化工进展 ›› 2020, Vol. 39 ›› Issue (2): 605-615.DOI: 10.16085/j.issn.1000-6613.2019-0866
刘聿嘉(),夏长久(),林民(),朱斌,彭欣欣,罗一斌,舒兴田
收稿日期:
2019-05-29
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
夏长久,林民
作者简介:
刘聿嘉(1992—),女,博士研究生,研究方向为杂原子分子筛与Lewis酸催化反应。E-mail:基金资助:
Yujia LIU(),Changjiu XIA(),Min LIN(),Bin ZHU,Xinxin PENG,Yibin LUO,Xingtian SHU
Received:
2019-05-29
Online:
2020-02-05
Published:
2020-03-12
Contact:
Changjiu XIA,Min LIN
摘要:
锡硅分子筛能高效催化含氧烃转化,因此其具有重要潜在工业应用价值。本文简述了锡硅分子筛的骨架锡判定、合成方法、多级孔合成研究及应用领域。XRD、NMR和EXAFS等表征方法可以判别锡硅分子筛内锡原子的配位形式及落位。合成锡硅分子筛通常采用水热晶化法、后插入法和干胶转化法。碱性水热合成过程中匹配锡源和硅源的水解速率是使锡原子高效插入分子筛骨架的关键。中性水热合成方法制备的锡硅分子筛结晶度较高,但存在使用剧毒含氟试剂和晶粒较大等问题。干胶转化法可在短时间内制备高结晶度含锡分子筛,但该法存在传质传热差等弊端。采用后插入法可将锡原子插入到不同拓扑结构的分子筛骨架,但锡原子易发生聚集。同时,采用碱处理、硬模板剂法和软模板剂法合成多级孔锡硅分子筛,可提升骨架锡活性中心的可接近性。其中,采用软模板剂法展示出独特的优势,其可制备介孔分布均匀且贯通性良好的多级孔锡硅分子筛。另外,锡硅分子筛的骨架锡原子对含氧官能团具有优异的活化作用,因此其在Meerwein-Ponndorf-Verley-Oppenauer反应、葡萄糖异构化反应、乳酸及乳酸酯制备及Baeyer-Villiger氧化反应中都展示了良好的催化效果。
中图分类号:
刘聿嘉,夏长久,林民,朱斌,彭欣欣,罗一斌,舒兴田. 锡硅分子筛:新型杂原子分子筛催化材料[J]. 化工进展, 2020, 39(2): 605-615.
Yujia LIU,Changjiu XIA,Min LIN,Bin ZHU,Xinxin PENG,Yibin LUO,Xingtian SHU. Stannosilicate molecular sieve: a new star in heteroatom incorporated zeolite family[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 605-615.
1 | 鞠雅娜, 沈志虹, 赵佳, 等. 杂原子( B, Ti, Fe)进入 Y 型分子筛骨架的表征[J]. 物理化学学报, 2006, 22(1): 28-32. |
JU Yana, SHEN Zhihong, ZHAO Jia, et al. Characterization of heteroatom (B, Ti, Fe) inserted into framework of zeolites[J]. Acta Physico-Chimica Sinica, 2006, 22(1): 28-32. | |
2 | 刘春英, 柳云骐, 安长华, 等. 杂原子分子筛的水热合成与应用研究进展[J]. 化工进展, 2006, 25(6): 646-650. |
LIU Chunying, LIU Yunqi, AN Changhua, et al. Progress in hydrothermal synthesis and application of heteroatomic molecular sieves[J]. Chemical Industry and Engineering Progress, 2006, 25(6): 646-650. | |
3 | TARAMASSO M, PEREGO G, NOTARI B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides: US4410501[P]. 1983-10-18. |
4 | PANOV G I, SHEVELEVA G A, KHARITONOV A S, et al. Oxidation of benzene to phenol by nitrous oxide over Fe-ZSM-5 zeolites[J]. Applied Catalysis A: General, 1992, 82(1): 31-36. |
5 | EI-MALKI E M, SANTEN R A VAN, SACHTLER W M H. Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: identification of acid sites[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4611-4622. |
6 | LUBANGO L M, SCURRELL M S. Light alkanes aromatization to BTX over Zn-ZSM-5 catalysts: enhancements in BTX selectivity by means of a second transition metal ion[J]. Applied Catalysis A: General, 2002, 235(1/2): 265-272. |
7 | DONGARE M K, SINGH P, MOGHE P P, et al. Synthesis, characterization, and catalytic properties of [Zr]-ZSM-5[J]. Zeolites, 1991, 11(7): 690-693. |
8 | CHIESA M, MEYNEN V, DOORSLAER S VAN, et al. Vanadium silicalite-1 nanoparticles deposition onto the mesoporous walls of SBA-15. Mechanistic insights from a combined EPR and Raman study[J]. Journal of the American Chemical Society, 2006, 128(27): 8955-8963. |
9 | MAL N K, RAMASWAMY A V. Synthesis and catalytic properties of large-pore Sn-β and Al-free Sn-β molecular sieves[J]. Chemical Communications, 1997 (5): 425-426. |
10 | MOLINER M, ROMÁN-LESHKOV Y, DAVIS M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences, 2010, 107(14): 6164-6168. |
11 | MAL N K, BHAUMIK A, RAMASWAMY V, et al. Synthesis of Al-free Sn-containing molecular sieves of MFI, MEL and MTW types and their catalytic activity in oxidation reactions[J]. Studies in Surface Science & Catalysis, 1995, 94: 317-324. |
12 | RENZ M, BLASCO T, CORMA A, et al. Selective and shape-selective Baeyer-Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-Beta zeolites and H2O2[J]. Chemistry-A European Journal, 2002, 8(20): 4708-4717. |
13 | CHANG C C, CHO H J, WANG Z, et al. Fluoride-free synthesis of a Sn-BEA catalyst by dry gel conversion[J]. Green Chemistry, 2015, 17(5): 2943-2951. |
14 | OSMUNDSEN C M, HOLM M S, DAHL S, et al. Tin-containing silicates: structure-activity relations[J]. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2012, 468(2143): 2000-2016. |
15 | CORMA A, NEMETH L T, RENZ M, et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations[J]. Nature, 2001, 412(6845): 423-425. |
16 | HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science, 2010, 328(5978): 602-605. |
17 | PARULKAR A, JOSHI R, DESHPANDE N, et al. Synthesis and catalytic testing of Lewis acidic nano-MFI zeolites for the epoxide ring opening reaction with alcohol[J]. Applied Catalysis A: General, 2018, 566: 25-32. |
18 | CORMA A, DOMINE M E, NEMETH L, et al. Al-free Sn-beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction)[J]. Journal of the American Chemical Society, 2002, 124(13): 3194-3195. |
19 | MAL N K, BHAUMIK A, KUMAR R, et al. Sn-ZSM-12, a new, large pore MTW type tin-silicate molecular sieve: synthesis, characterization and catalytic properties in oxidation reactions[J]. Catalysis letters, 1995, 33(3/4): 387-394. |
20 | LÁZÁR K, SZELECZKY A M, MAL N K, et al. In situ119Sn-Mössbauer spectroscopic study on MR, MEL, and MTW tin silicalites[J]. Zeolites, 1997, 19(2/3): 123-127. |
21 | SHAH P, RAMASWAMYA V, LAZAR K, et al. Direct hydrothermal synthesis of mesoporous Sn-SBA-15 materials under weak acidic conditions[J]. Microporous & Mesoporous Materials, 2007, 100(1): 210-226. |
22 | KOWALAK S, PAWL OWSKA M, KUSTOV L M. Properties of SnAlPO-5[M]. Studies in Surface Science and Catalysis, 1995, 94: 203-210. |
23 | MAL N K, RAMASWAMY V, GANAPATHY S, et al. Synthesis and characterization of crystalline, tin-silicate molecular sieves with MFI structure[J]. Journal of the Chemical Society, Chemical Communications, 1994, (17): 1933-1934. |
24 | NIPHADKAR P S, KOTWAL M S, DESHPANDE S S, et al. Tin-silicalite-1: synthesis by dry gel conversion, characterization and catalytic performance in phenol hydroxylation reaction[J]. Materials Chemistry & Physics, 2009, 114(1): 344-349. |
25 | HARRIS J W, CORDON M J, DI IORIO J R, et al. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization[J]. Journal of Catalysis, 2016, 335: 141-154. |
26 | LI P, LIU G, WU H, et al. Postsynthesis and selective oxidation properties of nanosized Sn-beta zeolite[J]. The Journal of Physical Chemistry C, 2011, 115(9): 3663-3670. |
27 | KANG Z, ZHANG X, LIU H, et al. A rapid synthesis route for Sn-beta zeolites by steam-assisted conversion and their catalytic performance in Baeyer-Villiger oxidation[J]. Chemical Engineering Journal, 2013, 218(3): 425-432. |
28 | HARRIS J W, LIAO W C, DI IORIO J R, et al. Molecular structure and confining environment of Sn sites in single-site chabazite zeolites[J]. Chemistry of Materials, 2017, 29(20): 8824-8837. |
29 | DAI W, WANG C, TANG B, et al. Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides[J]. ACS Catalysis, 2016, 6(5): 2955-2964. |
30 | LIU G, JIANG J G, YANG B, et al. Hydrothermal synthesis of MWW-type stannosilicate and its post-structural transformation to MCM-56 analogue[J]. Microporous and Mesoporous Materials, 2013, 165: 210-218. |
31 | GUO Q, FAN F, PIDKO E A, et al. Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid[J]. ChemSusChem, 2013, 6(8): 1352-1356. |
32 | GRAFF W N P VAN DER, TEMPELMAN C H L, PIDKO E A, et al. Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions[J]. Catalysis Science & Technology, 2017, 7(14): 3151-3162. |
33 | YANG X, WU L, WANG Z, et al. Conversion of dihydroxyacetone to methyl lactate catalyzed by highly active hierarchical Sn-USY at room temperature[J]. Catalysis Science & Technology, 2016, 6(6): 1757-1763. |
34 | LUO H Y, BUI L, GUNTHER W R, et al. Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer-Villiger oxidation of cyclic ketones[J]. ACS Catalysis, 2012, 2(12): 2695-2699. |
35 | MILLINE R, MASSARA E P, PEREGO G, et al. Framework composition of titanium silicalite-1[J]. Journal of Catalysis, 1992, 137(2): 497-503. |
36 | NIPHADKAR P S, BHANGE D S, SELVARAJ K, et al. Thermal expansion properties of stannosilicate molecular sieve with MFI type structure[J]. Chemical Physics Letters, 2012, 548: 51-54. |
37 | MAL N K, RAMASWAMY A V. Hydroxylation of phenol over Sn-silicalite-1 molecular sieve: solvent effects[J]. Journal of Molecular Catalysis A: Chemical, 1996, 105(3): 149-158. |
38 | TANG B, DAI W, WU G, et al. Improved postsynthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides[J]. ACS Catalysis, 2014, 4(8): 2801-2810. |
39 | NEMETH L, MOSCOSO J, ERDMAN N, et al. Synthesis and characterization of Sn-beta as a selective oxidation catalyst[J]. Studies in Surface Science & Catalysis, 2004, 154(4): 2626-2631. |
40 | XIA C, LIU Y, LIN M, et al. Confirmation of the isomorphous substitution by Sn atoms in the framework positions of MFI-typed zeolite[J]. Catalysis Today, 2018, 316: 193-198. |
41 | BERMEJO-DEVAL R, GOUNDER R, DAVIS M E. Framework and extraframework tin sites in zeolite beta react glucose differently[J]. ACS Catalysis, 2012, 2(12): 2705-2713. |
42 | FEJES P, NAGY J B, KOVÁCS K, et al. Synthesis of tin(IV) silicalites (MFI) and their characterization A Mössbauer and MAS NMR spectroscopy study[J]. Applied Catalysis A: General, 1996, 145(1/2): 155-184. |
43 | BERMEJO-DEVAL R, ASSARY R S, NIKOLLA E, et al. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): 9727-9732. |
44 | BARE S R, KELLY S D, SINKLER W, et al. Uniform catalytic site in Sn-β-Zeolite determined using X-ray absorption fine structure[J]. Journal of the American Chemical Society, 2005, 127(37): 12924-12932. |
45 | 王幸宜. 催化剂表征[M]. 上海:华东理工大学出版社,2008: 1. |
WANG Xingyi. Catalyst characterization[M]. Shanghai: East China University of Technology Press, 2008: 1. | |
46 | CHO H J, CHANG C C, FAN W. Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst[J]. Green Chemistry, 2014, 16(7): 3428-3433. |
47 | PELMENSCHIKOV A G, SANTEN R A VAN, JANCHEN J, et al. Acetonitrile-d3 as a probe of Lewis and Brönsted acidity of zeolites[J]. The Journal of Physical Chemistry, 1993, 97(42): 11071-11074. |
48 | BORONAT M, CONCEPCIÓN P, CORMA A, et al. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimization by the combination of theoretical and experimental studies[J]. Journal of Catalysis, 2005, 234(1): 111-118. |
49 | WICHTERLOVÁ B, TVARŮŽKOVÁ Z, SOBALÍK Z, et al. Determination and properties of acid sites in H-ferrierite: a comparison of ferrierite and MFI structures[J]. Microporous and Mesoporous Materials, 1998, 24(4/5/6): 223-233. |
50 | ROY S, BAKHMUTSKY K, MAHMOUD E, et al. Probing Lewis acid sites in Sn-Beta zeolite[J]. ACS Catalysis, 2013, 3(4): 573–580. |
51 | 徐如人, 庞文琴, 于吉红. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. |
XU Ruren, PANG Wenqin, YU Jihong. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2004. | |
52 | MAL N K, RAMASWAMY V, RAJAMOHANAN P R, et al. Sn-MFI molecular sieves: synthesis methods, 29Si liquid and solid MAS-NMR, 119Sn static and MAS NMR studies[J]. Microporous Materials, 1997, 12(4/5/6): 331-340. |
53 | CHANG C C, WANG Z, DORNATH P, et al. Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars[J]. RSC Advances, 2012, 2(28): 10475-10477. |
54 | DEVRIESE L I, MARTENS J A, THYBAUT J W, et al. A new methodology to probe shape selectivity in porous adsorbents[J]. Microporous & Mesoporous Materials, 2008, 116(1/2/3): 607-613. |
55 | WANG X, ZHANG X, WANG Y, et al. Investigating the role of zeolite nanocrystal seeds in the synthesis of mesoporous catalysts with zeolite wall structure[J]. Chemistry of Materials, 2011, 23(20): 4469-4479. |
56 | ZHANG X, LIU H, YEUNG K L. Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth[J]. Materials Chemistry & Physics, 2006, 96(1): 42-50. |
57 | XU W, DONG J, LI J, et al. A novel method for the preparation of zeolite ZSM-5[J]. Journal of the Chemical Society, Chemical Communications, 1990 (10): 755-756. |
58 | DIJKMANS J, GABRİËLS D, DUSSELIER M, et al. Productive sugar isomerization with highly active Sn in dealuminated β zeolites[J]. Green Chemistry, 2013, 15(10): 2777-2785. |
59 | HAMMOND C, CONRAD S, HERMANS I. Simple and scalable preparation of highly active Lewis acidic Sn-β[J]. AngewandteChemie International Edition, 2012, 51(47): 11736-11739. |
60 | JIN J, YE X, LI Y, et al. Synthesis of mesoporous Beta and Sn-Beta zeolites and their catalytic performances[J]. Dalton Transactions, 2014, 43(22): 8196-8204. |
61 | WOLF P, VALLA M, NUNEZ-ZARUR F, et al. Correlating synthetic methods, morphology, atomic-level structure and catalytic activity of Sn-β catalysts[J]. ACS Catalysis, 2016, 6(7): 4047-4063. |
62 | CHEN L H, LI X Y, ROOKE J C, et al. Hierarchically structured zeolites: synthesis, mass transport properties and applications[J]. Journal of Materials Chemistry, 2012, 22(34): 17381-17403. |
63 | 彭鹏, 张占全, 王有和. 多级孔分子筛的制备与催化应用[J]. 化学进展, 2013, 25(12): 2028-2037. |
PENG Peng, ZHANG Zhanquan, WANG Youhe. Preparation and catalytic application of multi-porous molecular sieves[J]. Progress in Chemistry, 2013, 25(12): 2028-2037. | |
64 | DAPSENS P Y, MONDELLI C, JAGIELSKI J, et al. Hierarchical Sn-MFI zeolites prepared by facile top-down methods for sugar isomerisation[J]. Catalysis Science & Technology, 2014, 4(8): 2302-2311. |
65 | JINKA K M, LEE S C, PARK S E, et al. Microwave synthesized mesoporous tin MFI as efficient catalyst for Baeyer-Villiger oxidation of cyclic ketones[J]. Studies in Surface Science and Catalysis, 2008, 174: 1187-1190. |
66 | CHO H J, DORNATH P, FAN W. Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars[J]. ACS Catalysis, 2014, 4(6): 2029-2037. |
67 | XIAO F S, WANG L, YIN C, et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angewandte Chemie International Edition, 2006, 118(19): 3162-3165. |
68 | CORMA A, DOMINE M E, VALENCIA S. Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite[J]. Journal of Catalysis, 2003, 215(2): 294-304. |
69 | ROMÁN-LESHKOV Y, MOLINER M, LABINGER J A, et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. Angewandte Chemie International Edition, 2010, 49(47): 8954-8957. |
70 | LEW C M, RAJABBEIGI N, TSAPATSIS M. Tin-containing zeolite for the isomerization of cellulosic sugars[J]. Microporous and Mesoporous Materials, 2012, 153: 55-58. |
71 | TAARNING E, SARAVANAMURUGAN S, SPANGSBERG H M, et al. Zeolite-catalyzed isomerization of triose sugars[J]. ChemSusChem, 2009, 2(7): 625-627. |
72 | CORMA A, NEMETH L T, RENZ M, et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations[J]. Nature, 2001, 412(6845): 423. |
73 | CORMA A, RENZ M. Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon-carbon bond formation in the intramolecular carbonyl-ene reaction[J]. Chemical Communications, 2004 (5): 550-551. |
74 | DE VYVER S VAN, ODERMATT C, ROMERO K, et al. Solid Lewis acids catalyze the carbon-carbon coupling between carbohydrates and formaldehyde[J]. ACS Catalysis, 2015, 5(2): 972-977. |
75 | DAI W, WANG C, TANG B, et al. Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides[J]. ACS Catalysis, 2016, 6(5): 2955-2964. |
76 | PARULKAR A, JOSHI R, DESHPANDE N, et al. Synthesis and catalytic testing of Lewis acidic nano-MFI zeolites for the epoxide ring opening reaction with alcohol[J]. Applied Catalysis A: General, 2018, 566: 25-32. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[13] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[14] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[15] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |