1 | MA Sicong, SHANG Cheng, LIU Zhipan. Heterogeneous catalysis from structure to activity via SSW-NN method[J]. Journal of Chemical Physics, 2019, 151(5): 050901. | 2 | WALES David J, DOYE Jonathan P K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms[J]. The Journal of Physical Chemistry A, 1997, 101(28): 5111-5116. | 3 | OAKLEY Mark T, JOHNSTON Roy L, WALES David J. Symmetrisation schemes for global optimisation of atomic clusters[J]. Physical Chemistry Chemical Physics, 2013, 15(11): 3965-3976. | 4 | MARTO? K R, LAIO Alessandro, PARRINELLO Michele. Predicting crystal structures: the Parrinello-Rahman method revisited[J]. Physical Review Letters, 2003, 90(7): 075503. | 5 | Roman MARTO? K, DONADIO Davide, OGANOV Artem R, et al. Crystal structure transformations in SiO2 from classical and ab initio metadynamics[J]. Nature Materials, 2006, 5(8): 623. | 6 | GLASS Colin W, OGANOV Artem R, HANSEN Nikolaus. USPEX—evolutionary crystal structure prediction[J]. Computer Physics Communications, 2006, 175(11/12): 713-720. | 7 | OGANOV Artem R, MA Yanming, GLASS Colin W, et al. Evolutionary crystal structure prediction: overview of the USPEX method and some of its applications[J]. Psi-k Newsletter, 2007, 84: 142-171. | 8 | WANG Yanchao, LV Jian, ZHU Li, et al. Crystal structure prediction via particle-swarm optimization[J]. Physical Review B, 2010, 82(9): 094116. | 9 | WANG Yanchao, LV Jian, ZHU Li, et al. CALYPSO: a method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10): 2063-2070. | 10 | KIRKPATRICK Scott, Daniel GELATT C, VECCHI Mario P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. | 11 | Vladimír ?ERN. Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm[J]. Journal of Optimization Theory and Applications, 1985, 45(1): 41-51. | 12 | GOEDECKER Stefan, HELLMANN Waldemar, LENOSKY Thomas. Global minimum determination of the Born-Oppenheimer surface within density functional theory[J]. Physical Review Letters, 2005, 95(5): 055501. | 13 | SHANG Cheng, ZHANG Xiaojie, LIU Zhipan. Stochastic surface walking method for crystal structure and phase transition pathway prediction[J]. Physical Chemistry Chemical Physics, 2014, 16(33): 17845-17856. | 14 | ZHANG Xiaojie, LIU Zhipan. Variable-cell double-ended surface walking method for fast transition state location of solid phase transitions[J]. Journal of Chemical Theory and Computation, 2015, 11(10): 4885-4894. | 15 | ZHANG Xiaojie, SHANG Cheng, LIU Zhipan. From atoms to fullerene: stochastic surface walking solution for automated structure prediction of complex material[J]. Journal of Chemical Theory and Computation, 2013, 9(7): 3252-3260. | 16 | GUAN Shuhui, ZHANG Xiaojie, LIU Zhipan. Energy landscape of zirconia phase transitions[J]. Journal of the American Chemical Society, 2015, 137(25): 8010-8013. | 17 | ZHU Shengcai, XIE Songhai, LIU Zhipan. Design and observation of biphase TiO2 crystal with perfect junction[J]. The Journal of Physical Chemistry Letters, 2014, 5(18): 3162-3168. | 18 | KOHONEN Teuvo. An introduction to neural computing[J]. Neural Networks, 1988, 1(1): 3-16. | 19 | MCCULLOCH Warren S, PITTS Walter. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology, 1943, 5(4): 115-133. | 20 | SUMPTER Bobby G,NOID Donald W. Potential energy surfaces for macromolecules. a neural network technique[J]. Chemical Physics Letters, 1992, 192(5/6): 455-462. | 21 | FISCHER Thomas H, PETERSEN Wesley P, LüTHI Hans Peter. A new optimization technique for artificial neural networks applied to prediction of force constants of large molecules[J]. Journal of Computational Chemistry, 1995, 16(8): 923-936. | 22 | RAFF L M, MALSHE M, HAGAN M, et al. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks[J]. Journal of Chemical Physics, 2005, 122(8): 084104. | 23 | MANZHOS Sergei, WANG Xiaogang, DAWES Richard, et al. A nested molecule-independent neural network approach for high-quality potential fits[J]. The Journal of Physical Chemistry A, 2006, 110(16): 5295-5304. | 24 | J?rg BEHLER, PARRINELLO Michele. Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Physical Review Letters, 2007, 98(14): 146401. | 25 | J?rg BEHLER. Atom-centered symmetry functions for constructing high-dimensional neural network potentials[J]. Journal of Chemical Physics, 2011, 134(7): 074106. | 26 | J?rg BEHLER. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations[J]. Physical Chemistry Chemical Physics, 2011, 13(40): 17930-17955. | 27 | J?rg BEHLER. Perspective: machine learning potentials for atomistic simulations[J]. Journal of Chemical Physics, 2016, 145(17): 170901. | 28 | J?rg BEHLER. First principles neural network potentials for reactive simulations of large molecular and condensed systems[J]. Angewandte Chemie: International Edition, 2017, 56(42): 12828-12840. | 29 | HUANG Sida, SHANG Cheng, ZHANG Xiaojie, et al. Material discovery by combining stochastic surface walking global optimization with a neural network[J]. Chemical Science, 2017, 8(9): 6327-6337. | 30 | HUANG Sida, SHANG Cheng, KANG Peilin, et al. Atomic structure of boron resolved using machine learning and global sampling[J]. Chemical Science, 2018, 9(46): 8644-8655. | 31 | BOTTOU Léon. Stochastic gradient learning in neural networks[J]. Proceedings of Neuro-N?mes, 1991, 91(8): 12. | 32 | FLETCHER Roger, POWELL Michael J D. A rapidly convergent descent method for minimization[J]. The Computer Journal, 1963, 6(2): 163-168. | 33 | POLAK Elijah. Computational methods in optimization: a unified approach[M]. Academic Press, 1971: 22. | 34 | HAGAN Martin T, MENHAJ Mohammad B. Training feedforward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 1994, 5(6): 989-993. | 35 | ZHANG Hengzhong, BANFIELD Jillian F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2[J]. Chemical Reviews, 2014, 114(19): 9613-9644. | 36 | WANG Lianzhou, SASAKI Takayoshi. Titanium oxide nanosheets: graphene analogues with versatile functionalities[J]. Chemical Reviews, 2014, 114(19): 9455-9486. | 37 | SASAKI Takayoshi, WATANABE Mamoru, HASHIZUME Hideo, et al. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it[J]. Journal of the American Chemical Society, 1996, 118(35): 8329-8335. | 38 | AKIMOTO J, GOTOH Y, OOSAWA Y, et al. Topotactic oxidation of ramsdellite-type Li0.5TiO2, a new polymorph of titanium dioxide: TiO2 (R)[J]. Journal of Solid State Chemistry, 1994, 113(1): 27-36. | 39 | LATROCHE M, BROHAN L, MARCHAND R, et al. New hollandite oxides: TiO2 (H) and K0.06TiO2[J]. Journal of Solid State Chemistry, 1989, 81(1): 78-82. | 40 | SAKAO Mitsumasa, KIJIMA Norihito, AKIMOTO Junji, et al. Synthesis, crystal structure, and electrochemical properties of hollandite-type K 0.008 TiO2[J]. Solid State Ionics, 2012, 225: 502-505. | 41 | PEREZ-FLORES J C, BAEHTZ C, KUHN A, et al. Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(6): 1825-1833. | 42 | ZHU Guannan, WANG Yonggang, XIA Yongyao. Ti-based compounds as anode materials for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5): 6652-6667. | 43 | PUHLF R P, VOIGT A, WEBER R, et al. Microporous TiO2 membranes with a cut off <500Da[J]. Journal of Membrane Science, 2000, 174(1): 123-133. | 44 | Jelena SEKULI?, ELSHOF Johan E TEN, BLANK D H A. A microporous titania membrane for nanofiltration and pervaporation[J]. Advanced Materials, 2004, 16(17): 1546-1550. | 45 | XU Qunyin, ANDERSON Marc A. sol-gel route to synthesis of microporous ceramic membranes: preparation and characterization of microporous TiO2 and ZrO2 xerogels[J]. Journal of the American Ceramic Society, 1994, 77(7): 1939-1945. | 46 | CHEN Xiaobo, LIU Lei, YU PETER Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. | 47 | CHEN Xiaobo, SHEN Shaohua, GUO Liejin, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570. | 48 | HU Yunhang. A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water[J]. Angewandte Chemie: International Edition, 2012, 51(50): 12410-12412. | 49 | NALDONI Alberto, ALLIETA Mattia, SANTANGELO Saveria, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(18): 7600-7603. | 50 | GUO Yao, CHEN Shunwei, YU Yaoguang, et al. Hydrogen-location-sensitive modulation of the redox reactivity for oxygen-deficient TiO2[J]. Journal of American Chemical Society, 2019, 141(21):8407-8411. | 51 | MOLSTAD Melvin Carl, DODGE Barnett F. Zinc oxide-chromium oxide catalysts for methanol synthesis[J]. Industrial & Engineering Chemistry, 1935, 27(2): 134-140. | 52 | KUNG Harold H. Methanol synthesis[J]. Catalysis Reviews: Science and Engineering, 1980, 22(2): 235-259. | 53 | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. | 54 | WAUGH K C. Methanol synthesis[J]. Catalysis Today, 1992, 15(1): 51-75. | 55 | DUMITRU Raluca, MANEA Florica, Cornelia P?CURARIU, et al. Synthesis, characterization of nanosized ZnCr2O4 and its photocatalytic performance in the degradation of humic acid from drinking water[J]. Catalysts, 2018, 8(5): 210. | 56 | PIERO Gastone DEL, TRIFIRO Ferruccio, VACCARI Angelo. Non-stoicheiometric Zn-Cr spinel as active phase in the catalytic synthesis of methanol[J]. Journal of the Chemical Society, Chemical Communications, 1984(10): 656-658. | 57 | BERTOLDI Massimo, FUBINI Bice, GIAMELLO Elio, et al. Structure and reactivity of zinc–chromium mixed oxides. Part 1.—The role of non-stoichiometry on bulk and surface properties[J]. Journal of the Chemical Society, Faraday Transactions, 1988, 84(5): 1405-1421. | 58 | ERRANI E, TRIFIRO F, VACCARI A, et al. Structure and reactivity of Zn-Cr mixed oxides. Role of non-stoichiometry in the catalytic synthesis of methanol[J]. Catalysis Letters, 1989, 3(1): 65-72. | 59 | SONG Huiqing, LAUDENSCHLEGER Daniel, CAREY John J, et al. Spinel-structured ZnCr2O4 with excess Zn is the active ZnO/Cr2O3 catalyst for high-temperature methanol synthesis[J]. ACS Catalysis, 2017, 7(11): 7610-7622. | 60 | MA Sicong, HUANG Sida, LIU Zhipan. Dynamic coordination of cations and catalytic selectivity on zinc-chromium oxide alloys during syngas conversion[J]. Nature Catalysis, 2019, 2(8): 671-677. |
|