1 | WU J L, XU F, LI S M, et al. Porous polymers as multifunctional material platforms toward task-specific applications[J]. Advanced Materials, 2019, 31(4): 1802922. | 2 | CUI C Z, CAO Z, ZHANG S P, et al. Application of a novel diol-based porous organic polymer to the determination of trace-level tetracyclines in water[J]. Analytical Methods, 2019, 11: 2473-2481. | 3 | MOURADZADEGUN A, GANJALI M R, MOSTAFAVI M A. Design and synthesis of a magnetic hierarchical porous organic polymer: a new platform in heterogeneous phase-transfer catalysis[J]. Applied Organometallic Chemistry, 2018, 32(4): e4214. | 4 | DAS S, HEASMAN P, BEN T, et al. Porous organic materials: strategic design and structure-function correlation[J]. Chemical Reviews, 2017, 117(3): 1515-1563. | 5 | TAN L X, TAN B E. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46: 3322-3356. | 6 | HOU S S, RAZZAQUE S, TAN B E. Effects of synthesis methodology on microporous organic hypercrosslinked polymers with respect to structural porosity, gas uptake performance and fluorescence properties[J]. Polymer Chemistry, 2019, 10: 1299-1311. | 7 | KRAMER S, BENNEDSEN N R, KEGNAES S. Porous organic polymers containing active metal centers as catalysts for synthetic organic chemistry[J]. ACS Catalysis, 2018, 8(8): 6961-6982. | 8 | XIE Y Q, LIANG J, FU Y W, et al. Hypercrosslinked mesoporous poly (ionic liquid)s with high ionic density for efficient CO2 capture and conversion into cyclic carbonate[J]. Journal of Materials Chemistry A, 2018, 6: 6660-6666. | 9 | ZHANG W, MEI Y, WU P, et al. Highly tunable periodic imidazole-based mesoporous polymers as cooperative catalysts for efficient carbon dioxide fixation[J]. Catalysis Science & Technology, 2019, 9: 1030-1038. | 10 | LIANG X P, HU P, ZHANG H Y, et al. Hypercrosslinked strong anion-exchange polymers for selective extraction of fluoroquinolones in milk samples[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 166: 379-386. | 11 | CHEN G J, ZHANG Y D, XU J Y, et al. Imidazolium-based ionic porous hybrid polymers with POSS-derived silanols for efficient heterogeneous catalytic CO2 conversion under mild conditions[J]. Chemical Engineering Journal, 2020, 381: 122765. | 12 | CHENG M, JIANG J J, WANG J, et al. Highly salt resistant polymer supported ionic liquid adsorbent for ultrahigh capacity removal of p-nitrophenol from water[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8195-8205. | 13 | FONTANALS N, MARCE R M, BORRULL F. Handbooks in separation science[M]. USA:Elseviser,2020: 55-82. | 14 | ZHENG X, CHEN F F, ZHANG X W, et al. Ionic liquid grafted polyamide 6 as porous membrane materials: enhanced water flux and heavy metal adsorption[J]. Applied Surface Science, 2019, 481: 1435-1441. | 15 | XU Z X, ZHAO Y L, WANG P Y, et al. Extraction of Pt(Ⅳ), Pt(Ⅱ), and Pd(Ⅱ) from acidic chloride media using imidazolium-based task-specific polymeric ionic liquid[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1779-1786. | 16 | ZHENG X, DING X, GUAN J P, et al. Ionic liquid-grafted polyamide 6 by radiation-induced grafting: new strategy to prepare covalently bonded ion-containing polymers and their application as functional fibers[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5462-5475. | 17 | LIU L L, GUO F Y, XU J, et al. Adsorption-enhanced oxidative desulfurization by a task-specific pyridinium-based porous ionic polymer[J]. Fuel, 2019, 244: 439-446. | 18 | NAYEBI R, TARIGH G, SHEMIRANI F. Porous ionic liquid polymer: a reusable adsorbent with broad operating pH range for speciation of nitrate and nitrite[J]. Scientific Reports, 2019, 9(1):11130-11140. | 19 | WANG H, SHI H F, YE W P, et al. Amorphous ionic polymers with color-tunable ultralong organic phosphorescence[J]. Angewandte Chemie: International Edition, 2019, 131(52): 18952-118958. | 20 | LIU F, GU Y Q, ZHAO P H, et al. Cooperative conversion of CO2 to cyclic carbonates in dual-ionic ammonium salts catalytic medium at ambient temperature[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5940-5945. | 21 | ZHANG Q, ZHANG S B, LI S H. Novel functional organic network containing quaternary phosphonium and tertiary phosphorus[J]. Macromolecules, 2012, 45: 2981-2988. | 22 | FISCHER S, SCHIMANOWITZ A, DAWSON R, et al. Cationic microporous polymer networks by polymerisation of weakly coordinating cations with CO2 storage ability[J]. Journal of Materials Chemistry A, 2014, 2: 11825-11829. | 23 | SU Y Q, WANG Y X, LI X J, et al. Imidazolium-based porous organic polymers: anion exchange driven capture and luminescent probe of Cr2[J]. ACS Applied Materials & Interfaces, 2016, 8: 18904-18911. | 24 | WANG J Q, YANG J G W, YI G S, et al. Phosphonium salt incorporated hypercrosslinked porous polymers for CO2 capture and conversion[J]. Chemical Communications, 2015, 51: 15708-15711. | 25 | SUO X, XIA L, YANG Q W, et al. Synthesis of anion-functionalized mesoporous poly(ionic liquid)s via a microphase separation-hypercrosslinking strategy: highly efficient adsorbents for bioactive molecules[J]. Journal of Materials Chemistry A, 2017, 5: 14114-14123. | 26 | HU X M, CHEN Q, SUI Z Y, et al. Triazatriangulenium-based porous organic polymers for carbon dioxide capture[J]. RSC Advances, 2015, 5: 90135-90143. | 27 | 李侦慷. 离子液体超交联聚合物的合成及气体分离性能研究[D]. 杭州: 浙江大学,2017. | 27 | LI Z K. The synthesis of ionic liquid-based hypercrosslinked polymers and their application in the gas separations[D]. Hangzhou: Zhejiang University, 2017. | 28 | CHO H C, LEE H S, CHUN J, et al. Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates[J]. Chemical Communications, 2011, 47: 917-919. | 29 | BUYUKCAKIR O, JE S H, CHOI D S, et al. Porous ationic polymers: the impact of counteranions and charges on CO2 capture and conversion[J]. Chemical Communications, 2016, 52: 934-937. | 30 | FISHER S, SCHMIDT J, STRAUCH P, et al. An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions[J]. Angewandte Chemie: International Edition, 2013, 52(46): 12174-12178. | 31 | ZHAO H, WANG Y, WANG R H. In situ formation of well-dispersed palladium nanoparticles immobilized in imidazolium-based organic ionic polymers[J]. Chemical Communications, 2014, 50: 10871-10874. | 32 | YUAN Y, SUN F X, LI L, et al. Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves[J]. Nature Communications, 2014, 5: 4260-4267. | 33 | MITRA S, KANDAMBETH S, BISWAL B P, et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets(iCONs)[J]. Journal of the American Chemical Society, 2016, 138: 2823-2828. | 34 | HUANG N, WANG P, ADDICOAT M A, et al. Ionic covalent organic frameworks: design of a charged interface aligned on 1D channel walls and its unusual electrostatic functions[J]. Angewandte Chemie: International Edition, 2017, 56(18): 4982-4986. | 35 | ZHANG P F, JIANG X G, WAN S, et al. Charged porous polymers using a solid C—O cross-coupling reaction[J]. Chemistry: a European Journal, 2015, 21(37): 12866-12870. | 36 | ZHANG P F, QIAO Z A, JIANG X G, et al. Nanoporous ionic organic networks: stabilizing and supporting gold nanoparticles for catalysis[J]. Nano letters, 2015, 15: 823-828. | 37 | CHEN G J, ZHOU Y, WANG X C, et al. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers[J]. Scientific Reports, 2015, 5: 11236-11250. | 38 | KIM K, BUYUKCAKIR O, COSKUN A. Diazapyrenium-based porous cationic polymers for colorimetric amine sensing and capture from CO2 scrubbing conditions[J]. RSC Advances, 2016, 6: 77406-77409. | 39 | RAJA A R, YAVUZ C T. Charge induced formation of crystalline network polymers[J]. RSC Advances, 2014, 4: 59779-59784. | 40 | LI J, JIA D G, GUO Z J, et al. Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides[J]. Green Chemistry, 2017, 19: 2675-2686. | 41 | HAO S, LIU Y C, SHANG C N, et al. CO2 adsorption and catalytic application of imidazole ionic liquid functionalized porous organic polymers[J]. Polymer Chemistry, 2017, 8: 1833-1839. | 42 | WANG J Q, YANG J G W, YI G S, et al. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion[J]. Chemical Communications, 2015, 51:12076-12079. | 43 | HAN S, FENG Y L, ZHANG F, et al. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly effificient electrochemical catalysts for water splitting[J]. Advanced Functional Materials, 2015, 25: 3899-3906. | 44 | LIU F J, WANG L, SUN Q, et al. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts[J]. Journal of the American Chemical Society, 2012, 34(41): 16948-16950. | 45 | ZHAO W X, ZHANG F, YANG L Y, et al. Anionic porous polymers with tunable structures and catalytic properties[J]. Journal of Materials Chemistry A, 2016, 4: 15162-15168. | 46 | LU W G, YUAN D Q, SCULLEY J, et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure[J]. Journal of the American Chemical Society, 2011, 133: 18126-18129. | 47 | MA H P, HAO R, ZOU X Q, et al. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2+N2 and CH4+N2 mixtures[J]. Polymer Chemistry, 2013, 5(1): 144-152. | 48 | DENG G Y, WANG Z G. Hierarchical porous phenolic resin and its supported Pd-catalyst for Suzuki-Miyaura reactions in water medium[J]. Macromolecular Rapid Communications, 2018, 39(3):1700618. | 49 | GU C, HUANG N, CHEN Y C, et al. Porous organic polymer films with tunable work functions and selective hole and electron flows for energy conversions[J]. Angewandte Chemie: International Edition, 2016, 55: 3049-3053. | 50 | YU W, ZHOU M H, WANG T Q, et al. “Click chemistry” mediated functional microporous organic nanotube networks for heterogeneous catalysis[J]. Organic Letters, 2017, 19(21): 5776-5779. | 51 | PUTHIARAJ P, RAVI S, YU K, et al. CO2 adsorption and conversion into cyclic carbonates over a porous ZnBr2-grafted N-heterocyclic carbene-based aromatic polymer[J]. Applied Catalysis B: Environmental, 2019, 251: 195-205. | 52 | XU S, WENG Z H, TAN J, et al. Hierarchically structured porous organic polymer microspheres with built-in Fe3O4 supraparticles: construction of dual-level pores for Pt-catalyzed enantioselective hydrogenation[J]. Polymer Chemistry, 2015, 6(15): 2892-2899. | 53 | LI X C, ZHANG Y Z, WANG C Y, et al. Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors[J]. Chemical Science, 2017, 8(4): 2959-2965. | 54 | PAN H, CHENG Z B, XIAO Z B, et al. Lithium-sulfur batteries: the fusion of imidazolium-based ionic polymer and carbon nanotubes: one type of new heteroatom-doped carbon precursors for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2017, 27(44): 1703936. | 55 | ZHAO W X, ZHUANG X D, WU D Q, et al. Boron-π-nitrogen-based conjugated porous polymers with multi-functions[J]. Journal of Materials Chemistry A, 2013, 1: 13878-13884. | 56 | YANG R X, WANG T T, DENG W Q. Extraordinary capability for water treatment achieved by a perfluorous conjugated microporous polymer[J]. Scientific Reports, 2015, 5: 10155. | 57 | XIANG Z H, CAO D P, WANG W C, et al. Postsynthetic lithium modifification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage[J]. The Journal of Physical Chemistry?C, 2012, 116(9): 5974-5980. | 58 | DANI A, CROCELLA V, MAGISTRIS C, et al. Click-based porous cationic polymers for enhanced carbon dioxide capture[J]. Journal of Materials Chemistry A, 2017, 5: 572-583. | 59 | LUO Y L, LI B Y, WANG W, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials[J]. Advanced Materials, 2012, 24(42): 5703-5707. | 60 | 杨宵, 刘晶, 胡建波. 氢气在共价有机骨架材料中的吸附机理[J]. 化工学报, 2015, 66(7):186-192. | 60 | YANG X, LIU J, HU J B. Adsorption mechanism of H2 on covalent organic frameworks[J]. CIESC Journal, 2015, 66(7): 186-192. | 61 | SUN Q, JIN Y Y, AGUILA B, et al. Porous ionic polymers as a robust and efficient platform for capture and chemical fixation of atmospheric CO2[J]. ChemSusChem, 2017, 10(6): 1160-1165. | 62 | LUO R C, CHEN Y J, HE Q, et al. Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals[J]. ChemSusChem, 2017, 10(7): 1526-1533. | 63 | ZHANG P F, LI M T, YANG B L, et al. Polymerized ionic networks with high charge density: quasi-solid electrolytes in lithium-metal batteries[J]. Advanced Materials, 2015, 27(48):8088-8094. | 64 | WANG L X, DING J J, SUN S, et al. Viologen-hypercrosslinked ionic porous polymer films as active layers for electronic and energy storage devices[J]. Advanced Materials Interfaces, 2018, 5(10):1701679. | 65 | 刘丽露, 吴凡, 李泓, 等. 硫化物固态电解质电化学稳定性研究进展[J]. 硅酸盐学报, 2019, 47(10): 1367-1385. | 65 | LIU L L, WU F, LI H, et al. Advances in electrochemical stability of sulfide solid-state electrolyte[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 1367-1385. | 66 | REN Y Y, ZHANG J D, GUO J N, et al. Porous poly(ionic liquid) membranes as efficient and recyclable absorbents for heavy metal ions[J]. Macromolecular Rapid Communications, 2017, 38(14): 1700151. | 67 | ZHAO G X, HUANG X B, TANG Z W, et al. Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review[J]. Polymer Chemistry, 2018, 9: 3562-3582. | 68 | YUAN Y, SUN F X, ZHANG F, et al. Targeted synthesis of porous aromatic frameworks and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings[J]. Advanced Materials, 2013, 25(45): 6619-6624. | 69 | JIANG K, FEI T, ZHANG T. Humidity sensing properties of LiCl-loaded porous polymers with good stability and rapid response and recovery[J]. Sensors and Actuators B: Chemical, 2014, 199(6): 1-6. | 70 | FEI T, JIANG K, LIU S, et al. Humidity sensors based on Li-loaded nanoporous polymers[J]. Sensors & Actuators B: Chemical, 2014, 190(1): 523-528. |
|