化工进展 ›› 2020, Vol. 39 ›› Issue (2): 616-626.DOI: 10.16085/j.issn.1000-6613.2019-0765
收稿日期:
2019-05-10
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
李桂群
作者简介:
侯瑞(1989—),男,硕士,工程师,研究方向为特种功能涂料。E-mail:Rui HOU(),Guiqun LI(),Yan ZHANG,Wenhao DING,Baoqin ZHANG,Mingjun LI
Received:
2019-05-10
Online:
2020-02-05
Published:
2020-03-12
Contact:
Guiqun LI
摘要:
具有超疏水表面的聚合物可应用于自清洁、抗结冰、抗黏附、防腐蚀和油水分离等诸多领域。随着研究的深入,超疏水材料的原理逐渐清晰,实用性研究越来越受到重视,简化制备工艺,降低原材料成本,延长使用寿命,提高表面的耐磨性、耐候性,成为超疏水材料获得应用的关键。在诸多超疏水表面制备方法中,聚合物相分离技术操作简单易行、原材料成本低廉,因此具备很高的应用潜力,是超疏水材料重要的应用方法。虽然相分离技术在超疏水表面制备中的应用由来已久,但针对这一技术的总结论述却相对较少,本文综述和归纳了通过聚合物相分离技术制备超疏水表面的方法,介绍了相关应用,并总结了超疏水材料在研究中存在的对耐环境性能重视不足、缺乏系统性评价方法等问题,认为聚合物相分离技术对提升超疏水材料的实用性意义重大。
中图分类号:
侯瑞,李桂群,张岩,丁文皓,张宝芹,李明俊. 聚合物相分离技术在超疏水表面制备中的应用[J]. 化工进展, 2020, 39(2): 616-626.
Rui HOU,Guiqun LI,Yan ZHANG,Wenhao DING,Baoqin ZHANG,Mingjun LI. Application of polymer phase separation technique in preparation of superhydrophobic surface[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 616-626.
1 | CHENG Y T, RODAK D E. Is the lotus leaf superhydrophobic?[J]. Applied physics letters, 2005, 86(14): 144101. |
2 | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
3 | GAO X, JIANG L. Biophysics: water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36. |
4 | NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677. |
5 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
6 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
7 | RAHMAWAN Y, MOON M W, KIM K S, et al. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity[J]. Langmuir, 2009, 26(1): 484-491. |
8 | HEJAZI V, NOSONOVSKY M. Contact angle hysteresis in multiphase systems[J]. Colloid and Polymer Science, 2013, 291(2): 329-338. |
9 | KWON M H, SHIN H S, CHU C N. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition[J]. Applied Surface Science, 2014, 288: 222-228. |
10 | VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier- a review[J]. Surface and Coatings Technology, 2018, 341: 40-56. |
11 | CHEN X, YUAN J, HUANG J, et al. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications[J]. Applied Surface Science, 2014, 311: 864-869. |
12 | LI J, LI C, YANG G, et al. Wettability transition on micro-nano hierarchical structured Ni20Cr coating surface by selective spontaneous adsorption during vacuum evacuation[J]. Materials Chemistry and Physics, 2018, 219: 292-302. |
13 | XIONG J, SARKAR D K, CHEN X G. Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties[J]. Applied Surface Science, 2017, 407: 361-370. |
14 | YEGANEH M, MOHAMMADI N. Superhydrophobic surface of Mg alloys- a review[J]. Journal of Magnesium and Alloys, 2018, 6(1): 59-70. |
15 | RAN M, ZHENG W, WANG H. Fabrication of superhydrophobic surfaces for corrosion protection- a review[J]. Materials Science and Technology, 2019, 35(3): 313-326. |
16 | BAYER I S, STEELE A, MARTORANA P, et al. Biolubricant induced phase inversion and superhydrophobicity in rubber-toughened biopolymer/organoclay nanocomposites[J]. Applied Physics Letters, 2009, 95(6): 063702. |
17 | MARUYAMA N, KOITO T, NISHIDA J, et al. Mesoscopic patterns of molecular aggregates on solid substrates[J]. Thin Solid Films, 1998, 327: 854-856. |
18 | VOGELAAR L, BARSEMA J N, RIJN C J M VAN, et al. Phase separation micromolding—PSμM[J]. Advanced Materials, 2003, 15(16): 1385-1389. |
19 | CASTRO A J. Methods for making microporous products: US4247498[P].1981-01-27. |
20 | YAMAMURA M, NAKAMURA S, KAJIWARA T, et al. Flow-induced stripe pattern formation in phase-separating fluids[J]. Polymer, 2003, 44(16): 4699-4704. |
21 | GU M, ZHANG J, WANG X, et al. Formation of poly (vinylidene fluoride)(PVDF) membranes via thermally induced phase separation[J]. Desalination, 2006, 192(1/3): 160-167. |
22 | ZHANG W, LU P, QIAN L, et al. Fabrication of superhydrophobic paper surface via wax mixture coating[J]. Chemical Engineering Journal, 2014, 250: 431-436. |
23 | SUN Y, YANG Z, LI L, et al. Facile preparation of isotactic polypropylene microporous membranes with bioinspired hierarchical morphology for nano-scale water-in-oil emulsion separation[J]. Journal of Membrane Science, 2019, 581: 224-235. |
24 | ERBIL H Y, DEMIREL A L, AVCI Y, et al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science, 2003, 299(5611): 1377-1380. |
25 | LI X, CHEN G, MA Y, et al. Preparation of a super-hydrophobic poly (vinyl chloride) surface via solvent–nonsolvent coating[J]. Polymer, 2006, 47(2): 506-509. |
26 | WEI Z J, LIU W L, TIAN D, et al. Preparation of lotus-like superhydrophobic fluoropolymer films[J]. Applied Surface Science, 2010, 256(12): 3972-3976. |
27 | ARUNA S T, BINSY P, RICHARD E, et al. Properties of phase separation method synthesized superhydrophobic polystyrene films[J]. Applied Surface Science, 2012, 258(7): 3202-3207. |
28 | CENGIZ U, ERBIL H Y. Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent[J]. Applied Surface Science, 2014, 292: 591-597. |
29 | HOU Y, WANG Z, GUO J, et al. Facile fabrication of robust superhydrophobic porous materials and their application in oil/water separation[J]. Journal of Materials Chemistry A, 2015, 3(46): 23252-23260. |
30 | XUE C H, LI Y R, HOU J L, et al. Self-roughened superhydrophobic coatings for continuous oil-water separation[J]. Journal of Materials Chemistry A, 2015, 3(19): 10248-10253. |
31 | GAO J, HUANG X, WANG L, et al. Super-hydrophobic coatings based on non-solvent induced phase separation during electro-spraying[J]. Journal of Colloid and Interface Science, 2017, 506: 603-612. |
32 | GAO S, DONG X, HUANG J, et al. Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation[J]. Chemical Engineering Journal, 2018, 333: 621-629. |
33 | ZHAO N, XIE Q, WENG L, et al. Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution[J]. Macromolecules, 2005, 38(22): 8996-8999. |
34 | ZHAO N, XU J, XIE Q, et al. Fabrication of biomimetic superhydrophobic coating with a micro‐nano‐binary structure[J]. Macromolecular Rapid Communications, 2005, 26(13): 1075-1080. |
35 | MENG J, LIN S, XIONG X. Preparation of breathable and superhydrophobic coating film via spray coating in combination with vapor-induced phase separation[J]. Progress in Organic Coatings, 2017, 107: 29-36. |
36 | 李建华. 反应诱导相分离法制备多孔聚合物材料[D]. 北京: 北京化工大学, 2010. |
LI J H. Preparation of porous polymer via chemically induced phase separation[D]. Beijing: Beijing University of Chemical Technology, 2010. | |
37 | SCHMIDT R H, HAUPT K. Molecularly imprinted polymer films with binding properties enhanced by the reaction-induced phase separation of a sacrificial polymeric porogen[J]. Chemistry of Materials, 2005, 17(5): 1007-1016. |
38 | SZCZEPANSKI C R, DARMANIN T, GUITTARD F. Spontaneous, phase-separation induced surface roughness: a new method to design parahydrophobic polymer coatings with rose petal-like morphology[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3063-3071. |
39 | BHASKARAPILLAI A, SEVILIMEDU N V, SELLERGREN B. Synthesis and characterization of imprinted polymers for radioactive waste reduction[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3730-3737. |
40 | KANAMORI K, HASEGAWA J, NAKANISHI K, et al. Facile synthesis of macroporous cross-linked methacrylate gels by atom transfer radical polymerization[J]. Macromolecules, 2008, 41(19): 7186-7193. |
41 | PARK S, KIM H K, HONG J W. Investigation of the photopolymerization-induced phase separation process in polymer dispersed liquid crystal[J]. Polymer Testing, 2010, 29(7): 886-893. |
42 | SCHULZE M W, MCINTOSH L D, HILLMYER M A, et al. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation[J]. Nano letters, 2013, 14(1): 122-126. |
43 | LUFRANO F, SQUADRITO G, PATTI A, et al. Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells[J]. Journal of Applied Polymer Science, 2000, 77(6): 1250-1256. |
44 | KATO S, SATO A. Micro/nanotextured polymer coatings fabricated by UV curing-induced phase separation: creation of superhydrophobic surfaces[J]. Journal of Materials Chemistry, 2012, 22(17): 8613-8621. |
45 | ZHANG Y P, LI P P, LIU P F, et al. Fast and simple fabrication of superhydrophobic coating by polymer induced phase separation[J]. Nanomaterials, 2019, 9(3): 411. |
46 | LEVKIN P A, SVEC F, FRÉCHET J M J. Porous polymer coatings: a versatile approach to superhydrophobic surfaces[J]. Advanced Functional Materials, 2009, 19(12): 1993-1998. |
47 | DU X, LI J S, LI L X, et al. Porous poly (2-octyl cyanoacrylate): a facile one-step preparation of superhydrophobic coatings on different substrates[J]. Journal of Materials Chemistry A, 2013, 1(4): 1026-1029. |
48 | XIAO L, LI J, MIESZKIN S, et al. Slippery liquid-infused porous surfaces showing marine antibiofouling properties[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10074-10080. |
49 | WANG D, ZHANG Z, LI Y, et al. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10014-10021. |
50 | XIE Q, XU J, FENG L, et al. Facile Creation of a super‐amphiphobic coating surface with bionic microstructure[J]. Advanced Materials, 2004, 16(4): 302-305. |
51 | PI P, MU W, FEI G, et al. Superhydrophobic film fabricated by controlled microphase separation of PEO-PLA mixture and its transparence property[J]. Applied Surface Science, 2013, 273: 184-191. |
52 | WONG W S Y, STACHURSKI Z H, NISBET D R, et al. Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks[J]. ACS Applied Materials & Interfaces, 2016, 8(21): 13615-13623. |
53 | STEELE A, BAYER I, LOTH E. Adhesion strength and superhydrophobicity of polyurethane/organoclay nanocomposite coatings[J]. Journal of Applied Polymer Science, 2012, 125(s1): E445-E452. |
54 | 余丽丽,汤新景. 光敏感型嵌段聚合物胶束的研究进展[J]. 化工进展, 2014, 33(9): 2372-2379. |
YU Lili,TANG Xinjing. Progress in photo-responsive block copolymer micelles[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2372-2379. | |
55 | 王鹏, 金云, 皮丕辉, 等. POSS 基杂化含氟丙烯酸酯共聚物涂膜的表面相分离与疏水性研究[J]. 高分子学报, 2017, 4(4): 700-707. |
WANG Peng, JIN Yun, PI Pihui, et al. Surface microphase separation and hydrophobicity of POSS based fluorinated acrylate copolymer[J]. Acta Polymerica Sinica, 2017, 4(4): 700-707. | |
56 | HAN J T, XU X, CHO K. Diverse access to artificial superhydrophobic surfaces using block copolymers[J]. Langmuir, 2005, 21(15): 6662-6665. |
57 | CHECCO A, RAHMAN A, BLACK C T. Robust superhydrophobicity in large‐area nanostructured surfaces defined by block‐copolymer self assembly[J]. Advanced Materials, 2014, 26(6): 886-891. |
58 | XIE Q, FAN G, ZHAO N, et al. Facile creation of a bionic super‐hydrophobic block copolymer surface[J]. Advanced materials, 2004, 16(20): 1830-1833. |
59 | TUNG P H, KUO S W, CHAN S C, et al. Micellization and the surface hydrophobicity of amphiphilic poly (vinylphenol)‐block‐polystyrene block copolymers[J]. Macromolecular Chemistry and Physics, 2007, 208(16): 1823-1831. |
60 | ZHOU X, KONG J, SUN J, et al. Stable superhydrophobic porous coatings from hybrid ABC triblock copolymers and their anticorrosive performance[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 30056-30063. |
61 | JIN Y, WANG P, HOU K, et al. Superhydrophobic porous surface fabricated via phase separation between polyhedral oligomeric silsesquioxane-based block copolymer and polyethylene glycol[J]. Thin Solid Films, 2018, 649: 210-218. |
62 | QUAN C, WERNER O, WÅGBERG L, et al. Generation of superhydrophobic paper surfaces by a rapidly expanding supercritical carbon dioxide-alkyl ketene dimer solution[J]. The Journal of Supercritical Fluids, 2009, 49(1): 117-124. |
63 | OVASKAINEN L, RODRIGUEZ-MEIZOSO I, BIRKIN N A, et al. Towards superhydrophobic coatings made by non-fluorinated polymers sprayed from a supercritical solution[J]. The Journal of Supercritical Fluids, 2013, 77: 134-141. |
64 | KHAPLI S, JAGANNATHAN R. Supercritical CO2 based processing of amorphous fluoropolymer Teflon-AF: surfactant-free dispersions and superhydrophobic films[J]. The Journal of Supercritical Fluids, 2014, 85: 49-56. |
65 | SUBRAMANIAN R, SHANMUGAM K, MARAPPAN S. Fabrication of robust superhydrophobic coatings using PTFE-MWCNT nanocomposite: supercritical fluid processing[J]. Surface and Interface Analysis, 2018, 50(4): 464-470. |
66 | TEMNIKOV M N, KONONEVICH Y N, MESHKOV I B, et al. Simple and fast method for producing flexible superhydrophobic aerogels by direct formation of thiol-ene networks in scCO2[J]. Polymer, 2018, 138: 255-266. |
67 | MERINGOLO C, MASTROPIETRO T F, POERIO T, et al. Tailoring PVDF membranes surface topography and hydrophobicity by a sustainable two-steps phase separation process[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10069-10077. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[4] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[5] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[6] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[7] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[8] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[9] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[10] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[11] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[12] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[15] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |