化工进展 ›› 2020, Vol. 39 ›› Issue (4): 1511-1520.DOI: 10.16085/j.issn.1000-6613.2019-1128
收稿日期:
2019-07-16
出版日期:
2020-04-05
发布日期:
2020-04-28
通讯作者:
杨殿海
作者简介:
陈思思(1992—),女,博士研究生,研究方向为污水处理与污泥资源化。E-mail:基金资助:
Sisi CHEN(),Dianhai YANG(),Weihai PANG,Bin DONG,Xiaohu DAI
Received:
2019-07-16
Online:
2020-04-05
Published:
2020-04-28
Contact:
Dianhai YANG
摘要:
我国剩余污泥产量大,对其进行稳定化、无害化和资源化处理处置迫在眉睫,而厌氧消化技术能够在降低污泥对环境污染的同时回收能源,是目前国际上最受欢迎的污泥减量化和资源化处理技术。本文首先重点归纳了国内外污泥厌氧消化技术应用现状差异和国内外剩余污泥厌氧转化率差异,即我国剩余污泥厌氧转化率处于 20%~50%之间,明显低于发达国家的水平(50%~70%),是我国剩余污泥厌氧消化推广应用程度低于发达国家水平的主要原因。其次从泥质差异的角度总结了导致我国剩余污泥厌氧转化率低于发达国家的主要差异性因素,即微细砂含量(50%~65%)高于发达国家(25%~30%)、金属离子如Ca2+、Fe3+、Al3+和Mg2+等的含量高于发达国家、污泥泥龄(10~30d)显著长于发达国家(5~10d)。最后,归纳总结了微细砂、金属粒子和泥龄这三类典型差异性因素对剩余厌氧消化性能的影响机制。对我国剩余污泥厌氧转化的主要影响因素的系统性认识有助于从源头上明晰影响我国剩余污泥厌氧转化性能的重要因素,对影响机制的深入解析有助于提出有针对性的强化措施,从而为我国剩余污泥厌氧消化技术的广泛推广与应用提供有益的借鉴和启发。
中图分类号:
陈思思,杨殿海,庞维海,董滨,戴晓虎. 我国剩余污泥厌氧转化的主要影响因素及影响机制研究进展[J]. 化工进展, 2020, 39(4): 1511-1520.
Sisi CHEN,Dianhai YANG,Weihai PANG,Bin DONG,Xiaohu DAI. Main influencing factors and mechanisms of anaerobic transformation of excess sludge in China[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1511-1520.
1 | 生态环境部公布2018年度《水污染防治行动计划》重点任务实施情[EB/OL]. 长江商报. [2019/07/25]. |
http://www.changjiangtimes.com/2019/07/597847.html.The Ministry of Ecology and Environment announced the implementation of the key tasks of the 2018 Water Pollution Prevention Action Plan [EB/OL]. Changjiang Times. [2019/07/25]. http: //. | |
2 | KELESSIDIS A, STANSINAKIS A S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Management, 2012, 32(6): 1186-1195. |
3 | (European Commission) EC, 2006. Report from the Commission to the Council and the European Parliament on the implementation of community waste legislation-Directive 86/278/EEC on sewage sludge-for the period 2001—2003, COM(2006) 406 final, SEC(2006 972, Brussels, 19. 7. 2006. |
4 | 廖海涛. 德国污泥处理处置发展趋势简介[J]. 中国给水排水, 2014(14): 23-25. |
LIAO H T. Introduction to the development trend of sludge treatment and disposal in Germany[J]. China Water & Wastewater, 2014(14): 23-25. | |
5 | 李端. 城市污泥交替厌氧好氧两段法堆肥技术研究[D]. 广州: 华南理工大学, 2003.LI R. Study on composting technology of urban sludge alternate anaerobic and aerobic two-stage method[D]. Guangzhou: South China University of Technology, 2003. |
6 | 郭恰. 城市污水厂污泥处理处置过程中的碳排放核算方法研究及二氧化碳减排量分析[D]. 上海: 同济大学, 2018.GUO Q. Study on carbon emission accounting method and analysis of carbon dioxide emission reduction in sludge treatment and disposal of municipal wastewater treatment plant[D]. Shanghai: Tongji University, 2018. |
7 | 杭世珺, 罗臻. 日本生活污水污泥处理处置的现状及特征分析[J]. 给水排水, 2015(11): 13-16. |
HANG S J, LUO Z. Analysis of current status and characteristics of domestic sewage sludge treatment and disposal[J]. Water & Wastewater Engineering, 2015(11): 13-16. | |
8 | 孔祥娟, 戴晓虎, 张辰. 城镇污水处理厂污泥处理处置技术[M]. 北京: 中国建筑工业出版社, 2016: 20. |
KONG X J, DAI X H, ZHANG C. Municipal sewage treatment plant sludge treatment and disposal technology[M]. Beijing: China Architecture & Building Press, 2016: 20. | |
9 | 陈海, 王玥, 刘东海. 大连市夏家河污泥处理厂的工艺设计与运行经验[J]. 中国给水排水, 2010, 26(12): 42-44. |
CHEN H, WANG Y, LIU D H. Process design and operation experience of Dalian Xiajiahe sludge treatment plant[J]. China Water & Wastewater, 2010, 26(12): 42-44. | |
10 | 肖先念, 李碧清, 唐霞, 等. 典型城市污泥厌氧消化技术工艺探讨[J]. 净水技术, 2015(3): 17-21. |
XIAO X N, LI B Q, TANG X, et al. Discussion on the technology of anaerobic digestion of typical urban sludge[J]. Water Purification Technology, 2015(3): 17-21. | |
11 | 赵恩泽. 西安市第五污水处理厂能耗与污泥厌氧消化能效分析[D]. 西安: 西安建筑科技大学, 2017.ZHAO E Z. Energy efficiency analysis of energy consumption and sludge anaerobic digestion of the Fifth Wastewater Treatment Plant in Xi'an city[D]. Xi’an: Xi'an University of Architecture and Technology, 2017. |
12 | 蒋玲燕, 杨彩凤, 胡启源, 等. 白龙港污水处理厂污泥厌氧消化系统的运行分析[J]. 中国给水排水, 2013, 29(9): 33-37. |
JIANG H Y, YANG C F, HU Q Y, et al. Operation analysis of sludge anaerobic digestion system in Bailonggang wastewater treatment plant[J]. China Water & Wastewater, 2013, 29(9): 33-37. | |
13 | 王丽花, 查晓强, 邵钦. 白龙港污水处理厂污泥厌氧消化系统的设计和调试[J]. 中国给水排水, 2012, 28(4): 52-54, 57. |
WANG L H, ZHA X Q, SHAO Q. Design and commissioning of sludge anaerobic digestion system in Bailonggang wastewater treatment plant[J]. China Water & Wastewater, 2012, 28(4): 52-54, 57. | |
14 | 潘伯寿, 卢志, 孙传志. 海口市污水处理厂污泥消化的运行分析[J]. 中国给水排水, 2006, 22(24): 91-94. |
PAN B S, LU Z, SUN C Z. Operation analysis of sludge digestion in Haikou wastewater treatment plant[J]. China Water & Wastewater, 2006, 22(24): 91-94. | |
15 | 刘京, 刘頔, 韩丽, 等. 北方地区污泥厌氧消化工艺应用现状分析[J]. 中国给水排水, 2012, 28(22): 46-49. |
LIU J, LIU D, HAN L, et al. Analysis of application status of sludge anaerobic digestion process in northern China[J]. China Water & Wastewater, 2012, 28(22): 46-49. | |
16 | CHEN S, LI N, DONG B, et al. New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: organic matter degradation and methanogenic pathways[J]. Journal of Hazardous Materials, 2018, 342: 1-9. |
17 | 戴前进, 李艺, 方先金. 城市污水处理厂剩余污泥厌氧消化试验研究[J]. 中国给水排水, 2006, 22(23): 95-98. |
DAI Q J, LI Y, FANG X J. Experimental study on anaerobic digestion of excess sludge from municipal wastewater treatment plants[J]. China Water & Wastewater, 2006, 22(23): 95-98. | |
18 | CHEN Y, FU B, WANG Y, et al. Reactor performance and bacterial pathogen removal in response to sludge retention time in a mesophilic anaerobic digester treating sewage sludge[J]. Bioresource Technology, 2012, 106: 20-26. |
19 | DE LA RUBIA M A, PEREZ M, ROMERO L I, et al. Effect of solids retention time (SRT) on pilot scale anaerobic thermophilic sludge digestion[J]. Process Biochemistry, 2006, 41(1): 79-86. |
20 | CASSIE B L, LEE J A, DILEO M J. Methane creation from anaerobic digestion [R]. Worcester Polytechnic Institute, 2010. |
21 | DUMAS C, PEREZ S, PAUL E, et al. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production[J]. Bioresource Technology, 2010, 101(8): 2629-2636. |
22 | BOLZONELLA D, BATTISTONI P, SUSINIC, et al. Anaerobic codigestion of waste activated sludge and OFMSW: the experiences of Viareggio and Treviso plants (Italy)[J]. Water Science and Technology, 2006, 53(8): 203-211. |
23 | HORAN N J, FLECHER L, BETMAL S M, et al. Die-off of enteric bacterial pathogens during mesophilic anaerobic digestion[J]. Water Research, 2004, 38(5): 1113-1120. |
24 | NGES I A, LIU J. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions[J]. Renewable Energy, 2010, 35(10): 2200-2206. |
25 | SONG J J, TAKEDA N, HIRAOKA M. Anaerobic treatment of sewage sludge treated by catalytic wet oxidation process in upflow anaerobic sludge blanket reactors[J]. Water Science and Technology, 1992, 26(3/4): 867-875. |
26 | ASTAL S, ESTEBAN G M, FERNANDEZ A T, et al. Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study[J]. Water Research, 2013, 47(16): 6033-6043. |
27 | DUAN N, DONG B, WU B, et al. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study[J]. Bioresource Technology, 2012, 104: 150-156. |
28 | 戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012, 38(2): 1-5. |
DAI X H. Present situation and thinking of urban sludge treatment and disposal in China[J]. Water & Wastewater Engineering, 2012, 38(2): 1-5. | |
29 | 戴晓虎. 我国城市污泥处理处置现状及机遇[J]. 建设科技, 2011(19): 55-59. |
DAI X H. Current status and opportunities of urban sludge treatment and disposal in China[J]. Construction Science and Technology, 2011(19): 55-59. | |
30 | DAI X, YAN H, LI N, et al. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge[J]. Scientific Reports, 2016, 6: 28193. |
31 | YUAN Q, SPARLING R, OLESZKIEWICZ J A. Waste activated sludge fermentation: effect of solids retention time and biomass concentration[J]. Water Research, 2009, 43(20): 5180-5186. |
32 | TAN R, MIYANAGA K, TOYAMA K, et al. Changes in composition and microbial communities in excess sludge after heat-alkaline treatment and acclimation[J]. Biochemical Engineering Journal, 2010, 52(2): 151-159. |
33 | 许颖. 剩余污泥中关键组分结构对其厌氧生物转化的影响及机制[D]. 上海: 同济大学, 2018.XU Y. Effect and mechanism of key component structure in excess sludge on anaerobic biotransformation[D]. Shanghai: Tongji University, 2018. |
34 | SHENG G P, YU H Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2006, 40(6): 1233-1239. |
35 | 郝以琼, 丁文川. 关于重庆城市污水污泥的处理处置问题[J]. 土木建筑与环境工程, 1999, 21(6): 1-5. |
HAO Y Q, DING W C. About the treatment and disposal of sewage sludge in Chongqing[J]. Journal of Civil and Environmental Engineering, 1999, 21(6): 1-5. | |
36 | 郭广慧, 陈同斌, 杨军, 等. 中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014, 34(10): 2455-2461. |
GUO G H, CHEN T B, YANG J, et al. Distribution characteristics and trends of heavy metals in urban sludge in China[J]. Acta Scientiae Circumstantiae, 2014, 34(10): 2455-2461. | |
37 | XU Y, LU Y, DAI X, et al. The influence of organic-binding metals on the biogas conversion of sewage sludge[J]. Water Research, 2017, 126: 329-341. |
38 | XU X, CAO X, ZHAO L, et al. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal[J]. Chemosphere, 2014, 111: 296-303. |
39 | SJOQVIST T. Trends in heavy metal, PCB and DDT contents of sludge in Sweden[J]. Utilization of Sewage Sludge on Land: Rate of Application and Long-Term Effects of Metals, 1984, 2(3): 194. |
40 | CAO V H, CAM B D, MAI P T N, et al. Heavy metals and polycyclic aromatic hydrocarbons in municipal sewage sludge from a river in highly urbanized metropolitan area in Hanoi, Vietnam: levels, accumulation pattern and assessment of land application[J]. Environmental Geochemistry & Health, 2015, 37(1): 133-146. |
41 | STYLIANOU, MARINO A, KOLLIA, et al. Effect of acid treatment on the removal of heavy metals from sewage sludge[J]. Desalination, 2007, 215(1): 73-81. |
42 | FYTIANOS K, CHARANTONI E, VOUDRIAS E. Leaching of heavy metals from municipal sewage sludge[J]. Environment International, 1998, 24(4): 467-475. |
43 | LOPES M M E, MOIRON C, CARRAL E. Use of dairy-industry sludge as fertiliser for grasslands in northwest Spain: heavy metal levels in the soil and plants[J]. Resources, Conservation and Recycling, 2000, 30(2): 95-109. |
44 | QUIS J C A, WYBRANDT L, LOKKEGAARD H, et al. Acidification and recovery of phosphorus from digested and non-digested sludge[J]. Water Research, 2018, 146: 307-317. |
45 | THOMSEN T P, SAROSSY Z, AHRENFELDT J, et al. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge[J]. Journal of Environmental Management, 2017, 198: 308-318. |
46 | LU Q, HE Z L, STOFFELLA P J. Land application of biosolids in the USA: a review[J]. Applied and Environmental Soil Science, 2012, 2012: 201462. |
47 | PARK C, NOVAK J T, HELM R F, et al. Evaluation of the extracellular proteins in full-scale activated sludges[J]. Water Research, 2008, 42(14): 3879-3889. |
48 | SANOA, KANOMATA M, INOUE H, et al. Extraction of raw sewage sludge containing iron phosphate for phosphorus recovery[J]. Chemosphere, 2012, 89(10): 1243-1247. |
49 | 郭丹. 城镇生活污水处理厂运行稳定性分析[D]. 成都: 西南交通大学, 2016.GUO D. Analysis on operation stability of urban domestic sewage treatment plant[D]. Chengdu: Southwest Jiaotong University, 2016. |
50 | 孙爱国, 代成杨, 徐黎黎. 浅谈小型城镇污水处理厂工艺运行控制[J]. 广东化工, 2014, 41(24): 76-77. |
SUN A G, DAI C Y, XU L L. Talking about the process operation control of small town wastewater treatment plant[J]. Guangdong Chemical Industry, 2014, 41(24): 76-77. | |
51 | 黄棚兰. CAST工艺在扬州市汤汪污水处理厂的应用研究[D]. 南京: 南京理工大学, 2007.HUANG P L. Application research of CAST Process in Tangwang Wastewater Treatment Plant in Yangzhou[D]. Nanjing: Nanjing University of Science and Technology, 2007. |
52 | 张志峰, 韩立峰. 优化泥龄控制改善出水水质节约运行费用的实践[J]. 给水排水, 2010, 36(6): 64-67. |
ZHANG Z F, HAN L F. Practice of optimizing sludge age control to improve effluent water quality and save operating costs[J]. Water & Wastewater Engineering, 2010, 36(6): 64-67. | |
53 | 陈昆柏, 宋英琦, 孙培德, 等. A2/O工艺污水处理厂运行参数优化的数值模拟[J]. 环境科学学报, 2008, 28(4): 804-809. |
CHEN K B, SONG Y Q, SUN P D, et al. Numerical simulation of operation parameters optimization of A2/O process wastewater treatment plant[J]. Acta Scientiae Circumstantiae, 2008, 28(4): 804-809. | |
54 | 崔萌, 马瑞芬. 污水处理厂冬季运行中生物脱氮除磷效果的分析[J]. 中国给水排水, 2016(4): 72-76. |
CUI M, MA R F. Analysis of biological nitrogen and phosphorus removal in winter operation of wastewater treatment plant[J]. China Water & Wastewater, 2016(4): 72-76. | |
55 | 翟亮. 城市污水处理中的工艺运行优化[J]. 西南给排水, 2012, 23(6): 48-51. |
ZHAI L. Optimization of process operation in urban sewage treatment[J]. Southwest Water & Wastewater, 2012, 23(6): 48-51. | |
56 | 张辰, 张欣, 杜炯. 上海市白龙港污水处理厂改造工程设计[J]. 给水排水, 2008, 34(4): 16-19. |
ZHANG C, ZHANG X, DU J. Design of Bailonggang Wastewater Treatment Plant Reconstruction Project in Shanghai[J]. Water & Wastewater Engineering, 2008, 34(4): 16-19. | |
57 | 葛勇涛, 李佟, 王佳伟, 等. 高碑店污水处理厂强化硝化性能的优化控制[J]. 中国给水排水, 2012(13): 136-139. |
GE Y T, LI T, WANG W W, et al. Optimized control of enhanced nitrification performance in Gaobeidian Wastewater Treatment Plant[J]. China Water & Wastewater, 2012(13): 136-139. | |
58 | 陈运进. 猎德污水处理厂UNITANK工艺的运行效果[J]. 中国给水排水, 2006, 22(2): 93-95. |
CHEN Y J. Operation effect of UNITANK process in Liede Wastewater Treatment Plant[J]. China Water & Wastewater, 2006, 22(2): 93-95. | |
59 | 武鹏崑, 李煜华, 许衍营, 等. 青岛市团岛污水处理厂工艺设计和运行总结[J]. 青岛理工大学学报, 2002, 23(4): 64-66. |
WU P K, LU Y H, XU Y Y, et al. Summary of process design and operation of Qingdao Tuandao Wastewater Treatment Plant[J]. Journal of Qingdao University of Technology, 2002, 23(4): 64-66. | |
60 | 杨玉梅. 重庆鸡冠石污水处理厂的设计特点及运行管理改进[J]. 中国给水排水, 2008, 24(16): 35-39. |
YANG Y M. Design features and operation management improvement of Jiguanshi Wastewater Treatment Plant in Chongqing[J]. China Water & Wastewater, 2008, 24(16): 35-39. | |
61 | 吴华明, 古杏红, 李峰. 南京市城北污水处理厂工程设计[J]. 给水排水, 2004, 30(4): 23-36. |
WU H M, GU X H, LI F. Engineering design of Chengbei Wastewater Treatment Plant in Nanjing[J]. Water & Wastewater Engineering, 2004, 30(4): 23-26. | |
62 | PAOLA C. RUA G, WILHELM P. Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants[J]. Environ. Sci. Pollut. Res. Int., 2012, 19(3): 689-699. |
63 | 张辰. 国外污水处理厂升级改造实例[J]. 水工业市场, 2008(10): 21-24. |
ZHANG C. Examples of upgrading of foreign sewage treatment plants[J]. Information of China Construction. Water-Industry Market, 2008(10): 21-24. | |
64 | 周军, 甘一萍, 李艺, 等. 美国Corona市MBR污水处理厂介绍[EB/OL]. 中国土木工程学会水工业分会排水委员会年会. [2019-04-26]. . |
ZHOU J, GAN Y P, LI Y, et al. Introduction of MBR Wastewater Treatment Plant in Corona, USA [EB/OL]. China Civil Engineering Society, Water Industry Branch Drainage Committee Annual Meeting. [2019-04-26]. . | |
65 | JIMENEZI J, MILLER M, BOTT C, et al. High-rate activated sludge system for carbon management—Evaluation of crucial process mechanisms and design parameters[J]. Water Research, 2015: S0043135415301342. |
66 | MATSUO H, SAKAMOTO H, ARIZONO K, et al. Behavior of pharmaceuticals in waste water treatment plant in Japan[J]. Bulletin of Environmental Contamination & Toxicology, 2011, 87(1): 31-35. |
67 | WETT B, BUCHAUER K, FIMML C. Energy self-sufficiency as a feasible concept for wastewater treatment systems[C]// IWA Leading Edge Technology Conference. Singapore: Asian Water, 2007: 21-24. |
68 | 赵水钎, 戴晓虎, 董滨, 等. 泥龄影响活性污泥性质及厌氧消化性能的研究进展[J]. 净水技术, 2019, 38(1): 38-44. |
ZHAO Y Q, DAI X H, DONG B, et al. Advances in research on the effects of sludge age on activated sludge properties and anaerobic digestion performance[J]. Water Purification Technology, 2019, 38(1): 38-44. | |
69 | 王有晴. 微细砂含量对活性污泥性质及厌氧消化性能的影响研究[D]. 上海: 同济大学, 2019.WANG Y Q. Effect of micro-sand content on activated sludge properties and anaerobic digestibility[D]. Shanghai: Tongji University, 2019. |
70 | 赵玉欣. 我国城镇污水厂污泥泥质调研及污泥除砂工艺研究[D]. 上海: 同济大学, 2015.ZHAO Y X. Study on sludge quality and sludge sand removal technology in urban wastewater treatment plants in China[D]. Shanghai: Tongji University, 2015. |
71 | NIELSEN P H, KEIDING K. Disintegration of activated sludge flocs in presence of sulfide[J]. Water Research, 1998, 32(2): 313-320. |
72 | FLEMMING H C, WINGENDER J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623. |
73 | 陈红军. 复合型絮凝剂聚合氯化铝铁的合成及其应用研究[J]. 化工管理, 2016(30): 119-119. |
CHEN H J. Synthesis and application of composite flocculant polymerized aluminum chloride[J]. Chemical Enterprise Management, 2016(30): 119-119. | |
74 | 王怡, 曲鹏程, 彭党聪. 长泥龄剩余污泥的中温水解研究[J]. 中国给水排水, 2011, 27(23): 36-39. |
WANG Y, QU P C, PENG D C. Study on intermediate temperature hydrolysis of excess sludge in long sludge age[J]. China Water & Wastewater, 2011, 27(23): 36-39. | |
75 | GE H, BASTONE D J, KELLER J. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion[J]. Water Research, 2013, 47(17): 6546-6557. |
76 | GE H, BASTONE D J, MOUICHE M, et al. Nutrient removal and energy recovery from high-rate activated sludge processes - Impact of sludge age[J]. Bioresource Technology, 2017. |
77 | LIAO B Q, DROPPO I G, LEPPARD G G, et al. Effect of solids retention time on structure and characteristics of sludge flocs in sequencing batch reactors[J]. Water Research, 2006, 40(13): 2583-2591. |
78 | LIAO B Q, ALLEN D G, DROPPO I G, et al. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research, 2001, 35(2): 339-350. |
79 | 高秀红, 刘子明. 不同SRT下A/O-MBR运行效能的比较[J]. 辽宁化工, 2012, 41(12): 1250-1251. |
GAO X H, LIU Z M. Comparison of A/O-MBR operational effectiveness under different SRTs[J]. Liaoning Chemical Industry, 2012, 41(12): 1250-1251. | |
80 | DUAN L, SONG Y, YU H, et al. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor[J]. Bioresource Technology, 2014, 163(7): 395-398. |
81 | MATSUDA A, YUZAKI H, OMORI D, et al. The effect of sludge age on decomposition of sludge in batch aerobic digestion of activated sludge acclimated to glucose and peptone[J]. Journal of Chemical Engineering of Japan, 1993, 26(6): 704-708. |
82 | GOSSETT J M, BELSER L. Anaerobic digestion of waste activated sludge[J]. Journal of the Environmental Engineering Division, 1982, 108(6): 1101-1120. |
83 | BOLZONELLA D, PAVAN P, BATTISTONI P, et al. Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process[J]. Process Biochemistry, 2005, 40(3): 1453-1460. |
84 | XU Y, LU Y, DAI X, et al. Spatial configuration of extracellular organic substances responsible for the biogas conversion of sewage sludge[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8308-8316. |
85 | 熊京忠, 来铭笙, 吉芳英, 等. 细微泥沙粒径对SBR系统污泥性质的影响[J]. 中国给水排水, 2015(13): 37-41. |
XIONG J Z, LAI M S, JI F Y, et al. Effect of fine sediment particle size on sludge properties of SBR system[J]. China Water & Wastewater, 2015(13): 37-41. | |
86 | 吉芳英, 何小玲, 何莉, 等. 细微泥沙对污水生化处理系统的影响及其归趋特性[J]. 环境工程学报, 2014, 8(3): 801-806. |
JI G Y, HE X L, HE L, et al. Influence of fine sediment on sewage biochemical treatment system and its characteristics[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 801-806. | |
87 | BITTON G. Encyclopedia of environmental microbiology[M]. New York: Wiley, 2002. |
88 | WHITFIELD G B, MARMONT L S, Howell P L. Enzymatic modifications of exopolysaccharides enhance bacterial persistence[J]. Frontiers in Microbiology, 2015, 6: 471. |
89 | SUANON F, SUN Q, MAMA D, et al. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge[J]. Water Research, 2016, 88: 897-903. |
90 | BRAGA A F M, ZAIAT M, SILVA G H R, et al. Metal fractionation in sludge from sewage UASB treatment[J]. Journal of Environmental Management, 2017, 193: 98-107. |
91 | YANG G, ZHANG G, WANG H. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73. |
[1] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[2] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[3] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[4] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[5] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[6] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[7] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[8] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[9] | 孙千千, 刘阵, 李瑞, 张溪, 杨明德, 吴玉龙. 低温水热耦合亚铁离子活化过硫酸盐提高剩余污泥的脱水性能[J]. 化工进展, 2023, 42(2): 595-602. |
[10] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[11] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[12] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[13] | 谢力, 李秀芬. 胞外多糖含量对碱热水解法溶出污泥蛋白质及水解液固液分离性能的影响[J]. 化工进展, 2022, 41(8): 4580-4586. |
[14] | 邵明帅, 张超, 吴华南, 王宁, 陈钦冬, 徐期勇. 水热耦合厌氧消化技术处理餐厨垃圾沼渣沼液及工艺能耗分析[J]. 化工进展, 2022, 41(5): 2733-2742. |
[15] | 郭之晗, 徐云翔, 李天皓, 黄子川, 刘文如, 沈耀良. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5): 2686-2697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |