1 | OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313: 1068-1072. | 2 | ZHANG Yizhou, ALMODOVAR-ARBELO N E, WEIDMAN J L, et al. Fit-for-purpose block polymer membranes molecularly engineered for water treatment[J]. NPJ Clean Water, 2018, 1: 2. | 3 | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1: 16018. | 4 | YANG Zhe, GUO Hao, TANG C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. Journal of Membrane Science, 2019, 590: 117297. | 5 | PETERSEN R J. Composite reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 1993, 83(1): 81-150. | 6 | WANG Chongbin, LI Zhiyuan, CHEN Jianxin, et al. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination[J]. Journal of Membrane Science, 2017, 523: 273-281. | 7 | WANG Chongbin, LI Zhiyuan, CHEN Jianxin, et al. Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes[J]. Journal of Materials Science, 2018, 53(14): 10499-10512. | 8 | REN Liang, CHEN Jianxin, WANG Chongbin, et al. Triptycene based polyamide thin film composite membrane for high nanofiltration performance[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101: 119-126. | 9 | KARAN S, JIANG Zhiwei, LIVINGSTON A G. Sub-10nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. | 10 | YUAN Jinqiu, WU Mengyuan, WU Hong, et al. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes[J]. Journal of Materials Chemistry A, 2019, 7(44): 25641-25649. | 11 | ZHANG Xi, Lü Yan, YANG Haocheng, et al. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32512-32519. | 12 | Woei-Jye LAU, LAI Gwo-Sung, LI Jianxin, et al. Development of microporous substrates of polyamide thin film composite membranes for pressure-driven and osmotically-driven membrane processes: a review[J]. Journal of Industrial and Engineering Chemistry, 2019, 77: 25-59. | 13 | XU Guorong, XU Jianmei, FENG Houjun, et al. Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment—a review[J]. Desalination, 2017, 417(19): 19-35. | 14 | GUILLEN G R, PAN Yinjin, LI Minghua, et al. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3798-3817. | 15 | GUILLOTIN M, LEMOYNE C, NOEL C, et al. Physicochemical processes occurring during the formation of cellulose diacetate membranes. Research of criteria for optimizing membrane performance. Ⅳ. Cellulose diacetate-acetone-organic additive casting solutions[J]. Desalination, 1977, 21(2): 165-181. | 16 | KOENHEN D M, MULDER M H V, SMOLDERS C A. Phase separation phenomena during the formation of asymmetric membranes[J]. Journal of Applied Polymer Science, 1977, 21(1): 199-215. | 17 | LI Dan, XIA Younan. Electrospinning of nanofibers: reinventing the wheel?[J]. Advanced Materials, 2004, 16(14): 1151-1170. | 18 | RENEKER D H, CHUN I. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology, 1996, 7(3): 216-223. | 19 | BAHRAMI G, EHZARI H, MIRZABEIGY S, et al. Fabrication of a sensitive electrochemical sensor based on electrospun magnetic nanofibers for morphine analysis in biological samples[J]. Materials Science and Engineering: C, 2020, 106: 110183. | 20 | KHOSHNEVISAN K, MALEKI H, SAMADIAN H, et al. Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances[J]. Carbohydrate Polymers, 2018, 198: 131-141. | 21 | WU Tingting, DING Mengzhen, SHI Cuiping, et al. Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering[J]. Chinese Chemical Letters, 2020, 31(3): 617-625. | 22 | SUBRAMANIAN S, SEERAM R. New directions in nanofiltration applications—Are nanofibers the right materials as membranes in desalination?[J]. Desalination, 2013, 308: 198-208. | 23 | YOON K, HSIAO B S, CHU B. High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds[J]. Journal of Membrane Science, 2009, 326(2): 484-492. | 24 | YOON K, HSIAO B S, CHU B. Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation processes[J]. Polymer, 2009, 50(13): 2893-2899. | 25 | CADOTTE J E, PETERSEN R J, LARSON R E, et al. A new thin-film composite seawater reverse osmosis membrane[J]. Desalination, 1980, 32: 25-31. | 26 | BRUGGEN B VAN DER, M?NTT?RI M, NYSTR?M M. Drawbacks of applying nanofiltration and how to avoid them: a review[J]. Separation and Purification Technology, 2008, 63(2): 251-263. | 27 | SONG Yujun, SUN P, HENRY L L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of Membrane Science, 2005, 251(1): 67-79. | 28 | FAN Xiaochen, DONG Yanan, SU Yanlei, et al. Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process[J]. Journal of Membrane Science, 2014, 452: 90-96. | 29 | SINGH P S, JOSHI S V, TRIVEDI J J, et al. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions[J]. Journal of Membrane Science, 2006, 278(1/2): 19-25. | 30 | MISDAN N, LAU W J, ISMAIL A F, et al. Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics[J]. Desalination, 2013, 329: 9-18. | 31 | LAU W J, ISMAIL A F, MISDAN N, et al. A recent progress in thin film composite membrane: a review[J]. Desalination, 2012, 287: 190-199. | 32 | SHARABATI J A D, GUCLU S, ERKOC-ILTER S, et al. Interfacially polymerized thin-film composite membranes: impact of support layer pore size on active layer polymerization and seawater desalination performance[J]. Separation and Purification Technology, 2019, 212: 438-448. | 33 | YAN Hao, MIAO Xiaopei, XU Jian, et al. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes[J]. Journal of Membrane Science, 2015, 475: 504-510. | 34 | ALSVIK I L, H?GG M B. Preparation of thin film composite membranes with polyamide film on hydrophilic supports[J]. Journal of Membrane Science, 2013, 428: 225-231. | 35 | ZHANG Qifeng, ZHANG Zhiguang, DAI Lei, et al. Novel insights into the interplay between support and active layer in the thin film composite polyamide membranes[J]. Journal of Membrane Science, 2017, 537: 372-383. | 36 | CHAO Wei-Chi, HUANG Yun-Hsuan, HUNG Wei-Song, et al. Effect of the surface property of poly(tetrafluoroethylene) support on the mechanism of polyamide active layer formation by interfacial polymerization[J]. Soft Matter, 2012, 8(34): 8998-9004. | 37 | GHOSH A K, HOEK E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes[J]. Journal of Membrane Science, 2009, 336(1): 140-148. | 38 | KIM J, LEE K. Effect of PEG additive on membrane formation by phase inversion[J]. Journal of Membrane Science, 1998, 138(2): 153-163. | 39 | HAN M, NAM S. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane[J]. Journal of Membrane Science, 2002, 202(1): 55-61. | 40 | AHMAD A L, ABDULKARIM A A, OOI B S, et al. Recent development in additives modifications of polyethersulfone membrane for flux enhancement[J]. Chemical Engineering Journal, 2013, 223: 246-267. | 41 | FENG Chunsheng, WANG Rong, SHI Baoli, et al. Factors affecting pore structure and performance of poly(vinylidene fluoride-co-hexafluoro propylene) asymmetric porous membrane[J]. Journal of Membrane Science, 2006, 277(1-2): 55-64. | 42 | MATSUDA M, SATO M, SAKATA H, et al. Effects of fluid flow on elution of hydrophilic modifier from dialysis membrane surfaces[J]. Journal of Artificial Organs, 2008, 11(3): 148-155. | 43 | QIN Hui, NIE Shengqiang, CHENG Chong, et al. Insights into the surface property and blood compatibility of polyethersulfone/polyvinylpyrrolidone composite membranes: toward high-performance hemodialyzer[J]. Polymers for Advanced Technologies, 2014, 25(8): 851-860. | 44 | ZHU Lijing, SONG Haiming, WANG Gang, et al. Microstructures and performances of pegylated polysulfone membranes from an in situ synthesized solution via vapor induced phase separation approach[J]. Journal of Colloid and Interface Science, 2018, 515: 152-159. | 45 | CHEN Xiangrong, TANG Bingxue, LUO Jianquan, et al. Towards high-performance polysulfone membrane: the role of PSF-b-PEG copolymer additive[J]. Microporous and Mesoporous Materials, 2017, 241: 355-365. | 46 | PARK J Y, ACAR M H, AKTHAKUL A, et al. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes[J]. Biomaterials, 2006, 27(6): 856-865. | 47 | HE Meibo, LI Tong, HU Minli, et al. Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates[J]. Separation and Purification Technology, 2020, 230: 115855. | 48 | SAMSUDIN S A, KUKUREKA S N, JENKINS M J. Miscibility in cyclic poly(butylene terephthalate) and styrene maleimide blends prepared by solid-dispersion and in situ polymerization of cyclic butylene terephthalate oligomers within styrene maleimide[J]. Journal of Applied Polymer Science, 2012, 126: 290-297. | 49 | LI Hongbin, SHI Wenying, ZHANG Yufeng, et al. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate[J]. Applied Surface Science, 2015, 346: 134-146. | 50 | SHI Qiang, NI Lei, ZHANG Yufeng, et al. Poly(p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane[J]. Journal of Materials Chemistry A, 2017, 5(26): 13610-13624. | 51 | ZHU Guanghui, ZHANG Fengyi, RIVERA M P, et al. Molecularly mixed composite membranes for advanced separation processes[J]. Angewandte Chemie: International Edition, 2019, 58(9): 2638-2643. | 52 | ZHAI Zhe, ZHAO Na, LIU Jiahui, et al. Advanced nanofiltration membrane fabricated on the porous organic cage tailored support for water purification application[J]. Separation and Purification Technology, 2020, 230: 115845. | 53 | YIN Jun, DENG Baolin. Polymer-matrix nanocomposite membranes for water treatment[J]. Journal of Membrane Science, 2015, 479: 256-275. | 54 | ZHANG Zhenghua, AN Quanfu, LIU Tao, et al. Fabrication and characterization of novel SiO2-PAMPS/PSF hybrid ultrafiltration membrane with high water flux[J]. Desalination, 2012, 297: 59-71. | 55 | YANG Yanan, ZHANG Huixuan, WANG Peng, et al. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane[J]. Journal of Membrane Science, 2007, 288(1): 231-238. | 56 | CHAE H, LEE C, PARK P, et al. Synergetic effect of graphene oxide nanosheets embedded in the active and support layers on the performance of thin-film composite membranes[J]. Journal of Membrane Science, 2017, 525: 99-106. | 57 | XIE Quanling, ZHANG Shishen, HONG Zhuan, et al. A novel double-modified strategy to enhance the performance of thin-film nanocomposite nanofiltration membranes: incorporating functionalized graphenes into supporting and selective layers[J]. Chemical Engineering Journal, 2019, 368: 186-201. | 58 | YAN Wentao, WANG Zhi, WU Junhui, et al. Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method[J]. Journal of Membrane Science, 2016, 498: 227-241. | 59 | LEE T H, LEE M Y, LEE H D, et al. Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes[J]. Journal of Membrane Science, 2017, 539: 441-450. | 60 | GUMBI N N, LI Jianxin, MAMBA B B, et al. Relating the performance of sulfonated thin-film composite nanofiltration membranes to structural properties of macrovoid-free polyethersulfone/sulfonated polysulfone/O-MWCNT supports[J]. Desalination, 2020, 474: 114176. | 61 | PARK H M, JEE K Y, LEE Y T. Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks[J]. Journal of Membrane Science, 2017, 541: 510-518. | 62 | DUONG P H H, KUEHL V A, MASTOROVICH B, et al. Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes[J]. Journal of Membrane Science, 2019, 574: 338-348. | 63 | OH N W, JEGAL J, LEE K H. Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). I. Preparation and characterization of polyamide composite membranes[J]. Journal of Applied Polymer Science, 2001, 80(14): 2729-2736. | 64 | PéREZ-MANRíQUEZ L, ABURABI’E J, NEELAKANDA P, et al. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration[J]. Reactive and Functional Polymers, 2015, 86: 243-247. | 65 | KIM H, KIM S S. Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane[J]. Journal of Membrane Science, 2006, 286(1/2): 193-201. | 66 | KIM H, KIM S S. Fabrication of reverse osmosis membrane via low temperature plasma polymerization[J]. Journal of Membrane Science, 2001, 190(1): 21-33. | 67 | KIM E, KIM Y J, YU Q S, et al. Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF)[J]. Journal of Membrane Science, 2009, 344(1): 71-81. | 68 | PARK S, KWON S J, SHIN M G, et al. Polyethylene-supported high performance reverse osmosis membranes with enhanced mechanical and chemical durability[J]. Desalination, 2018, 436: 28-38. | 69 | RAHIM M A, KRISTUFEK S L, PAN S, et al. Phenolic building blocks for the assembly of functional materials[J]. Angewandte Chemie: International Edition, 2019, 58(7): 1904-1927. | 70 | ZHU Junyong, YUAN Shushan, ULIANA A, et al. High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine[J]. Journal of Membrane Science, 2018, 554: 97-108. | 71 | WU Xiaoli, LI Yifan, CUI Xulin, et al. Adsorption-assisted interfacial polymerization toward ultrathin active layers for ultrafast organic permeation[J]. ACS Applied Materials and Interfaces, 2018, 10(12): 10445-10453. | 72 | SHI Mengqi, WANG Zhi, ZHAO Song, et al. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support[J]. Journal of Membrane Science, 2018, 555: 157-168. | 73 | YANG Zhe, ZHOU Zhiwen, GUO Hao, et al. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance[J]. Environmental Science and Technology, 2018, 52(16): 9341-9349. | 74 | ZHAI Zhe, JIANG Chi, ZHAO Na, et al. Fabrication of advanced nanofiltration membranes with nanostrand hybrid morphology mediated by ultrafast Noria-polyethyleneimine codeposition[J]. Journal of Materials Chemistry A, 2018, 6(42): 21207-21215. | 75 | ZHU Yuzhang, XIE Wei, GAO Shoujian, et al. Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10nm thick polyamide selective layer for high-flux and high-rejection desalination[J]. Small, 2016, 12(36): 5034-5041. | 76 | WANG Jingjing, YANG Haocheng, WU Mingbang, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. Journal of Materials Chemistry A, 2017, 5(31): 16289-16295. | 77 | WU Mengyuan, MA Tianyi, SU Yanlei, et al. Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property[J]. Journal of Membrane Science, 2017, 544: 79-87. | 78 | CHANDRA S, KUNDU T, KANDAMBETH S, et al. Phosphoric acid loaded azo (NN) based covalent organic framework for proton conduction[J]. Journal of the American Chemical Society, 2014, 136(18): 6570-6573. | 79 | DOGRU M, HANDLOSER M, AURAS F, et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene[J]. Angewandte Chemie: International Edition, 2013, 52(10): 2920-2924. | 80 | ZHANG Zhe, SHI Xiansong, WANG Rui, et al. Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy[J]. Chemical Science, 2019, 10: 9077-9083. |
|