1 | 俞森龙,相恒学,周家良,等. 典型高分子纤维发展回顾与未来展望[J]. 高分子学报, 2020, 51(1): 39-54. | 1 | YU S L, XIANG H X, ZHOU J L, et al. Typical polymer fiber materials: an overview and outlook[J]. Acta Polymerica Sinica, 2020, 51(1): 39-54. | 2 | 詹世平,万泽韬,王景昌,等. 生物医用材料聚乳酸的合成及其改性研究进展[J]. 化工进展, 2020, 39(1): 199-205. | 2 | ZHAN S P, WAN Z T, WANG J C, et al. Synthesis and modification of biomedical material polylactic acid[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 199-205. | 3 | 胡建军. 聚乳酸合成技术研究进展[J]. 化工进展, 2012, 31(12): 2724-2728. | 3 | HU J J. Research progress in polylactic acid synthesis[J]. Chemical Industry and Engineering Progress, 2012, 31(12): 2724-2728. | 4 | MURARIU M, DUBOIS P. PLA composites: from production to properties[J]. Advanced Drug Delivery Reviews, 2016, 107: 17-64. | 5 | RICHARD A G, BHANU K. Biodegradable polymers for the environment[J]. Science, 2002, 297(5582): 803-807. | 6 | CHOW W S, TEOH E L, KARGER-KOCSIS. Flame retarded poly(lactic acid): a review[J]. Polymers, 2018, 12: 396-417. | 7 | TAWIAH B, YU B, FEI B. Advances in flame retardant poly(lactic acid)[J]. Polymers, 2018, 10(5): 876-898. | 8 | BOURBIGOT S, FONTAINE G. Flame retardancy of polylactide: an overview[J]. Polymer Chemistry, 2010, 1(9): 1413-1422. | 9 | YU S L, XIANG H X, ZHOU J L, et al. Preparation and characterization of fire resistant PLA fibers with phosphorus flame retardant[J]. Fibers and Polymers, 2017, 18(6): 1098-1105. | 10 | YU S L, XIANG H X, ZHOU J L, et al. The synergistic effect of organic phosphorous/α-zirconium phosphate on flame-retardant poly(lactic acid)fiber[J]. Fibers and Polymers, 2018, 19(4): 812-820. | 11 | YU S L, XIANG H X, ZHOU J L, et al. Enhanced flame-retardant performance of poly(lactic acid) (PLA) composite by using intrinsically phosphorus-containing PLA[J]. Progress in Nature and Science Materials, 2018, 28(5): 590-597. | 12 | CAMINO G, COSTA L, CORTEMIGLIA M P L. Overview of fire retardant mechanisms[J]. Polymer Degradation and Stability, 1991, 33(2): 131-154. | 13 | MORGAN A B, GILMAN J W. An overview of flame retardancy of polymeric materials: application, technology, and future directions[J]. Fire and Materials, 2013, 37(4): 259-279. | 14 | ALAEE M, ARIAS P, SJODIN A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Polymer Degradation and Stability, 2003, 29: 683-689. | 15 | LAOUTID F, BONNAUD L, ALEXANDRE M, et al. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites[J]. Materials Science Engineering R: Reports, 2009, 63(3): 100-125. | 16 | BOURBIGOT S, DUQUESNE S. Fire retardant polymers: recent developments and opportunities[J]. Journal of Materials Chemistry, 2007, 17(22): 2283-2300. | 17 | DASARI A,YU Z Z, CAI G P, et al. Recent developments in the fire retardancy of polymeric materials[J]. Progress in Polymer Science, 2013, 38(9): 1357-1387. | 18 | LEVCHIK S V, WELL E D. A review of recent progress in phosphorus-based flame retardants[J]. Journal of Fire Scienes, 2006, 24(5): 345-364. | 19 | VEEN I. BOER J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10): 1119-1153. | 20 | SALMEIA K A, GAAN S. An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications[J]. Polymer Degradation and Stability, 2015, 113: 119-134. | 21 | CHEN L, RUAN C, YANG R, et al. Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants[J]. Polymer Chemistry, 2014, 5(12): 3737-3749. | 22 | WEN X, LIU Z Q, LI Z, et al. Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties[J]. Composites Science and Technology, 2020, 188: 107988-107998. | 23 | LIN H J, LIU S R, HAN L J, et al. Effect of a phosphorus-containing oligomer on flame-retardant, rheological and mechanical properties of poly(lactic acid)[J]. Polymer Degradation and Stability, 2013, 98(7): 1389-1396. | 24 | LONG L J, CHANG Q F, HE W T, et al. Effects of bridged DOPO derivatives on the thermal stability and flame retardant properties of poly(lactic acid)[J]. Polymer Degradation and Stability, 2017, 139: 55-65. | 25 | LONG L J, YIN J B, HE W T, et al. Influence of a phenethyl-bridged DOPO derivative on the flame retardancy, thermal properties, and mechanical properties of poly(lactic acid)[J]. Industrial Engineering Chemistry Research, 2016, 55(40): 10803-10812. | 26 | YU T, TUERHONGJIANG T, SHENG C, et al. Phosphorus-containing diacid and its application in jute/poly(lactic acid) composites: mechanical, thermal and flammability properties[J]. Composites A: Applied Science and Manufacturing, 2017, 97: 60-66. | 27 | MAULDIN T C, ZAMMARANO M, GILMAN J W, et al. Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants[J]. Polymer Chemistry, 2014, 5(17): 5139-5146. | 28 | LIAO F H, JU Y Q, DAI X, et al. A novel efficient polymeric flame retardant for poly(lactic acid) (PLA): synthesis and its effects on flame retardancy and crystallization of PLA[J]. Polymer Degradation and Stability, 2015, 120: 251-261. | 29 | XUE Y J, SHEN M X, ZHENG Y F, et al. One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant polylactic acid with a submicron-grained structure[J]. Composites B: Engineering, 2020, 183: 107695-107707. | 30 | WANG X G, SUN J, LIU X D, et al. An effective ?ame retardant containing hypophosphorous acid for poly(lactic acid): fire performance, thermal stability and mechanical properties[J]. Polymer Testing, 2019, 78: 105940-105949. | 31 | JIANG P, GU X Y, ZHANG S, et al. Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant[J]. Industrial Engineering Chemistry Research, 2015, 54(11): 2974-2982. | 32 | SUN J H, LI L, LI J. Effects of furan-phosphamide derivative on ?ame retardancy and crystallization behaviors of poly(lactic acid)[J]. Chemical Engineering Journal, 2019, 369: 150-160. | 33 | COSTES L, LAOUTID F, BROHEZ S, et al. Bio-based flame retardants: when nature meets fire protection[J]. Materials Science Engineering R: Reports, 2017, 117: 1-25. | 34 | COSTES L, LAOUTID F, AGUEDO M, et al. Phosphorus and nitrogen derivatization as efficient route for improvement of lignin flame retardant action in PLA[J]. European Polymer Journal, 2016, 84: 652-667. | 35 | ZHANG R, XIAO X F, TAI Q L, et al. Preparation of lignin-silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system[J]. High Performance Polymer, 2012, 24(8): 738-746. | 36 | XIONG Z Q, ZHANG Y, DU X Y, et al. Green and scalable fabrication of core-shell biobased flame retardants for reducing flammability of polylactic acid[J]. ACS Sustainable Chemistry and Engineering, 2019, 7: 8954-8963. | 37 | COSTES L, LAOUTID F, KHELIFA F, et al. Cellulose/phosphorus combinations for sustainable fire retarded polylactide[J]. European Polymer Journal, 2016, 74: 218-228. | 38 | VAHABI H, SHABANIAN M, ARYANASA F, et al. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid)[J]. Thermochimica Acta, 2018, 666: 51-59. | 39 | FENG J X, SU S P, ZHU J. An intumescent flame retardant system using β- cyclodextrin as a carbon source in polylactic acid (PLA)[J]. Polymer for Advanced Technologies, 2011, 22(7): 1115-1122. | 40 | ZHANG Y, HAN P Y, FANG Z P. Synthesis of phospholipidated β-cyclodextrin and its application for flame-retardant poly(lactic acid) with ammonium polyphosphate[J]. Journal of Applied Polymer Science, 2018, 135(13): 46054-46064. | 41 | PACK S, BOBO E, MUIR N, et al. Engineering biodegradable polymer blends containing flame retardant-coated starch/ nanoparticles[J]. Polymer, 2012, 53(21): 4787-4799. | 42 | WANG X, HU Y, SONG L, et al. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites[J]. Industrial Engineering Chemistry Research, 2011, 50(2): 713-720. | 43 | WANG J J, REN Q, ZHENG W G, et al. Improved flame-retardant properties of poly(lactic acid) foams using starch as a natural charring agent[J]. Industrial Engineering Chemistry Research, 2014, 53(4): 1422-1430. | 44 | XUAN S Y, WANG X, SONG L, et al. Study on flame-retardancy and thermal degradation behaviors of intumescent flame- retardant polylactide systems[J]. Polymer International, 2011, 60(10): 1541-1547. | 45 | LI D F, ZHAO X, JIA Y W, et al. Dual effect of dynamic vulcanization of biobased unsaturated polyester: simultaneously enhance the toughness and fire safety of poly(lactic acid)[J]. Composites B: Engineering, 2019, 175: 107069-107080. | 46 | JIN X D, GUI S P, SUN S B, et al. The preparation of a bio-polyelectrolytes based core-shell structure and its application in ?ame retardant polylactic acid composites[J]. Composites A:Applied Science and Manufacturing, 2019, 124: 105485-105495. | 47 | CHEN C, GU X Y, JIN X D, et al. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate bio-composites[J]. Carbohydrate Polymer, 2017, 157: 1586-1593. | 48 | JIAN R K, XIA L, AI Y F, et al. Novel dihydroxy-containing ammonium phosphate based poly(lactic acid): synthesis, characterization and flame retardancy[J]. Polymers, 2018, 10(8): 871-883. | 49 | LI J W, ZENG X D, KONG D Z, et al. Synergistic effects of a novel silicon-containing triazine charring agent on the flame-retardant properties of poly(ethylene terephthalate)/hexakis (4-phenoxy)cyclotriphosphazene composites[J]. Polymer Composites, 2018, 39(3): 858-868. | 50 | YUAN S S, CHEN W Y, LIU G S. Effects of two kinds of THEIC-based charring agents on flame-retardant properties of polylactide[J]. Journal of Applied Polymer Science, 2015, 132(24): 42086-42094. | 51 | LIU G S, GAO S. Synergistic effect between aluminum hypophosphite and a new intumescent flame retardant system in poly(lactic acid)[J]. Journal of Applied Polymer Science, 2018, 135(23): 43659-43668. | 52 | CHEN Y J, WANG W, LIU Z Q, et al. Synthesis of a novel flame retardant containing phosphazene and triazine groups and its enhanced charring effect in poly(lactic acid) resin[J]. Journal of Applied Polymer Science, 2017, 134(13): 44660-44668. | 53 | BOURBIGOT S, BRAS M, DUQUESNE S, et al. Recent advances for intumescent polymers[J]. Macromolecular Materials and Engineering, 2004, 289(6): 499-511. | 54 | FONTAINE G, BOURBIGOT S. Intumescent polylactide: a nonflammable material[J]. Journal of Applied Polymer Science, 2009, 113(6): 3860-3865. | 55 | LEROUX F, BESSE J P. Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites[J]. Chemistry of Materials, 2001, 13(10): 3507-3515. | 56 | LIU Y, GAO Y S, WANG Q, et al. The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: a critical review[J]. Dalton Transactions, 2018, 47(42): 14827-14840. | 57 | ZHANG S, YAN Y X, WANG W J, et al. Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly(lactic acid) composites[J]. Polymer Degradation and Stability, 2018, 147, 142-150. | 58 | SHAN X Y, SONG L, XING W Y, et al. Effect of nickel-containing layered double hydroxides and cyclophosphazene compound on the thermal stability and flame retardancy of poly(lactic acid)[J]. Industrial Engineering Chemistry Research, 2012, 51(40): 13037-13045. | 59 | ZHANG L, LIU W, WEN X, et al. Electrospun submicron NiO ?bers combined with nanosized carbon black as reinforcement for multi-functional poly(lactic acid) composites[J]. Composites A:Applied Science and Manufacturing, 2020, 129: 105662-105671. | 60 | GU L Q, QIU J H, YAO Y W, et al. Functionalized MWCNTs modified flame retardant PLA nanocomposites and cold rolling process for improving mechanical properties[J]. Composites Science and Technology, 2018, 161: 39-49. | 61 | YAO T, JIANG N, LI Y. Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite[J]. Composites Science and Technology, 2014, 14: 26-33. | 62 | TAWIAH B, YU B, YUEN R K K, et al. Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites[J]. Carbon, 2019, 150: 8-20. | 63 | ZHANG M, DING X Q, ZHAN Y X, et al. Improving the flame retardancy of poly(lacticacid) using an efficient ternary hybrid flame retardant by dual modification of graphene oxide with phenylphosphinic acid and nano MOFs [J]. Journal of Hazardous Materials, 2020, 384: 121260-121273. | 64 | HAN J P, LIANG G Z, GU A J, et al. A novel inorganic-organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins[J]. Journal of Materials Chemistry A, 2013, 1(6): 2169-2182. | 65 | MU X W, YUAN B H, ZHU W Z, et al. Flame retardant and anti-dripping properties of polylactic acid/ poly(bis(phenoxy)phosphazene)/expandable graphite composite and its flame retardant mechanism[J]. RSC Advances, 2015, 5(93): 76068-76078. | 66 | LI D F, ZHAO X, JIA W J, et al. Simultaneously enhance both the flame retardancy and toughness of polylactic acid by the cooperation of intumescent flame retardant and bio-based unsaturated polyester[J]. Polymer Degradation and Stability, 2019, 168: 108961-108971. | 67 | RAN G W, LIU X D, GUO J, et al. Improving the flame retardancy and water resistance of polylactic acid by introducing polyborosiloxane microencapsulated ammonium polyphosphate [J]. Composites Part B:Engineering, 2019, 173: 106772-106783. | 68 | JIANG P, ZHANG S, BOURBIGOT S, et al. Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites[J]. Polymer Degradation and Stability, 2019, 165: 68-79. | 69 | LI S M, YUAN H, YU T, et al. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid)[J]. Polymer for Advanced Technologies, 2009, 20(12): 1114-1120. | 70 | ZHANG R, XIAO X F, TAI Q L, et al. The effect of different organic modified montmorillonites (OMMTs) on the thermal properties and flammability of PLA/MCAPP/Lignin systems[J]. Journal of Applied Polymer Science, 2013, 127(6): 4967-4973. | 71 | CHOW W S, TEOH E L. Flexible and flame resistant poly(lactic acid)/organomontmorillonite nanocomposites[J]. Journal of Applied Polymer Science, 2015, 132(2): 41253-41264. | 72 | XIAO H P, LIU S H. Zirconium phosphate (ZrP)-based functional materials: synthesis, properties and applications[J]. Material Design, 2018, 155: 19-35. | 73 | LIU X Q, WANG D Y, WANG X L, et al. Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems[J]. Polymer Degradation and Stability, 2011, 96(5): 771-777. | 74 | LIU X Q, WANG D Y, WANG X L, et al. Synthesis of functionalized α-zirconium phosphate modified with intumescent flame retardant and its application in poly(lactic acid)[J]. Polymer Degradation and Stability, 2013, 98(9): 1731-1737. | 75 | SONG L, XUAN S Y, WANG X, et al. Flame retardancy and thermal degradation behaviors of phosphate in combination with POSS in polylactide composites[J]. Thermochimica Acta, 2012, 527: 1-7. | 76 | YUAN X Y, WANG D Y, CHEN L, et al. Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone[J]. Polymer Degradation and Stability, 2011, 96(9): 1669-1675. | 77 | WANG D Y, SONG Y P, LIN L, et al. A novel phosphorus-containing poly(lactic acid) toward its flame retardation[J]. Polymer, 2011, 52(2): 233-238. | 78 | LIANG S Y, NEISIUS N M, GAAN S. Recent developments in flame retardant polymeric coatings[J]. Progress in Organic Coatings, 2013, 76(11): 1642-1665. | 79 | HORROCKS A R. Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions[J]. Polymer Degradation and Stability, 2011, 96(3): 377-392. | 80 | MALUCELLI G. Surface-engineered fire protective coatings for fabrics through sol-gel and layer-by-layer methods: an overview[J]. Coatings, 2016, 6(3): 33-56. | 81 | PURI R G, KHANNA A S. Intumescent coatings: a review on recent progress[J]. Journal of Coatings Technology and Research, 2017, 14: 1-20. | 82 | LI Y C, MANNEN S, MORGAN A, et al. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric[J]. Advanced Materials, 2011, 23(24): 3926-3931. | 83 | CAROSIO F, BLASIO A, CUTTICA F, et al. Flame retardancy of polyester fabrics treated by spray-assisted layer-by-layer silica architectures[J]. Industrial Engineering Chemistry Research, 2013, 52(28): 9544-9550. | 84 | CAROSIO F, LAUFER G, ALONGI J, et al. Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric[J]. Polymer Degradation and Stability, 2011, 96(5): 745-750. | 85 | XIU X Q, LI Z W, LI X H, et al. Flame retardant coatings prepared using layer by layer assembly: a review[J]. Chemical Engineering Journal, 2018, 334: 108-122. | 86 | CHENG X W, GUAN J P, TANG R C, et al. Improvement of flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus-containing flame retardant[J]. Journal of Industrial Textiles, 2016, 46(3): 914-928. | 87 | CHENG X W, GUAN J P, TANG R C, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric[J]. Journal of Cleaner Production, 2016, 124: 114-119. |
|