化工进展 ›› 2020, Vol. 39 ›› Issue (2): 584-595.DOI: 10.16085/j.issn.1000-6613.2019-0798
收稿日期:
2019-05-16
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
田禾青
作者简介:
田禾青(1987—),男,讲师,研究方向为储能材料。E-mail:基金资助:
Heqing TIAN(),Junjie ZHOU,Chaxiu GUO
Received:
2019-05-16
Online:
2020-02-05
Published:
2020-03-12
Contact:
Heqing TIAN
摘要:
强化熔盐材料比热容可以有效增强熔盐材料的蓄热能力,减小蓄热系统面积及热损失,进而降低蓄热成本,是近年来中高温储能领域的研究热点。本文主要从熔盐储热材料比热容强化的必要性、强化方法和强化机理等方面综述了近年来熔盐传热蓄热材料比热容强化的研究进展。具体阐述了添加可溶性添加剂和掺杂异质纳米颗粒形成纳米流体两种强化熔盐比热容的方法及目前存在的问题,重点探讨了熔盐纳米流体的制备方法、异质纳米颗粒体系、强化效果及比热容强化机理等问题。此外,指出了当前利用纳米流体强化熔盐储热材料比热容方面存在的不足:研究体系单一、悬浮稳定性差和比热容强化机理不完善等,并对熔盐纳米流体的未来发展方向,即多体系熔盐纳米流体的开发,多手段比热容强化机理的揭示和多方法熔盐纳米流体物性的测量进行了展望。
中图分类号:
田禾青,周俊杰,郭茶秀. 熔盐储热材料比热容强化的研究进展[J]. 化工进展, 2020, 39(2): 584-595.
Heqing TIAN,Junjie ZHOU,Chaxiu GUO. Progress of specific heat enhancement of molten salt thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 584-595.
1 | 何雅玲. 工业余热高效综合利用的重大共性基础问题研究[J]. 科学通报, 2016, 61(17): 1856-1857. |
HE Y L. Study on the major common problems of industrial waste heat efficient comprehensive utilization[J]. Chinese Science Bulletin, 2016, 61(17): 1856-1857. | |
2 | MEDRANO M, GIL A, MARTORELL I, et al. State of the art on high-temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization[J]. Renewable & Sustainable Energy Reviews, 2010, 14(1): 56-72. |
3 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2010, 14(3): 955-970. |
4 | DUNN R I, HEARPS P J, WRIGHT M N. Molten-salt power towers: newly commercial concentrating solar storage[J]. Proceedings of the IEEE, 2012, 100(2): 504-515. |
5 | KURAVI S, TRAHAN J, GOSWAMI D Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Progress in Energy & Combustion Science, 2013, 39(4): 285-319. |
6 | VIGNAROOBAN K, XU X, ARVAY A, et al. Heat transfer fluids for concentrating solar power systems-a review[J]. Applied Energy, 2015, 146: 383-396. |
7 | BUCK R, PACHECO J E. An update on solar central receiver systems, projects, and technologies[J]. Journal of Solar Energy Engineering, 2002, 124(2): 98-108. |
8 | STARACE A K, GOMEZ J C, GLATZMAIER G C. Can particle-stabilized inorganic dispersions be high-temperature heat-transfer and thermal energy storage fluids?[J]. Journal of Materials Science, 2013, 48(11): 4023-4031. |
9 | ARTHUR O, KARIM M. An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 739-755. |
10 | ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. |
11 | PERRY R H, GREEN D W. Perry’s chemical engineers’ handbook[M]. New York: McGraw-Hill Professional, 1999. |
12 | ZHANG H, BAEYENS J, CACERES G, et al. Thermal energy storage: recent developments and practical aspects[J]. Progress in Energy and Combustion Science, 2016, 53: 1-40. |
13 | AN X, CHENG J, ZHANG P, et al. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt[J]. Faraday Discussions, 2016, 190: 327-338. |
14 | 林璟, 方利国. 纳米流体强化传热技术及其应用新进展[J]. 化工进展, 2008, 27(4): 488-494. |
LIN J, FANG L G. Recent progress of technology and application of heat transfer enhancement of nanofuilds[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 488-494. | |
15 | PENG Q, DING J, WEI X, et al. The preparation and properties of multi-component molten salts[J]. Applied Energy, 2010, 87(9): 2812-2817. |
16 | WU Y T, LI Y, REN N, et al. Improving the thermal properties of NaNO3-KNO3, for concentrating solar power by adding additives[J]. Solar Energy Materials & Solar Cells, 2017, 160: 263-268. |
17 | 阴慧琴. 腐蚀产物CrF3对LiF-NaF-KF熔盐物化性质的影响研究[D]. 上海: 中国科学院研究生院, 2015. |
YIN H Q. The effect study of corrosion product CrF3 on physico-chemical properties of LiF-NaF-KF[D]. Shanghai: The University of Chinese Academy of Sciences, 2015. | |
18 | 杜威. 碳酸盐-氟盐高温熔盐的性能研究[D]. 沈阳: 东北大学, 2013. |
DU W. Study on properties of carbonate-fluoride high temperature molten salt[D]. Shenyang: Northeastern University, 2013. | |
19 | CHOL S. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME-Publications-Fed, 1995, 231: 99-106. |
20 | 冯黛丽. 金属纳米基元及其复合体的相变热特性[D]. 北京: 北京科技大学, 2015. |
FENG D L. Phase change thermal properties of metallic nano units and their composites[D]. Beijing: University of Science and Technology Beijing, 2015. | |
21 | SHIN D, BANERJEE D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of Heat Transfer, 2013, 135(3): 032801. |
22 | MURSHED S M S, DE CASTRO C A N, LOURENCO M J V, et al. Current research and future applications of nano-and ionano-fluids[J]. Journal of Physics: Conference Series, 2012, 395: 012117. |
23 | SHIN D, BANERJEE D. Effects of silica nanoparticles on enhancing eutectic carbonate salt specific heat (work in progress)[J]. International Journal of Structural Changes in Solids, 2010, 2: 25-31. |
24 | SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat & Mass Transfer, 2011, 54(5/6): 1064-1070. |
25 | HANI T, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat & Mass Transfer, 2013, 57(2): 542-548. |
26 | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials & Solar Cells, 2017, 167: 60-69. |
27 | CHEN X, WU Y T, ZHANG L D, et al. Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials & Solar Cells, 2018, 176: 42-48. |
28 | CHEN X, WU Y T, ZHANG L D, et al. Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials & Solar Cells, 2019, 191: 209-217. |
29 | TIAN H, DU L, HUANG C, et al. Enhanced specific heat capacity of binary chloride salt by dissolving magnesium for high-temperature thermal energy storage and transfer[J]. Journal of Materials Chemistry A, 2017, 5(28): 14811-14818. |
30 | HUANG Y, CHENG X M, LI Y Y, et al. Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3-KNO3[J]. Solar Energy, 2018, 160: 208-215. |
31 | MATHIEU L, GRAHAM S, MUHAMMAD A, et al. In situ production of copper oxide nanoparticles in a binary molten salt for concentrated solar power plant applications[J]. Materials, 2017, 10(5): 537-546. |
32 | LASFARGUES M, BELL A, DING Y. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications[J]. Journal of Nanoparticle Research, 2016, 18(6): 150. |
33 | HUANG Y, CHENG X M, LI Y Y, et al. Effect of sol-gel combustion synthesis of nanoparticles on thermal properties of KNO3-NaNO3[J]. Solar Energy Materials & Solar Cells, 2018, 188: 190-201. |
34 | TIZNOBAIK H, SHIN D. Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial[J]. Applied Physics Letters, 2013, 102(17): 173906. |
35 | TIZNOBAIK H, BANERJEE D, SHIN D. Effect of formation of “long range” secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2015, 91: 342-346. |
36 | SHIN D, BANERJEE D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat & Mass Transfer, 2015, 84: 898-902. |
37 | SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2): 216-226. |
38 | ZHANG Z, YUAN Y, OUYANG L, et al. Enhanced thermal properties of Li2CO3-Na2CO3-K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3): 1783-1792. |
39 | BHARATH D, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7): 37-42. |
40 | DEVARADJANE R, SHIN D. Nanoparticle dispersions on ternary nitrate salts for heat transfer fluid applications in solar thermal power[J]. Journal of Heat Transfer, 2016, 138(5): 051901. |
41 | SEO J, SHIN D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3-NaNO3-KNO3) salt eutectic for thermal energy storage[J]. Applied Thermal Engineering, 2016, 102: 144-148. |
42 | 张璐迪, 吴玉庭, 任楠, 等. 纳米粒子的分散对提高LMPS盐比热容的影响[J]. 太阳能学报, 2017, 38(11): 3018-3021. |
ZHANG L D, WU Y T, REN N, et al. Effects of nanoparticle dispersion on enhancing specific heat capacity of LMPS salt[J]. Acta Energiae Solaris Sinica, 2017, 38(11): 3018-3021. | |
43 | ZHANG L D, CHEN X, WU Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials & Solar Cells, 2016, 157: 808-813. |
44 | SHIN D, BANERJEE D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International Journal of Heat & Mass Transfer, 2014, 74(5): 210-214. |
45 | HO M X, PAN C. Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2014, 70: 174-184. |
46 | AWAD A, BURNS A, WALEED M, et al. Latent and sensible energy storage enhancement of nano-nitrate molten salt[J]. Solar Energy, 2018, 172: 191-197. |
47 | AWAD A, NAVARRO H, DING Y, et al. Thermal-physical properties of nanoparticle-seeded nitrate molten salts[J]. Renewable Energy, 120: 275-288. |
48 | JO B, BANERJEE D. Enhanced specific heat capacity of molten salt-based nanomaterials: effects of nanoparticle dispersion and solvent material[J]. Acta Materialia, 2014, 75(9): 80-91. |
49 | JO B, BANERJEE D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage[J]. International Journal of Thermal Sciences, 2015, 98: 219-227. |
50 | TAO Y B, LIN C H, HE Y L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Conversion and Management, 2015, 97: 103-110. |
51 | JIANG Z, PALACIOS A, LEI X, et al. Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) system[J]. Applied Energy, 2019, 235: 529-542. |
52 | WANG L, TAN Z, MENG S, et al. Enhancement of molar heat capacity of nanostructured Al2O3[J]. Journal of Nanoparticle Research, 2001, 3(5/6): 483-487. |
53 | XUE L, KEBLINSKI P, PHILLPOT S R, et al. Effect of liquid layering at the liquid-solid interface on thermal transport[J]. International Journal of Heat & Mass Transfer, 2004, 47(19): 4277-4284. |
54 | JUNG S, JO B, SHIN D, et al. Experimental validation of a simple analytical model for specific heat capacity of aqueous nanofluids[R]. SAETechnical Paper, 2010. |
55 | QIAO G, LASFARGUES M, ALESSIO A, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522. |
56 | QIAO G, ALESSIO A, DING Y. Simulation study of anomalous thermal properties of molten nitrate salt[J]. Powder Technology, 2017, 314: 660-664. |
57 | HU Y, HE Y, ZHANG Z, et al. Effect of Al2O3, nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications[J]. Energy Conversion & Management, 2017, 142: 366-373. |
58 | HU Y, HE Y, ZHANG Z, et al. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage[J]. Solar Energy Materials & Solar Cells, 2019, 192: 94-102. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[3] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[4] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[5] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[6] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[7] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[8] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[9] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[10] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[11] | 于治国. 基于定型结构相变储热模块小区供热的智慧控制系统[J]. 化工进展, 2022, 41(S1): 168-176. |
[12] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
[13] | 杨瑜锴, 夏永鹏, 徐芬, 孙立贤, 管彦洵, 廖鹿敏, 李亚莹, 周天昊, 劳剑浩, 王瑜, 王颖晶. 赤藓糖醇相变储热材料研究进展[J]. 化工进展, 2022, 41(8): 4357-4366. |
[14] | 王震, 闫霆, 霍英杰. 氯化锰/氨热化学吸附储热的特性[J]. 化工进展, 2022, 41(8): 4425-4431. |
[15] | 蒋华义, 胡娟, 齐红媛, 游琰真, 王玉龙, 武哲. 磁性纳米粒子类型和质量浓度对微波热解含油污泥的影响[J]. 化工进展, 2022, 41(7): 3908-3914. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |