化工进展 ›› 2020, Vol. 39 ›› Issue (S1): 153-162.DOI: 10.16085/j.issn.1000-6613.2020-0260
练彩霞1,2(), 李凝1(), 蒋武1, 马浩1, 彭瀚1,2
收稿日期:
2020-02-24
出版日期:
2020-05-20
发布日期:
2020-06-29
通讯作者:
李凝
作者简介:
练彩霞(1995—),女,硕士研究生,研究方向为催化材料与多相催化技术。E-mail:基金资助:
Caixia LIAN1,2(), Ning LI1(), Wu JIANG1, Hao MA1, Han PENG1,2
Received:
2020-02-24
Online:
2020-05-20
Published:
2020-06-29
Contact:
Ning LI
摘要:
对近年来生物质油催化加氢脱氧催化剂的制备、催化性能和反应机理的研究进展进行了整理总结。重点对贵金属催化剂、过渡金属催化剂和硫、氮、碳、磷等金属化合物催化剂的制备方法、催化性能和作用机理进行了概述,并分析了加氢脱氧催化剂的失活原因,同时提出生物质油加氢脱氧反应催化剂的未来发展方向:三维有序大孔(3DOM)钙钛矿氧化物的应用可能在提高催化剂的催化性能有作用。
中图分类号:
练彩霞, 李凝, 蒋武, 马浩, 彭瀚. 生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162.
Caixia LIAN, Ning LI, Wu JIANG, Hao MA, Han PENG. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation(HDO) of biomass oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162.
物理性质 | 生物质油 | 重质燃料油 |
---|---|---|
含水量(质量分数)/ % | 15~30 | 0.1 |
pH | 2.5 | — |
密度/g·mL-1 | 1.2 | 0.94 |
热值/MJ·kg-1 | 16~19 | 40 |
黏度(40℃)/Pa·s | 40~100 | 180 |
固体颗粒(焦炭)(质量分数)/% | 0.2~1 | 0.1 |
减压蒸馏残渣(质量分数)/% | 50 | 1 |
元素质量分数/% | ||
C | 54~58 | 85 |
H | 5.5~7.0 | 11 |
O | 35~40 | 1.0 |
N | 0~0.2 | 0.3 |
S | <0.23 | <4 |
表1 生物油和石化原油的典型性能
物理性质 | 生物质油 | 重质燃料油 |
---|---|---|
含水量(质量分数)/ % | 15~30 | 0.1 |
pH | 2.5 | — |
密度/g·mL-1 | 1.2 | 0.94 |
热值/MJ·kg-1 | 16~19 | 40 |
黏度(40℃)/Pa·s | 40~100 | 180 |
固体颗粒(焦炭)(质量分数)/% | 0.2~1 | 0.1 |
减压蒸馏残渣(质量分数)/% | 50 | 1 |
元素质量分数/% | ||
C | 54~58 | 85 |
H | 5.5~7.0 | 11 |
O | 35~40 | 1.0 |
N | 0~0.2 | 0.3 |
S | <0.23 | <4 |
Pd催化剂(质量分数) | 反应物 | 反应条件/(℃/MPa) | 转化率/% | 选择性(烃类)/% | 参考文献 |
---|---|---|---|---|---|
1.92%Pd/SiO2 | 苯酚 | 300/1 | 7.0 | 8.1 | [ |
2.28%Pd/Al2O3 | 苯酚 | 300/1 | 7.5 | 14.2 | [ |
1.83%Pd/TiO2 | 苯酚 | 300/1 | 7.0 | 66.8 | [ |
2.24%Pd/ZrO2 | 苯酚 | 300/1 | 12.6 | 29.9 | [ |
2.44%Pd/CeO2 | 苯酚 | 300/1 | 9.0 | 4.9 | [ |
2.46%Pd/CeZrO2 | 苯酚 | 300/1 | 12.4 | 4.6 | [ |
2.6%PdMS | 苯酚 | 350/3 | 94.6 | 89.1 | [ |
1.9%Pd/SBA-15 | 苯酚 | 350/3 | 97.5 | 84.9 | [ |
1.0%Pd/PSSH/Al2O | 苯酚 | 200/4 | 91 | 46 | [ |
1.0%Pd/PSSH/TiO2 | 苯酚 | 200/4 | 98 | 78 | [ |
5.0%Pd/AC | 愈创木酚 | 330/3.4 | 100 | 90.4 | [ |
1.1%Pd/ZSM-5 | 苯酚 | 150/4 | >99.9 | 93.0 | [ |
ZSM-5@Pd/Al2O3(1∶1) | 苯酚 | 150/4 | >99.9 | 98.0 | [ |
3.3%Pd@MIL-101 | 苯甲醚 | 260/3 | 77.7 | 52.1 | [ |
2%Pd/Nb2O5 | 木质素 | 250/0.5 | 41.8 | 76.1 | [ |
表2 Pd基催化剂催化生物质油模型化合物HDO性能
Pd催化剂(质量分数) | 反应物 | 反应条件/(℃/MPa) | 转化率/% | 选择性(烃类)/% | 参考文献 |
---|---|---|---|---|---|
1.92%Pd/SiO2 | 苯酚 | 300/1 | 7.0 | 8.1 | [ |
2.28%Pd/Al2O3 | 苯酚 | 300/1 | 7.5 | 14.2 | [ |
1.83%Pd/TiO2 | 苯酚 | 300/1 | 7.0 | 66.8 | [ |
2.24%Pd/ZrO2 | 苯酚 | 300/1 | 12.6 | 29.9 | [ |
2.44%Pd/CeO2 | 苯酚 | 300/1 | 9.0 | 4.9 | [ |
2.46%Pd/CeZrO2 | 苯酚 | 300/1 | 12.4 | 4.6 | [ |
2.6%PdMS | 苯酚 | 350/3 | 94.6 | 89.1 | [ |
1.9%Pd/SBA-15 | 苯酚 | 350/3 | 97.5 | 84.9 | [ |
1.0%Pd/PSSH/Al2O | 苯酚 | 200/4 | 91 | 46 | [ |
1.0%Pd/PSSH/TiO2 | 苯酚 | 200/4 | 98 | 78 | [ |
5.0%Pd/AC | 愈创木酚 | 330/3.4 | 100 | 90.4 | [ |
1.1%Pd/ZSM-5 | 苯酚 | 150/4 | >99.9 | 93.0 | [ |
ZSM-5@Pd/Al2O3(1∶1) | 苯酚 | 150/4 | >99.9 | 98.0 | [ |
3.3%Pd@MIL-101 | 苯甲醚 | 260/3 | 77.7 | 52.1 | [ |
2%Pd/Nb2O5 | 木质素 | 250/0.5 | 41.8 | 76.1 | [ |
1 | International Energy Agency..World energy outlook 2018[R]. Paris: IEA, 2018. https://www.iea.org/weo2018/. |
2 | 马隆龙, 唐志华, 汪丛伟, 等. 生物质能研究现状及未来发展策略[J]. 中国科学院院刊, 2019, 34(4): 434-442. |
MA Longlong, TANG Zhihua, WANG Congwei, et al. Research status and future development strategy of biomass energy[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 434-442. | |
3 | 袁振宏, 罗文, 吕鹏梅, 等. 生物质能产业现状及发展前景[J]. 化工进展, 2009, 28(10): 1687-1692. |
YUAN Zhenhong, LUO Wen, Pengmei LYU, et al. Status and prospect of biomass energy industry[J]. Chemical Industry and Engineering Progress, 2009, 28(10): 1687-1692. | |
4 | International Energy Agency.Bioenergy task 42: biorefinery[R]. Paris: IEA, 2016. http://www.iea-biornergy.task42-biorefineries.com/. |
5 | UDDIN M, TECHATO K, TAWEEKUN J, et al. An overview of recent developments in biomass pyrolysis technologies[J]. Energies, 2018, 11(11): 1-24. |
6 | BISHESWAR K, GOPINATH H. Progress and future of biodiesel synthesis: advancements in oil extraction and conversion technologies[J]. Energy Conversion & Management, 2019, 182: 307-339. |
7 | VENDERBOSCH R H, ARDIYANTI A R, WILDSCHUT J, et al. Stabilization of biomass derived pyrolysis oils[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(5): 674–686 |
8 | CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy and Fuels, 2004, 18(2): 590-598. |
9 | DINESH M, CHARLES U, PITTMAN J R, et al. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy and Fuels, 2006, 20(3): 848-889. |
10 | WILLIAMS A. Combustion of liquid fuel sprays[M]. London: Butterworth Publishers, 1990: 58-111. |
11 | OASMAA A, PEACOCKE C, GUST S, et al. Norms and standards for pyrolysis liquids. End-user requirements and specifications[J]. Energy Fuels, 2005, 19(21): 55-63. |
12 | YANG Z, KUMAR A, HUHNKE R L. Review of recent developments to improve storage and transportation stability of bio-oil[J]. Renewable & Sustainable Energy Reviews,2015,50: 859-870. |
13 | MORTENSEN P M, GRUNWALDT J D, JENSEN P A, et al. A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A: General, 2011, 407(1/2): 1-19. |
14 | WANG Huamin, MALE Jonathan, WANG Yong. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070. |
15 | DEEPA A K, PARESH L D. Function of metals and supports on the hydrodeoxygenation of phenolic compounds[J]. ChemPlusChem, 2014, 79(11): 1573-1583. |
16 | ZHAN Si, ZHANG Xinghua, WANG Chenguang, et al. An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds[J]. Catalysts, 2017, 7(6): 169. |
17 | CHEN Lu, XIN Jiayu, NI Lingli, et al. Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems[J]. Green Chemistry, 2016, 18(8): 2341-2352. |
18 | LI Y Z, XU B L, FAN Y N, et al. The effect of titania polymorph on the strong metal-support interaction of Pd/TiO2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes[J]. Journal of Molecular Catalysis A: Chemical, 2004, 216(1): 107-114. |
19 | ZHANG J, ZHANG M, HAN Y, et al. Nucleation and growth of palladium clusters on anatase TiO2(101) surface: a first principle study[J]. The Journal of Physical Chemistry, 2008, 112(49): 19506-19515. |
20 | LI Y, FAN Y, YANG H, et al. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2[J]. Chemical Physics Letters, 2003, 372(1): 160-165. |
21 | PRISCILLA M D, RAIMUNDO C R, LUIZ E P, et al. Hydrodeoxygenation of phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation[J]. ACS Catalysis, 2017, 7(3): 2058-2073. |
22 | PRISCILLA M D, RAIMUNDO C R, LUIZ E P, et al. Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports[J]. ACS Catalysis, 2015, 5(2): 1318-1329. |
23 | TELES C A, PRISCILLA M D, BRAGA A H, et al. The role of defect sites and oxophilicity of the support on the phenol hydrodeoxygenation reaction[J]. Applied Catalysis B: Environmental, 2019, 249: 292-305. |
24 | LU Mohong, DU Hu, WEI Bin, et al. Catalytic hydrodeoxygenation of guaiacol over palladium catalyst on different titania supports[J]. Energy & Fuels, 2017, 31(10): 10858-10865. |
25 | GAGE S H, ENGELHARDT J, MENART M J, et al. Palladium intercalated into the walls of mesoporous silica as robust and regenerable catalysts for hydrodeoxygenation of phenolic compounds[J]. ACS Omega,2018, 3(7): 7681-7691. |
26 | LU M H, LI M S, SHAN Y H, et al. TiO2-modified Pb/SiO2 for catalytic hydrodeoxygenation of guaiacol[J]. Energy & Fuels, 2016, 30(8): 6671-6676. |
27 | ISIMJAN T T, HE Q, LIU Y, et al. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: a model for tandem environmental catalysis[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(4): 381-388. |
28 | LIU S, WANG H, SMITH K J, et al. Hydrodeoxygenation of 2-methoxyphenol over Ru, Pd, and Mo2C catalysts supported on carbon[J]. Energy & Fuels, 2017, 31(6): 6378-6388. |
29 | XU S, DU J, LI H, et al. Zeolite@Pd/Al2O3 core-shell catalyst for efficient hydrodeoxygenation of phenolic biomolecules[J]. Industrial & Engineering Chemistry Research, 2018, 57(42):14088-14095. |
30 | REN H, LI C, YIN D, et al. Pd@MIL-101 as an efficient bifunctional catalyst for hydrodeoxygenation of anisole[J]. RSC Adv., 2016, 6(88): 85659-85665. |
31 | DONG L, SHAO Y, HAN X, et al. Comparison of two multifunctional catalysts [M/Nb2O5 (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin[J]. Catalysis Science & Technology, 2018, 8(23): 6129-6136. |
32 | WANG Cong, MIRONENKO A V, RAIZADA A, et al. Mechanistic study of the direct hydrodeoxygenation of m-cresol over WOx-decorated Pt/C catalysts[J]. ACS Catalysis, 2018, 8(9): 7749-7759. |
33 | ZANUTTINI M S, LAGO C D, GROSS M S, et al. Hydrodeoxygenation of anisole with Pt catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6419-6431. |
34 | NIU Xiaopo, FENG Fuxiang, YUAN Gang, et al. Hollow MFI zeolite supported Pt catalysts for highly selective and stable hydrodeoxygenation of guaiacol to cycloalkanes[J]. Nanomaterials, 2019, 9(3): 362. |
35 | GUAN Weixiang, CHEN Xiao, LI Chuang, et al. Nb(Ta)-based solid acid modified Pt/CNTs catalysts for hydrodeoxygenation of lignin-derived compounds[J]. Molecular Catalysis, 2019(467): 61-69. |
36 | RUBES M, HE J J, NACHTIGALL P, et al. Direct hydrodeoxygenation of phenol over carbon-supported Ru catalysts: a computational study[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 300-307. |
37 | YAO Gang, WU Guangjun, DAI Weili, et al. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions[J]. Fuel, 2015, 150: 175-183. |
38 | CHIU C, GENEST A, BORGNA A, et al. Hydrodeoxygenation of guaiacol over Ru(0001): a DFT study[J]. ACS Catalysis, 2014, 4(11): 4178-4188. |
39 | RYAN C N, BAEK B, RUIZ P, et al. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2[J]. ACS Catalysis, 2015, 5(11): 6509-6523. |
40 | KORDOULI E, KORDULIS C, LYCOURGHIOTIS A, et al. HDO activity of carbon-supported Rh, Ni and Mo-Ni catalysts[J]. Molecular Catalysis, 2017, 441: 209-220. |
41 | DELFINA G P, VOSS J, JENSEN A D, et al. Hydrodeoxygenation of phenol to benzene and cyclohexane on Rh(111) and Rh(211) surfaces: insights from density functional theory[J]. The Journal of Physical Chemistry C, 2016, 120(33): 18529-18537. |
42 | YOON J S, LEE T, CHOI J W, et al. Layered MWW zeolite-supported Rh catalysts for the hydrodeoxygenation of lignin model compounds[J]. Catalysis Today, 2017, 293/294: 142-150. |
43 | GRANADOS-FOCIL A A, GRANADOS-FOCIL S, CONDE-SOTELO V M, et al. Development of bifunctional hydrodeoxygenation catalyst Rh-HY for the generation of biomass-derived high- energy-density fuels[J]. Energy Technology, 2019, 7: 1-16. |
44 | AUERSVALD M, SHUMEIKO B, STAS M, et al. Quantitative study of straw bio-oil hydrodeoxygenation over a sulfided NiMo catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (7): 7080-7093. |
45 | WANG W, WU K, TAN S, et al. Hydrothermal synthesis of carbon-coated CoS2-MoS2 catalysts with enhanced hydrophobicity and hydrodeoxygenation activity[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8602-8609. |
46 | TEMPLIS C C, CREVELAS C J, PAPASTYLIANOU A A, et al. Phenol hydrodeoxygenation over a reduced and sulfided NiMo/γ-Al2O3 catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6278-6287. |
47 | SONG W, ZHOU S, HU S, et al. Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes[J]. ACS Catalysis, 2018, 9(1): 259-268. |
48 | TRAN C, HAN Y, GARCIA PEREZ M, et al. Synergistic effect of Mo-W carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons[J]. Catalysis Science & Technology, 2019, 9(6): 1387-1397. |
49 | IIDA T, SHETTY M, MURUGAPPAN K, et al. Encapsulation of molybdenum carbide nanoclusters inside zeolite micropores enables synergistic bifunctional catalysis for anisole hydrodeoxygenation[J]. ACS Catalysis, 2017, 7(12): 8147-8151. |
50 | LU Q, CHEN C, LUC W, et al. Ordered mesoporous metal carbides with enhanced anisole hydrodeoxygenation selectivity[J]. ACS Catalysis, 2016, 6(6): 3506-3514. |
51 | ZHANG T, GUO X, ZHAO Z. Glucose-assisted preparation of a nickel-molybdenum carbide bimetallic catalyst for chemoselective hydrogenation of nitroaromatics and hydrodeoxygenation of m-cresol[J]. ACS Applied Nano Materials, 2018, 1(7): 3579-3589. |
52 | LIU X, XU L, XU G, et al. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@NC catalysts under mild conditions[J]. ACS Catalysis, 2016, 6(11): 7611-7620. |
53 | WYVRATT B M, GAUDET J R, PARDUE D B, et al. Reactivity of hydrogen on and in nanostructured molybdenum nitride: crotonaldehyde hydrogenation[J]. ACS Catalysis, 2016, 6(9): 5797-5806. |
54 | CHENG X, WANG D, LIU J, et al. Ultra-small Mo2N on SBA-15 as a highly efficient promoter of low-loading Pd for catalytic hydrogenation[J]. Nanoscale, 2018, 10(47): 22348-22356. |
55 | YANG H, NIE R, XIA W, et al. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid[J]. Green Chemistry, 2017, 19(23): 5714-5722. |
56 | 田新龙. 基于过渡金属氮化物氧还原催化剂的制备及其氧还原性能研究[D]. 广州: 华南理工大学, 2016. |
TIAN Xinlong. Preparation of transition metal nitride based catalysts and their catalytic performance towards oxygen reduction reaction[D]. Guangzhou: South China University of Technology, 2016. | |
57 | 朱对虎, 李平. 过渡金属磷化物催化剂综述[J]. 工业催化, 2019, 27(7): 7-10. |
ZHU Duihu, LI Ping. Preparation of transition metal nitride based catalysts and their catalytic performance towards oxygen reduction reaction[J]. Industrial Catalysis, 2019, 27(7): 7-10. | |
58 | SHIT S C, JOSEPH B, MARINI C, et al. Porous organic polymer-driven evolution of high-performance cobalt phosphide hybrid nanosheets as vanillin hydrodeoxygenation catalyst[J]. ACS Applied Materials & Interfaces,2019, 11(27): 24140-24153. |
59 | ZHAO H Y, LI D, BUI P, et al. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts[J]. Applied Catalysis A: General, 2011, 391(1/2): 305-310. |
60 | BONITA Y, HICKS J C. Periodic trends from metal substitution in bimetallic Mo-based phosphides for hydrodeoxygenation and hydrogenation reactions[J]. The Journal of Physical Chemistry C, 2017, 122(25): 13322-13332. |
61 | JAIN V, BONITA Y, BROWN A, et al. Mechanistic insights into hydrodeoxygenation of phenol on bimetallic phosphide catalysts[J]. Catalysis Science & Technology, 2018, 8(16): 4083-4096. |
62 | PETER M M, JAN-DIERK G, PETER A, et al. Screening of catalysts for hydrodeoxygenation of phenolas a model compound for bio-oil[J]. ACS Catalysis, 2013, 3(8): 1774-1785. |
63 | DONGIL A B, GHAMPSON I T, GARCIA R, et al. Hydrodeoxygenation of guaiacol over Ni/carbon catalysts: effect of the support and Ni loading[J]. RSC Advances, 2016, 6(4): 2611-2623. |
64 | HENSLEY A J R, WANG Y, MEI D, et al. Mechanistic effects of water on the Fe-catalyzed hydrodeoxygenation of phenol[J]. The Role of Brønsted Acid Sites, ACS Catalysis, 2018, 8(3): 2200-2208. |
65 | ANSALONI S, RUSSO N, PIRONE R. Hydrodeoxygenation of guaiacol over molybdenum‐based catalysts: the effect of support and the nature of the active site[J]. The Canadian Journal of Chemical Engineering, 2017, 95(9): 1730-1744. |
66 | LINDFORS C, MAKI-ARVELA P, PATURI P, et al. Hydrodeoxygenation of isoeugenol over Ni- and Co-supported catalysts[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 14545-14560. |
67 | ELKASABI Y, LIU Q, CHOI Y S, et al. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption[J]. Fuel, 2017, 207: 510-521. |
68 | ZHOU J, AN W, WANG Z, et al. Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys: mechanism, kinetics and descriptor[J]. Catalysis Science & Technology, 2019, 9(16): 4314-4326. |
69 | PAN Liuyi, HE Yulong, NIU Menglong, et al. Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni-M/SiO2 (M=Ce, Co, Sn, Fe) bimetallic catalysts[J]. RSC Adv., 2019, 9(37): 21175-21185. |
70 | RESENDE K A, TELES C A, JACOBS G, et al. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance[J]. Applied Catalysis B: Environmental, 2018, 232: 213-231. |
71 | HONG Yongchun, ZHANG He, SUN Junming, et al. Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol[J]. ACS Catalysis, 2014, 4(10): 3335-3345. |
72 | DUAN H, DONG J, GU X, et al. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nature Communications, 2017,8(591):1-10. |
73 | AFREEN G, PATRA T, UPADHYAYULA S. Thermodynamic insights into valorization of biomass-derived oxygenates and reconciliation with experimental study[J]. Journal of Chemical & Engineering Data, 2018, 63(6): 2197-2210. |
74 | SHETTY M, MURUGAPPAN K, PRASOMSRI T, et al. Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol[J]. Journal of Catalysis, 2015, 331: 86-97. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |