔滨: 东北林业大学, 2017. |
LIU Zaizhi. Study on efficient separation of essential oil from Cinnamomum longepaniculatum leaves and multistage utilization of residues[D].Harbin: Northeast Forestry University, 2017. | |
28 | AKHTAR Iqra, JAVAD Sumera, YOUSAF Zubaida, et al. Review: microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals[J]. Pakistan Journal of Pharmaceutical Sciences, 2019, 32(1): 223-230. |
29 | MEZIANE Ilhem Ait Amer, MAIZI Nadia, ABATZOGLOU Nicolas, et al. Modelling and optimization of energy consumption in essential oil extraction processes[J]. Food and Bioproducts Processing, 2020, 119: 373-389. |
30 | SAYYAR Sepidar, ABIDIN Zurina Zainal, YUNUS Robiah, et al. Extraction of oil from jatropha seeds-optimization and kinetics[J]. American Journal of Applied Sciences, 2009, 6(7): 1390-1395. |
31 | GOLMAKANI Mohammad Taghi, REZAEI Karamatollah. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L[J]. Food Chemistry, 2008, 109(4): 925-930. |
32 | KAPADIYA Sagar M, PARIKN Jigisha, DESAI Meghal A. A greener approach towards isolating clove oil from buds of Syzygium aromaticum using microwave radiation[J]. Industrial Crops and Products, 2018, 112: 626-632. |
33 | RASTOGI Navin K, RASHMI K R. Optimisation of enzymatic liquefaction of mango pulp by response surface methodology[J]. European Food Research & Technology, 1999, 209(1): 57-62. |
34 | SWAMY Gabriela John, SANGAMITHRA A, CHANDRASEKAR V. Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box-Behnken design of experiments[J]. Dyes and Pigments, 2014, 111: 64-74. |
35 | HU Bin, ZHOU Kang, LIU Yuntao, et al. Optimization of microwave-assisted extraction of oil from tiger nut (Cyperus esculentusL.) and its quality evaluation[J]. Industrial Crops and Products, 2018, 115: 290-297. |
36 | QI Xiaolin, LI Tingting, WEI Zuofu, et al. Solvent-free microwave extraction of essential oil from pigeon pea leaves [Cajanus cajan (L.) Millsp.] and evaluation of its antimicrobial activity[J]. Industrial Crops and Products, 2014, 58: 322-328. |
37 | ZHANG Yuefei, LIU Zhe, LI Yali, et al. Optimization of ionic liquid-based microwave-assisted extraction of isoflavones from Radix puerariae by response surface methodology[J]. Separation and Purification Technology, 2014, 129: 71-79. |
38 | 孙烁, 刘其友, 陈水泉, 等. 利用响应面法对L-2菌株降解石油烃进行优化[J]. 化工进展, 2019, 38(12): 5512-5518. |
SUN Shuo, LIU Qiyou, CHEN Shuiquan, et al. Optimization for degradation of total petroleum hydrocarbon by the strain L-2 with response surface methodology[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5512-5518. | |
39 | Geoffrey VINING G. Technical advice: residual plots to check assumptions[J]. Quality Engineering, 2010, 23(1): 105-110. |
40 | DRAPER Norman R. Response surface methodology: process and product optimization using designed experiments[J]. Journal of Statistical Planning and Inference, 1997, 59(1): 185-186. |
41 | LIDIA Dorantesalvarez, DELIA Minonhernandez, NANCY Ordaztrinidad, et al. Microwave-assisted extraction of phytochemicals and other bioactive compounds[M].Elsevier, 2017:1-10. doi:10.1016/b978-0-08-100596-5.21437-6. |
42 | MANDAL V, MOHAN Y, HEMALATHA S. Microwave assisted extraction-an innovative and promising extraction tool for medicinal plant research[J]. Pharmacognosy Reviews, 2007, 1(1): 7-18 |
43 | CHEN Fengli, DU Xinqi, ZU Yuangang, et al. Microwave-assisted method for distillation and dual extraction in obtaining essential oil, proanthocyanidins and polysaccharides by one-pot process from Cinnamomi Cortex[J]. Separation and Purification Technology, 2016, 164: 1-11. |
44 | CUI Qi, Wang Litao, LIU Juzhao, et al. Rapid extraction of Amomum tsao-ko essential oil and determination of its chemical composition, antioxidant and antimicrobial activities[J]. Journal of Chromatography B, 2017, 1061/1062: 364-371. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[6] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[9] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[10] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[11] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[12] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[13] | 林海, 王彧斐. 考虑噪声约束的分布式风场布局优化[J]. 化工进展, 2023, 42(7): 3394-3403. |
[14] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[15] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |