1 | ZHANG H, SHIN Y, LEE D, et al. Preparation of ultra high molecular weight polyethylene with MgCl2/TiCl4 catalyst: effect of internal and external donor on molecular weight and molecular weight distribution[J]. Polymer Bulletin, 2011, 66(5): 627-635. | 2 | 王新威, 吴向阳, 张炜, 等. 超高分子量聚乙烯纤维级专用料的开发[J]. 化工新型材料, 2009, 37(2): 14-16. | 2 | WANG X W, WU X Y, ZHANG W, et al. Development of special ultra-high molecular weight polyethylene fiber-grade material[J]. New Chemical Materials, 2009, 37(2): 14-16. | 3 | 弗里德里克斯, 比尔达, 戈洛弗斯玛. 生产超高分子量聚乙烯的方法: CN102015792[P]. 2011-04-13. | 3 | FRIEDERICHS N H, BILDA D H, GERLOFSMA R. Process for the production of ultra high molecular weight polyethylene: CN102015792[P]. 2011-04-13. | 4 | 代士维, 徐绍魁, 运新华, 等. 一种超高分子量聚乙烯催化剂及其制备方法与应用: CN107556411[P]. 2017-08-22. | 4 | DAI S W, XU S K, YUN X H, et al. Ultrahigh-molecular weight polyethylene catalyst and preparation method and application thereof: CN107556411[P]. 2017-08-22. | 5 | KOPPL A, HELMUT G. Effect of the nature of metallocene complexes of group Ⅳ metals on their performance in catalytic ethylene and propylene polymerization[J]. Chemical Reviews, 2000, 100(4): 1205-1222. | 6 | MASAHIRO Y, MAYUMI H, TOSHIYUKI S, et al. Novel metallocene compound, olefin polymerization catalyst, and production process of olefin polymer: JP2014073983[P]. 2014-04-24. | 7 | MAKIO H, TERAO H, IWASHITA A, et al. FI catalysts for olefin polymerization—A comprehensive treatment [J]. Chemical Reviews, 2011, 111(3): 2363-2449. | 8 | KARBACH F, MACKO T, DUCHATEAU R. Preparation of ethylene/1-hexene copolymers from ethylene using a fully silica-supported tandem catalyst system[J]. Macromolecules, 2016, 49(4): 1229-1241. | 9 | YU F, YANG Y, HE D, et al. Pressure sensitive supported FI catalyst for the precise synthesis of uni-and bimodal polyethylene[J]. Industrial Engineering Chemistry Research, 2017, 56(16): 4684-4689. | 10 | 王原, 郑浩, 叶晓峰, 等. 芳氧亚胺锆络合物的合成及其催化乙烯聚合[J]. 精细化工, 2018, 35(10): 1678-1682. | 10 | WANG Y, ZHENG H, YE X F, et al. Synthesis of bis(phenoxy-imine) zirconium complex and its application in ethylene polymerization[J]. Fine Chemicals, 2018, 35(10): 1678-1682. | 11 | 郑浩, 王原, 刘婷婷, 等. 水杨醛亚胺锆络合物的合成及其催化乙烯聚合[J]. 功能高分子学报, 2018, 31(4): 322-329. | 11 | ZHENG H, WANG Y, LIU T T, et al. Synthesis of salicylaldiminato zirconium complexes and its catalysis application for ethylene polymerization[J]. Journal of Functional Polymers, 2018, 31(4): 322-329. | 12 | SUDHAKAR P, KRISHNA R, KISHOR R. Synthesis of ultra high molecular weight polyethylene: a differentiate material for specialty application[J]. Materials Science and Engineering B, 2010, 168(1): 132-135. | 13 | PADMANABHAN S, SARMA K, SHARMA S. Synthesis of ultrahigh molecular weight polyethylene using traditional heterogeneous Ziegler-Natta catalyst systems[J]. Industrial Engineering Chemistry Research, 2009, 48(10): 4866-4871. | 14 | 郭常辉. 淤浆法聚乙烯CX工艺及其催化剂研究进展[J]. 工业催化, 2016, 24(11): 1-5. | 14 | GUO C H. Progress in technology and catalysts for CX kettle-type slurry HDPE process[J]. Industrial Catalysis, 2016, 24(11): 1-5. | 15 | MARTIN J, BERGMEISTER J, SECORA S, et al. Olefin polymerization processes and products thereof: US6657034[P]. 2002-03-21. | 16 | 裴小静,孙丛丛,孙丽朋. 高密度聚乙烯淤浆聚合工艺及其国内应用进展[J]. 齐鲁石油化工, 2015, 43(2): 166-170. | 16 | PEI X J, SUN C C, SUN L P. Slurry polymerization process for production of HDPE and its application progress in domestic[J]. Qilu Petrochemical Technology, 2015, 43(2): 166-170. | 17 | 王萍, 王新威, 张玉梅, 等. 干法与湿法凝胶纺丝UHMWPE纤维的结构与性能[J]. 合成纤维工业, 2014, 37(4): 67-70. | 17 | WANG P, WANG X W, ZHANG Y M, et al. Structure and properties of UHMWPE fibers prepared by dry and wet gel spinning processes[J]. China Synthetic Fiber Industry, 2014, 37(4): 67-70. | 18 | BAIN C, DAVIES P, BLES G, et al. Influence of bedding-in on the tensile performance of HMPE fiber ropes[J]. Ocean Engineering, 2020, 203: 107144. | 19 | 杨潇, 王新威, 陈东辉, 等. 基于均匀设计的 UHMWPE 纤维与十氢萘的分离过程研究[J]. 化工新型材料, 2017, 45(1): 154-156. | 19 | YANG X, WANG X W, CHEN D H, et al. Research on UHMWPE fiber by uniform design and separation of decalin[J]. New Chemical Materials, 2017, 45(1): 154-156. | 20 | 杨潇, 王新威, 陈东辉, 等. 超高相对分子质量聚乙烯在十氢萘中的溶胀过程研究[J]. 上海塑料, 2015(2): 55-58. | 20 | YANG X, WANG X W, CHEN D H, et al. Swelling process of UHMWPE in decahydronaphthalene[J]. Shanghai Plastics, 2015(2): 55-58. | 21 | 张玉梅, 王晓禾, 赵瑞军, 等. UHMWPE/石蜡油溶液体系的黏度特性[J]. 合成纤维工业, 2015(4): 79-81. | 21 | ZHANG Y M, WANG X H, ZHAO R J, et al. Viscosity characteristics of UHMWPE/liquid paraffin solution system[J]. China Synthetic Fiber Industry, 2015(4): 79-81. | 22 | 郑晗, 王新威, 孙勇飞, 等. 超高分子量聚乙烯纤维结晶行为研究进展[J]. 化工新型材料, 2018, 46(5): 16-19. | 22 | ZHENG H, WANG X W, SUN Y F, et al. Research progress in crystallization behavior of ultra high molecular weight polyethylene fiber[J]. New Chemical Materials, 2018, 46(5): 16-19. | 23 | 王新威, 孙勇飞, 杨潇, 等. 一种用于超高分子量聚乙烯干法纺丝生产均质加料装置: CN104862791A[P]. 2017-06-23. | 23 | WANG X W, SUN Y F,YANG X, et al. Homogenizing feeding device for ultra-high molecular weight polyethylene dry spinning production: CN104862791A[P]. 2017-06-23. | 24 | 孙勇飞, 王新威, 巩明方, 等. 一种悬浮液用搅拌装置: CN105289397A[P]. 2016-02-03. | 24 | SUN Y F, WANG X W, GONG M F, et al. Suspension liquid stirring device: CN105289397A[P]. 2016-02-03. | 25 | 巩明方, 王新威, 孙勇飞, 等. 一种悬浮液均匀加料方法及加料装置: CN105839200A[P]. 2016-08-10. | 25 | GONG M F, WANG X W, SUN Y F, et al. Suspension fluid uniform charging method and device: CN105839200A[P]. 2016-08-10. | 26 | 王新威, 孙勇飞, 巩明方, 等. 超高分子量聚乙烯干法纺丝过程中原丝固化成型的方法: CN104911722A[P]. 2015-09-16. | 26 | WANG X W, SUN Y F, GONG M F, et al. Method for precursor fiber curing molding during ultrahigh-molecular-weight polyethylene dry spinning: CN104911722A[P]. 2015-09-16. | 27 | 王新威, 张玉梅, 孙勇飞, 等. 超高分子量聚乙烯干法纺丝中固相与溶剂分离的方法: CN105002578A[P]. 2015-10-28. | 27 | WANG X W, ZHANG Y M, SUN Y F, et al. Method for separating solid phases from solvent during ultrahigh molecular weight polyethylene dry spinning process: CN105002578A[P]. 2015-10-28. | 28 | 郑晗, 王新威, 孙勇飞, 等. 超高分子量聚乙烯干法纺丝中熔体冻胶及固液分离的方法: CN110093678A[P]. 2019-08-06. | 28 | ZHENG H, WANG X W, SUN Y F, et al. Method for melt-gel and solid-liquid separation in ultra-high molecular weight polyethylene dry spinning: CN110093678A[P]. 2019-08-06. | 29 | 郑华强, 郑晗, 王新威. 均匀设计在UHMWPE 纺丝拉伸工艺优化中的应用[J]. 应用技术学报, 2017, 17(4): 295-299. | 29 | ZHENG H Q, ZHENG H, WANG X W. Application of uniform design in the optimization of UHMWPE fibers drawing process[J]. Journal of Technology, 2017, 17(4): 295-299. | 30 | WANG X W, ZHENG H, SUN Y. Study on structures and properties of ultra-hot drawing UHMWPE fibers fabricated via dry spinning method[J]. Journal of Polymer Engineering, 2018, 38(9): 863-870. | 31 | 孙勇飞, 王新威, 郑晗, 等. 干法工艺制备PE–UHMW纤维[J]. 工程塑料应用, 2016, 44(11): 58-61. | 31 | SUN Y F, WANG X W, ZHENG H, et al. Preparation of PE-UHMW fiber by dry spinning[J]. Engineering Plastics Application, 2016, 44(11): 58-61. | 32 | 郑晗, 孙勇飞, 王新威, 等. 超倍热拉伸PE–UHMW干法纤维的结构与性能[J]. 工程塑料应用, 2017, 45(3): 14-19. | 32 | ZHENG H, SUN Y F, WANG X W, et al. Structures and properties of ultra hot-drawing PE–UHMW fibers fabricated by dry spinning method[J]. Engineering Plastics Application, 2017, 45(3): 14-19. | 33 | 何勇, 王燕萍, 夏于旻, 等. 一种超高分子量聚乙烯纤维的制备方法: CN106498532A[P]. 2017-03-15. | 33 | HE Y, WANG Y P, XIA Y M, et al. Preparation method of ultra-high molecular weight polyethylene fiber: CN106498532A[P]. 2017-03-15. | 34 | 于俊荣, 张燕静, 胡祖明, 等. UHMWPE冻胶纤维萃取过程的数学分析及其萃取剂的选择[J]. 华东理工大学学报, 2004(3): 261-265. | 34 | YU J R, ZHANG Y J, HU Z M, et al. Mathematical analysis of extracting process and the selection of extracting agent for UHMWPE gel fibers[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2004(3): 261-265. | 35 | TAM T, AMINUDDIN N, YOUNG J. Melt spinning blends of UHMWPE and HDPE and fibers made therefrom: US8426510[P]. 2013-04-23. | 36 | 薛平, 刘丽超, 王非, 等. 改性超高分子量聚乙烯成纤专用料及其制备方法和熔融纺丝成纤方法: CN108660535A[P]. 2018-10-16. | 36 | XUE P, LIU L C, WANG F, et al. Modified ultra-high molecular weight polyethylene fiber forming special material, and preparation method and melt spinning fiber forming method thereof: CN108660535A[P]. 2018-10-16. | 37 | 朱福和, 王伟, 严岩, 等. 一种共混超高分子量聚乙烯的纺丝方法: CN109385689A[P]. 2019-02-26. | 37 | ZHU F H, WANG W, YAN Y, et al. Spinning method of blend ultra-high molecular weight polyethylene: CN109385689A[P]. 2019-02-26. | 38 | 郭建双, 杨超, 王新威, 等. 用于制备低缠结高分子量聚乙烯的FI催化剂及其制备方法和应用: CN109265586A[P]. 2019-01-25. | 38 | GUO J S, YANG C, WANG X W, et al. FI catalyst for preparing low-entangled high-molecular-weight polyethylene, and preparation method and application thereof: CN109265586A[P]. 2019-01-25. | 39 | 叶纯麟, 肖明威, 李建龙, 等. 一种高强高模聚乙烯纤维的制备方法: CN109306541A[P]. 2019-02-05. | 39 | YE C L, XIAO M W, LI J L, et al. Preparation method for high-strength and high-modulus polyethylene fiber: CN109306541A[P]. 2019-02-05. | 40 | 巩明方, 孙勇飞, 张玉梅, 等. 一种超高分子量聚乙烯纤维的熔融纺丝制备方法: CN109853069A[P]. 2019-06-07. | 40 | GONG M F, SUN Y F, ZHANG Y M, et al. Ultrahigh molecular weight polyethylene fiber fusion spinning preparation method: CN109853069A[P]. 2019-06-07. | 41 | LEVINE I J, KAROL F J. Titanium-modified silyl chromate catalysts for ethylene polymerization: US4100105[P]. 1978-07-11. | 42 | 阪本悟堂,小田胜二, 村濑浩贵. 聚乙烯纤维及其制造方法: CN100376730C[P]. 2008-03-26. | 42 | SAKAMOTO G, ODA S, MURASE H. Polyethylene fiber and process for producing the same: CN100376730C[P]. 2008-03-26. | 43 | WANG F, LIU L, XUE P, et al. A study of the mechanical behavior and crystal structure of UHMWPE/HDPE blend fibers prepared by melt spinning[J]. Journal of Engineered Fibers and Fabrics, 2018, 13(3): 23-36. | 44 | 黄伟, 王晓春, 杨中开, 等. UHMWPE/聚烯烃共混物的性能及其熔融纺丝研究[J]. 合成纤维工业, 2015, 38(6):47-52. | 44 | HAUNG W, WANG X C, YANG Z K, et al. Properties and melt spinning process of UHMWPE/polyolefin blend[J]. China Synthetic Fiber Industry, 2015, 38(6): 47-52. | 45 | 张强, 张军, 王庆昭. 熔体纺丝和凝胶纺丝UHMWPE纤维结构对比[J]. 高分子材料科学与工程, 2017, 33(9): 101-105, 111. | 45 | ZHANG Q, ZHANG J, WANG Q Z. Comparison of structure of UHMWPE fibers prepared by the melt spun and gel spun[J]. Polymer Materials Science & Engineering, 2017, 33(9): 101-105, 111. | 46 | 王非. 高密度聚乙烯改性超高分子量聚乙烯熔融纺丝的研究[D]. 北京: 北京化工大学, 2017. | 46 | WANG F. Study on the melt spinning of high density polyethylene modified ultra-high molecular weight polyethylene[D]. Beijing: Beijing University of Chemical Technology, 2017. | 47 | 王非, 刘丽超, 薛平, 等. 拉伸温度对UHMW-PE/HDPE共混纤维结晶性能的影响[J]. 塑料, 2018, 47(3):76-79. | 47 | WANG F, LIU L C, XUE P, et al. Effect of hot-drawing temperature on crystalline characters of UHMW-PE/HDPE blend fibers[J]. Plastics, 2018, 47(3): 76-79. | 48 | XIANG Y, LI J, LEI J. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress[J]. ChemSusChem, 2016, 9(21): 3023-3039. | 49 | ZHAO C, HE J, LI J, et al. Preparation and properties of UHMWPE microporous membrane for lithium ion battery diaphragm[J]. IOP Conference Series: Materials Science and Engineering, 2018, 324(1): 012089. | 50 | TOQUET F, GUY L, SCHLEGEL B, et al. Effect of the naphthenic oil and precipitated silica on the crystallization of ultrahigh-molecular-weight polyethylene[J]. Polymer, 2016, 97: 63-68. | 51 | 徐绍魁, 侯秀红, 张玉梅, 等. 溶胀对超高分子量聚乙烯隔膜性能的影响[J]. 塑料, 2016, 45(5): 100-102, 113. | 51 | XU S K, HOU X H, ZHANG Y M, et al. Effect of ultra-high molecular weight polyethylene swelling on properties of separator[J]. Plastics, 2016, 45(5): 100-102, 113. | 52 | 侯秀红, 茆汉军, 王新威, 等. 一种芳纶涂覆锂离子电池隔膜: CN109830632A[P]. 2019-05-31. | 52 | HOU X H, MAO H J, WANG X W, et al. Aramid fiber coated lithium ion battery diaphragm: CN109830632A[P]. 2019-05-31. | 53 | 杨浩田, 王晓明, 韦程, 等. 一种安全性好的PVDF混合涂覆隔膜及其制备方法: CN106684296A[P]. 2017-05-17. | 53 | YANG H T, WANG X M, WEI C, et al. PVDF (polyvinylidene fluoride) mixed coating diaphragm with good safety and preparation method thereof: CN106684296A[P]. 2017-05-17. | 54 | CARVALHO L H, ALVES T S, LEAL T L, et al. Preparation and surface modification effects of UHMWPE membranes for oil/water separation[J]. Polímeros, 2009, 19(1): 72-78. | 55 | LEAL T L, SOUTO K M, CARVALHO L H, et al. Cold plasma modification effects on the water flow through sintered UHMWPE membranes[J]. Polymer-Plastics Technology and Engineering, 2009, 48(2): 136-140. | 56 | GUO H, GENG C, QIN Z P, et al. Hydrophilic modification of HDPE microfiltration membrane by corona-induced graft polymerization[J]. Desalination and Water Treatment, 2013, 51(19/20/21): 3810-3813. | 57 | 赵志鸿, 张廷友, 吕召胜. 超高分子量聚乙烯的加工改性研究进展[J]. 工程塑料应用, 2012, 40(1): 99-102. | 57 | ZHAO Z H, ZHANG T Y, LYU Z S. Processing modification research development of PE-UHMW[J]. Engineering Plastics Application, 2012, 40(1): 99-102. | 58 | 张玉梅, 周立斌, 张炜, 等. 一种纳米超高分子量聚乙烯复合材料的制备方法: CN1796447[P]. 2006-07-05. | 58 | ZHANG Y M, ZHOU L B, ZHANG W, et al. Method for preparing nano composite material of polyethylene in super high molecular weight: CN1796447[P]. 2006-07-05. | 59 | 张玉梅, 徐静安, 吴向阳, 等. 一种增强减磨超高分子量聚乙烯复合材料: CN101475669[P]. 2009-07-08. | 59 | ZHANG Y M, XU J A, WU X Y, et al. Reinforced and antifriction ultra-high molecular weight polyethylene composite material: CN101475669[P]. 2009-07-08. | 60 | 张炜, 麦永懿, 张玉梅, 等. 耐高温超高分子量聚乙烯三元体系复合材料及其制备方法: CN101235170[P]. 2008-08-06. | 60 | ZHANG W, MAI Y Y, ZHANG Y M, et al. High-temperature resisting superhigh molecular weight polythene ternary system composite material and preparation method thereof: CN101235170[P]. 2008-08-06. | 61 | 张炜, 吴向阳, 张玉梅, 等. 一种增强改性的超高分子量聚乙烯/聚丙烯复合材料: CN1948379[P]. 2007-04-18. | 61 | ZHANG W, WU X Y, ZHANG Y M, et al. Reinforced modified ultrahigh molecular weight polyethylene/polypropylene composite material: CN1948379[P]. 2007-04-18. | 62 | 张玉梅, 周立斌, 洪尉, 等. UHMWPE/MMT纳米复合材料的研制[J].工程塑料应用, 2005, 33(12): 10-12. | 62 | ZHANG Y M, ZHOU L B, HONG W, et al. Study on UHMWPE/montmorillonite nanocomposites[J]. Engineering Plastics Application, 2005, 33(12): 10-12. | 63 | 沈若冰. 改性超高分子量聚乙烯树脂的研制[J]. 宜宾学院学报, 2010, 10(12): 94-97. | 63 | SHEN R B. Manufacture of modified UHMWPE resin[J]. Journal of Yibin University, 2010, 10(12): 94-97. | 64 | TANG C Y, XIE X L, WU X C, et al. Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane[J]. Journal of Materials Science: Materials in Medicine, 1997, 18(9): 1065-1069. | 65 | 李波, 尚可心. 超高摩尔质量聚乙烯内衬复合管应用前景展望[J]. 塑料工业, 2006, 34(12): 1-3. | 65 | LI B, SHANG K X. Prospect for application of UHMWPE-lined composite pipe[J]. China Plastics Industry, 2006, 34(12): 1-3. | 66 | 庄甦, 李鑫, 李海楠, 等. 超高分子量聚乙烯(UHMW-PE)板材模压成型[J]. 塑料, 2014, 43(3): 111-113, 106. | 66 | ZHUANG S, LI X, LI H N, et al. Molding plates of ultra-high molecular weight polyethylene (UHMW-PE)[J]. Plastics, 2014, 43(3): 111-113, 106. | 67 | PARK H J, KWAK S Y, KWAK S. Wear-resistant ultra high molecular weight polyethylene/zirconia composites prepared by in situ Ziegler-Natta polymerization[J]. Macromolecular Chemistry & Physics, 2005, 206(9): 945-950. | 68 | 王小俊, 方立明, 赵耀明. 原位化学合成法制备超高分子量聚乙烯/碳酸钙复合材料[J]. 工程塑料应用, 2009, 37(7): 4-8. | 68 | WANG X J, FANG L M, ZHAO Y M. Ultrahigh molecular weight Polyethylene/CaCO3 composite prepared by in-situ synthesis[J]. Engineering Plastics Application, 2009, 37(7): 4-8. | 69 | PENG C B, MD A H, BT N R, et al. Optimization on wear performance of UHMWPE composites using response surface methodology[J]. Tribology International, 2015, 88: 252-262. | 70 | YU X L, JIANG Z Y, ZHAO J W, et al. Effects of grain boundaries in oxide scale on tribological properties of nanoparticles lubrication[J]. Wear, 2015, 332/333: 1286-1292. | 71 | WANG Q F, WANG H L, WANG Y W, et al. The influences of several carbon additions on the fretting wear behaviors of UHMWPE composites[J]. Tribology International, 2015, 93: 390-398. | 72 | 许睿, 薛平, 马海霞, 等. 尼龙6改性超高分子量聚乙烯[J]. 工程塑料应用, 2017, 45(8): 29-33. | 72 | XU R, XUE P, MA H X, et al. Ultra high molecular weight polyethylene modified by nylon 6[J]. Engineering Plastics Application, 2017, 45(8): 29-33. | 73 | 许睿, 薛平, 马海霞, 等. 纳米蒙脱土对超高分子量聚乙烯性能的影响[J]. 塑料, 2018, 47(3): 56-59, 67. | 73 | XU R, XUE P, MA H X, et al. Effect of nano montmorillonite on properties of ultra-high molecular weight polyethylene[J]. Plastics, 2018, 47(3): 56-59, 67. | 74 | BABIKER M E, MUHUO Y. The effects of loading of montmorillonite (MMT) on the properties of the ultra-high molecular weight polyethylene (UHMWPE/Organo-MMT) nanocomposite sheets prepared by gel and pressure induced flow (PIF) processing[J]. Arabian Journal for Science & Engineering, 2013, 38(3): 479-490. | 75 | 宋宁, 宋博. PTFE对PE-UHMW性能的影响[J]. 工程塑料应用, 2016, 44(2): 129-133. | 75 | SONG N, SONG B. Effect of PTFE on properties of PE-UHMW[J]. Engineering Plastics Application, 2016, 44(2): 129-133. | 76 | HE S, HE H, LI Y C, et al. Effects of maleic anhydride grafted polyethylene on rheological, thermal, and mechanical properties of ultra high molecular weight polyethylene/poly(ethylene glycol) blends[J]. Journal of Applied Polymer Science, 2015, 132(43): 39-45. | 77 | 谢美菊, 余自力, 杨帮成. 表面硅烷交联改性超高分子量聚乙烯材料在干摩擦条件下的摩擦磨损性能研究[J]. 化学研究与应用, 2016, 28(5): 644-648. | 77 | XIE M J, YU Z L, YANG B C. Sliding wear of surface modified ultrahigh molecular weight polyethylene by silane crosslinking[J]. Chemical Research and Application, 2016, 28(5): 644-648. | 78 | XIONG D S, DENG Y L, WANG N, et al. Influence of surface PMPC brushes on tribological and biocompatibility properties of UHMWPE[J]. Applied Surface Science, 2014, 298: 56-61. | 79 | DENG Y L, XIONG D S, WANG K. Biotribological properties of UHMWPE grafted with AA under lubrication as artificial joint[J]. Journal of Materials Science: Materials in Medicine, 2013, 24(9): 2085-2091. | 80 | 刘群, 钟蔚华, 张勇, 等. 过氧化物交联超高分子量聚乙烯的结构与性能[J]. 工程塑料应用, 2018, 46(11): 48-52. | 80 | LIU Q, ZHONG W H, ZHANG Y, et al. Structure and properties of peroxide crosslinked PE-UHMW[J]. Engineering Plastics Application, 2018, 46(11): 48-52. | 81 | 张玉梅, 吴向阳, 张炜, 等. 一种增韧高耐磨超高分子量聚乙烯/铸型尼龙复合材料: CN101173077[P]. 2008-05-07. | 81 | ZHANG Y M, WU X Y, ZHANG W, et al. Toughness reinforcing, abrasion-proof ultrahigh molecular weight polyethylene cast form nylon composite material: CN101173077[P]. 2008-05-07. | 82 | 侯秀红, 张玉梅, 王新威, 等. 一种聚乙烯杂化无机材料的制备方法: CN103788460A[P]. 2014-05-14. | 82 | HOU X H, ZHANG Y M, WANG X W, et al. A process for producing a polyethylene material of inorganic hybrid: CN103788460A[P]. 2014-05-14. | 83 | 李志, 张炜, 叶晓峰. 超高分子量聚乙烯注塑制品的力学性能及微观形态[J]. 塑料, 2017, 46(6): 44-47, 97. | 83 | LI Z, ZHANG W, YE X F. Physical property and micro morphology of ultra high molecular weight polyethylene composite for injection molding[J]. Plastics, 2017, 46(6): 44-47, 97. | 84 | 何继敏, 陈卫红. 超高分子量聚乙烯注射成型机: CN1579739[P]. 2005-02-16. | 84 | HE J M, CHEN W H. Ultrahigh molecular weight polyethylene injection moulding machine: CN1579739[P]. 2005-02-16. | 85 | 高百超, 杨于光, 张亚军, 等. 超高分子量聚乙烯材料注塑工艺参数的优化[J]. 塑料, 2017, 46(6): 92-94. | 85 | GAO B C, YANG Y G, ZHANG Y J, et al. Optimization of injection molding parameters of ultra-high molecular weight polyethylene[J]. Plastics, 2017, 46(6): 92-94. | 86 | 彭学成. 填充改性超高分子量聚乙烯复合材料及加工研究[D]. 北京: 北京化工大学, 2006. | 86 | PENG X C. Preparation and processing of filler modified UHMWPE composites[D]. Beijing: Beijing University of Chemical Technology, 2006. | 87 | BELLARE A, COHEN R E. Morphology of rod stock and compression-moulded sheets of ultrahigh- molecular-weight polyethylene used in orthopaedic implants[J]. Biomaterials, 1996, 17(24): 2325-2333. | 88 | FITZPATRICK R, SHORTALL E, SCULPHER M, et al. Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost-effectiveness associated with different prostheses[J]. Health Technol. Assess, 1998, 2(20): 1-64. | 89 | 周磊, 翁习生, 李涛. 人工关节超高分子量聚乙烯磨损机制与研发现状[J]. 中国矫形外科杂志, 2014, 22(16): 1471-1475. | 89 | ZHOU L, WENG X S, LI T. Wear mechanism and development status of artificial joint ultra high molecular weight polyethylene[J]. Orthopedic Journal of China, 2014, 22(16): 1471-1475. | 90 | American Society for Testing and Materials. Standard specification for ultra-high-molecular weight polyethylene powder and fabricated form for surgical implants: ASTM F 2695-07[S]. PA: American Society for Testing and Materials, West Conshohocken, 2007. | 91 | HARRIS W H. Osteolysis and particle disease in hip replacement[J]. Acta Orthopaedica Scandinavica, 1994, 65(1): 113-123. | 92 | MURATOGLU O K, MERRILL E W, BRAGDON C R, et al. Effect of radiation, heat, and aging on in vitro wear resistance of polyethylene[J]. Clinical Orthopaedics and Related Research, 2003, 417: 253-262. | 93 | WROBLEWSKI B M, SINEY P D, FLEMING P A. Low-friction arthroplasty of the hip using alumina ceramic and cross-linked polyethylene[J]. Journal of Bone & Joint Surgery-British Volume, 2005, 87(9): 1220-1221. | 94 | XU J Z, WANNOMAE K K, MURATOGIU O K, et al. Increased oxidative protection by high active vitamin E content and partial radiation crosslinking of UHMWPE[J]. Journal of Orthopaedic Research, 2017, 36(7): 1860-1867. | 95 | KIRSCHWENG B, TILINGER D M, HéGELY B, et al. Melt stabilization of PE with natural antioxidants: comparison of rutin and quercetin[J]. European Polymer Journal, 2018, 103: 228-237. | 96 | REN Y, WEI X, WEI S T, et al. High oxidation stability of tea polyphenol-stabilized highly crosslinked UHMWPE under an in vitro aggressive oxidative condition[J]. Clinical Orthopaedics and Related Research, 2019, 477(8): 1947-1955. |
|