45 |
HAN B , WANG J , YAN C , et al . The photoelectrocatalytic CO2 reduction on TiO2@ ZnO heterojunction by tuning the conduction band potential[J]. Electrochimica Acta, 2018, 285(1): 23-29.
|
46 |
SCHREIER M , HEROGUEL F , STEIER L , et al . Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO[J]. Nature Energy, 2017, 2(7): 17087.
|
1 |
ZHAO S , JIN R , JIN R . Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS Energy Letters, 2018, 3(2): 452-462.
|
2 |
YU L , XIE Y , ZHOU J , et al . Robust and selective electrochemical reduction of CO2: the case of integrated 3D TiO2@ MoS2 architectures and Ti-S bonding effects[J]. Journal of Materials Chemistry A, 2018, 6(11): 4706-4713.
|
3 |
ZHOU M , WANG S , YANG P , et al . Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2 [J]. ACS Catalysis, 2018, 8(6): 4928-4936.
|
4 |
CHU S , OU P, GHAMATI P , et al . Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface[J]. Journal of the American Chemical Society, 2018, 140(25): 7869-7877.
|
47 |
ZHUANG T T , LIANG Z Q , SEIFITOKALDANI A , et al . Steering post-C—C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018, 1(6): 421.
|
48 |
DINH C T , BURDYNY T , KIBRIAM G , et al . CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787.
|
5 |
RAVESC, EBBESEN S D , MOGENSEN M , et al . Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 1-23.
|
6 |
GRATZEL M . Photoelectrochemical cells[J]. Nature, 2001, 414(1): 338-344.
|
7 |
HAN E , HU F , ZHANG S , et al . Worm-like FeS2/TiO2 nanotubes for photoelectrocatalytic reduction of CO2 to methanol under visible light[J]. Energy & Fuels, 2018, 32(4): 4357-4363.
|
8 |
BRUCE P G , FREUNBERGER S A , HARDWICK L J , et al . Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19.
|
49 |
AGER J W , LAPKIN A A . Chemical storage of renewable energy[J]. Science, 2018, 360(6390): 707-708.
|
9 |
STOLARCZYK J K , BHATTACHARYYA S , POLAVARAPU L , et al . Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures[J]. ACS Catalysis, 2018, 8(4): 3602-3635.
|
10 |
景维云, 毛庆, 石越, 等 . CO2电催化还原制烃类产物的研究进展[J]. 化工进展, 2017, 36(6): 2150-2157.
|
|
JING W Y , MAO Q , SHI Y , et al . Research progress on CO2 electrocatalytic reduction of hydrocarbon products[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2150-2157.
|
11 |
彭辉, 吴志红, 张建林, 等 . 基于能带匹配理论设计CO2光催化还原催化剂的研究进展[J]. 化工进展, 2014, 33(11): 3007-3012.
|
|
PENG H , WU Z H , ZHANG J L , et al . Research progress in designing CO2 photocatalytic reduction catalysts based on energy band matching theory[J]. Chemical Industry and Engineering Progress, 2014, 33(11):3007-3012.
|
12 |
WANG P , WANG S , WANG H , et al . Recent progress on photo-electrocatalytic reduction of carbon dioxide[J]. Particle & Particle Systems Characterization, 2018, 35(1): 1700371.
|
13 |
FUJISHIMA A , HONDA K . Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37.
|
14 |
BOLTON J R . Solar fuels[J]. Science, 1978, 202(4369): 705-711.
|
15 |
QIAO J , LIU Y , HONG F , et al . A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675.
|
16 |
HONG J , ZHANG W , REN J , et al . Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods[J]. Analytical Methods, 2013, 5(5): 1086-1097.
|
17 |
SURDHAR P S , MEZYKS P , ARMSTRONG D A . Reduction potential of the carboxyl radical anion in aqueous solutions[J]. The Journal of Physical Chemistry, 1989, 93(8): 3360-3363.
|
18 |
HUYNH M H V , MEYER T J . Proton-coupled electron transfers[J]. Chemical Reviews, 2007, 107(11): 5004-5064.
|
19 |
COTENTIN C , ROBERT M , SAVEANTJ M . Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6): 2423-2436.
|
20 |
HABISREUTINGER S N , SCHMIDT-MENDE L , STOLARCZYK J K . Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angew and Chemie International Edition, 2013, 52(29): 7372-7408.
|
21 |
ZHANG N , LONG R , GAO C , et al . Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels[J]. Science China Materials, 2018, 61(6): 771-805.
|
22 |
HALMANN M . Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J]. Nature, 1978, 275(5676): 115.
|
23 |
LI H , LEI Y , HUANG Y , et al . Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation[J]. Journal of Natural Gas Chemistry, 2011, 20(2): 145-150.
|
24 |
ARAI T , SATO S , UEMURA K , et al . Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex[J]. Chemical Communications, 2010, 46(37): 6944-6946.
|
25 |
KANECO S , KATSAMATA H , SUZUKI T , et al . Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes[J]. Applied Catalysis B: Environmental, 2006, 64(1/2): 139-145.
|
26 |
AMPELLI C , CENTI G , PASSALACQUA R , et al . Synthesis of solar fuels by a novel photoelectrocatalytic approach[J]. Energy & Environmental Science, 2010, 3(3): 292-301.
|
27 |
MAGESH G , KIM E S , KANG H J , et al . A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials[J]. Journal of Materials Chemistry A, 2014, 2(7): 2044-2049.
|
28 |
TEMPA T J LA , RANI S , BAO N , et al . Generation of fuel from CO2 saturated liquids using a p-Si nanowire parallel to n-TiO2 nanotube array photoelectrochemical cell[J]. Nanoscale, 2012, 4(7): 2245-2250.
|
29 |
SHAN B , NAYAK A , SAMPAIO R N , et al . Direct photoactivation of a nickel-based, water-reduction photocathode by a highly conjugated supramolecular chromophore[J]. Energy & Environmental Science, 2018, 11(2): 447-455.
|
30 |
SHAN B , NAYAKA, BRENNAMAN M K , et al . Controlling vertical and lateral electron migration using a bifunctional chromophore assembly in dye-sensitized photoelectrosynthesis cells[J]. Journal of the American Chemical Society, 2018, 140(20): 6493-6500.
|
31 |
WANG J C , OGUNSOLU O O , SYKORA M , et al . Elucidating the role of the metal linking ion on the excited state dynamics of self-assembled bilayers[J]. The Journal of Physical Chemistry C, 2018, 122(18): 9835-9842.
|
32 |
QIU J , ZENG G , HAM A, et al . Artificial photosynthesis on TiO2-passivated InP nanopillars[J]. Nano Letters, 2015, 15(9): 6177-6181.
|
33 |
AURIAN-BLAJENI B , HALAMANN M , MANASSCN J . Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-gallium phosphide and p-gallium arsenide semiconductor electrodes[J]. Solar Energy Materials, 1983, 8(4): 425-440.
|
34 |
KAMATA R , KUMAGAI H , YAMAZAKIY, et al . Photoelectrochemical CO2 reduction using a Ru(II)-Re(I) supramolecular photocatalyst connected to a vinyl polymer on a NiO electrode[J]. ACS Applied Materials & Interfaces, 2018, 11(6): 5632-5641.
|
35 |
CHEN L , WANG Z , KANG P . Efficient photoelectrocatalytic CO2 reduction by cobalt complexes at silicon electrode[J]. Chinese Journal of Catalysis, 2018, 39(3): 413-420.
|
36 |
YONEYAMA H , SUGIMURA K , KUWABATA S . Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 249(1/2): 143-153.
|
37 |
XIE S , ZHANG Q , LIU G , et al . Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chemical Communications, 2016, 52(1): 35-59
|
38 |
CHOI C H , CHUNG J , WOO S I . Photoelectrochemical production of formic acid and methanol from carbon dioxide on metal-decorated CuO/Cu2O-layered thin films under visible light irradiation[J]. Applied Catalysis B: Environmental, 2014, 158(1): 217-223.
|
39 |
LATEMPAT J , RANI S , BAO N , et al . Generation of fuel from CO2 saturated liquids using a p-Si nanowire‖ n-TiO2 nanotube array photoelectrochemical cell[J]. Nanoscale, 2012, 4(7): 2245-2250.
|
40 |
HIROTAK, TRYK D A , YAMAMOTO T , et al . Photoelectrochemical reduction of CO2 in a high-pressure CO2 methanol medium at p-type semiconductor electrodes[J]. The Journal of Physical Chemistry B, 1998, 102(49): 9834-9843.
|
41 |
KANECO S , KATSUMATA H , SUZUKI T , et al . Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol[J]. Chemical Engineering Journal, 2006, 116(3): 227-231.
|
42 |
LI Z , CHENG H , LI Y , et al . H2O2 treated CdS with enhanced activity and improved stability by a weak negative bias for CO2 photoelectrocatalytic reduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4325-4334.
|
43 |
LI B , NIU W , CHENG Y , et al . Preparation of Cu2O modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH[J]. Chemical Physics Letters, 2018, 700 (1): 57-63.
|
44 |
ZHENG J , LI X , QIN Y , et al . Zn phthalocyanine/carbon nitride heterojunction for visible light photoelectrocatalytic conversion of CO2 to methanol[J]. Journal of Catalysis, 2019, 371(1): 214-223.
|