化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5557-5564.DOI: 10.16085/j.issn.1000-6613.2019-0494
收稿日期:
2019-04-01
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
冯华军
作者简介:
应贤斌(1995—),男,硕士研究生,研究方向为废水生物处理。E-mail:基金资助:
Xianbin YING(),Lijie HUANG,Rui WANG,Huajun FENG()
Received:
2019-04-01
Online:
2019-12-05
Published:
2019-12-05
Contact:
Huajun FENG
摘要:
运行耗能低和出水水质好是未来废水处理技术的发展趋势。生物电化学辅助膜生物反应器(bioelectrochemistry-assisted membrane bioreactor,BEMBR)耦合了膜生物反应器和微生物燃料电池两种新型水处理技术,取长补短,有效降低了膜污染速率和提高了出水水质,具有良好的应用前景。本文根据膜组件在BEMBR中的功能综述3种典型反应器构型的优势与不足;从COD去除路径和总氮脱除机制分析了BEMBR污泥减量、能耗削减和污染物去除提升的机理;从物理机制、化学机制及生物机制详细阐述了BEMBR抗膜污染机理。最后,针对目前BEMBR存在的局限,从产电性能、污染物去除效果、膜污染控制机理和微生物种群及代谢等方面提出展望,为加快BEMBR工程化应用提供理论参考。
中图分类号:
应贤斌,黄利杰,汪锐,冯华军. 基于微生物燃料电池的新型膜生物反应器研究进展[J]. 化工进展, 2019, 38(12): 5557-5564.
Xianbin YING,Lijie HUANG,Rui WANG,Huajun FENG. Research progress of novel membrane bioreactor based onmicrobial fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5557-5564.
膜类型 | COD去除率/% | NH3-H去除率/% | 总氮去除率/% | 水力停留时间/h | 浊度/NTU | 参考文献 |
---|---|---|---|---|---|---|
纯膜 | ||||||
尼龙网(孔径74μm) | 89.6±3.7 | N.A. | N.A. | 8.6 | 0.8 | Wang 等[ |
中空纤维膜 | >95.0 | >95 | 36% | 6.4 | N.A. | Tian等[ |
中空纤维膜 | >97.0 | >99.9 | 86±2 | 24.0 | N.A. | Gajaraj等[ |
膜阴极 | ||||||
不锈钢网(孔径40μm) | 90.7±6.6 | 92.7 ± 6.0 | 29.3 ± 4.3 | 4.5 | 0.8 | Wang 等[ |
不锈钢网(孔径40μm) | 86.6±2.9 | 97.8 ± 0.9 | 37.0±11.2 | 9.1 | 0.8 | Wang 等[ |
聚吡咯/茜素红/不锈钢网(15μm) | >95.0 | >95.0 | N.A. | 9.6 | <2 | Li等[ |
导电曝气膜 | 94.74 | 80.82 | 80.8 | 12.0 | N.A. | Wu等[ |
MnO2/PVDF/还原氧化石墨/碳毡 | >97.0 | >90.6 | N.A. | 12.0 | N.A. | Gao等[ |
催化碳纤维 | >97.4 | >96.7 | N.A. | 8.0 | N.A. | Gao等[ |
膜空气阴极 | ||||||
无纺布(50μm)/石墨毡 | 87.4~91.2 | 69.5~97.6 | 23.1~57.2 | 1.6~14.5 | <2 | Wang等[ |
表1 BEMBR污染物去除效率
膜类型 | COD去除率/% | NH3-H去除率/% | 总氮去除率/% | 水力停留时间/h | 浊度/NTU | 参考文献 |
---|---|---|---|---|---|---|
纯膜 | ||||||
尼龙网(孔径74μm) | 89.6±3.7 | N.A. | N.A. | 8.6 | 0.8 | Wang 等[ |
中空纤维膜 | >95.0 | >95 | 36% | 6.4 | N.A. | Tian等[ |
中空纤维膜 | >97.0 | >99.9 | 86±2 | 24.0 | N.A. | Gajaraj等[ |
膜阴极 | ||||||
不锈钢网(孔径40μm) | 90.7±6.6 | 92.7 ± 6.0 | 29.3 ± 4.3 | 4.5 | 0.8 | Wang 等[ |
不锈钢网(孔径40μm) | 86.6±2.9 | 97.8 ± 0.9 | 37.0±11.2 | 9.1 | 0.8 | Wang 等[ |
聚吡咯/茜素红/不锈钢网(15μm) | >95.0 | >95.0 | N.A. | 9.6 | <2 | Li等[ |
导电曝气膜 | 94.74 | 80.82 | 80.8 | 12.0 | N.A. | Wu等[ |
MnO2/PVDF/还原氧化石墨/碳毡 | >97.0 | >90.6 | N.A. | 12.0 | N.A. | Gao等[ |
催化碳纤维 | >97.4 | >96.7 | N.A. | 8.0 | N.A. | Gao等[ |
膜空气阴极 | ||||||
无纺布(50μm)/石墨毡 | 87.4~91.2 | 69.5~97.6 | 23.1~57.2 | 1.6~14.5 | <2 | Wang等[ |
1 | BURMAN I, SINHA A. A review on membrane fouling in membrane bioreactors: control and mitigation[M]. Singapore: Springer, 2017: 281-315. |
2 | 聂丽君, 钟华文, 周如金, 等. 混凝/厌氧/兼氧-好氧膜生物反应器组合新工艺处理制革废水[J]. 化工学报, 2016, 67(9): 3995-4003. |
NIE Lijun, ZHONG Huawen, ZHOU Rujin, et al. Treatment of tanning wastewater by integrated process consisted of coagulation, anaerobic baffled reactor and anoxic/aerobic-membrane bioreactor[J]. CIESC Journal, 2016, 67(9): 3995-4003. | |
3 | ZHENG Y, ZHANG W, TANG B, et al. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): pore blocking model and membrane cleaning[J]. Bioresource Technology, 2018, 250: 398-405. |
4 | LU Y, XIAO B, WANG H, et al. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: performance and membrane fouling[J]. Frontiers of Environmental Science & Engineering, 2018, 12(4): 1-5. |
5 | ZHANG J, SATTI A, CHEN X, et al. Low-voltage electric field applied into MBR for fouling suppression: performance and mechanisms[J]. Chemical Engineering Journal, 2015, 273: 223-230. |
6 | HUANG Q, LIU H, WANG Y, et al. A hybrid electric field assisted vacuum membrane distillation method to mitigate membrane fouling[J]. RCS Advances, 2018, 8(32): 18084-18092. |
7 | BIAN B, DAI S, CAI X, et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell[J]. Nano Energy, 2018, 44: 174-180. |
8 | ZOU L, QIAO Y, LI C M. Boosting microbial electrocatalytic kinetics for high power density: insights into synthetic biology and advanced nanoscience[J]. Electrochemical Energy Reviews, 2018, 1(4): 1-32. |
9 | GAJARAJ S, HU Z. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production[J]. Chemosphere, 2014, 117(1): 151-157. |
10 | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. |
11 | ZHANG B, ZHAO H, ZHOU S, et al. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation[J]. Bioresource Technology, 2009, 100(23): 5687-5693. |
12 | CHENG J, ZHU X P, NI J R, et al. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters[J]. Bioresource Technology, 2010, 101(8): 2729-2734. |
13 | WANG J, ZHENG Y, JIA H, et al. In situ investigation of processing property in combination with integration of microbial fuel cell and tubular membrane bioreactor[J]. Bioresource Technology, 2013, 149(4): 163-168. |
14 | HOU D, LU L, REN Z J. Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production[J]. Water Research, 2016, 98: 183-189. |
15 | WANG Y K, SHENG G P, LI W W, et al. Development of a novel bioelectrochemical membrane reactor for wastewater treatment[J]. Environmental Science & Technology, 2011, 45(21): 9256-9261. |
16 | KIM K Y, CHAE K J, CHOI M J, et al. High-quality effluent and electricity production from non-CEM based flow-through type microbial fuel cell[J]. Chemical Engineering Journal, 2013, 218(3): 19-23. |
17 | DI S, WEI Z, WANG D, et al. Performance and membrane fouling characteristics in a membrane bioreactor coupled with microbial fuel cell system[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1367-1372. |
18 | NEOH C H, NOOR Z Z, MUTAMIM N S A, et al. Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems[J]. Chemical Engineering Journal, 2016, 283: 582-594. |
19 | TIAN Y U, CHAO J I, WANG K, et al. Assessment of an anaerobic membrane bio-electrochemical reactor (AnMBER) for wastewater treatment and energy recovery[J]. Journal of Membrane Science, 2014, 450(2): 242-248. |
20 | LI J, GE Z, HE Z. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment[J]. Bioresource Technology, 2014, 167(3): 310-315. |
21 | MA J, WANG Z, DI H, et al. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment[J]. Water Research, 2015, 78: 98-110. |
22 | ZHANG G, ZHANG H, MA Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation[J]. Enzyme & Microbial Technology, 2014, 60: 56-63. |
23 | TIAN Y, LI H, LI L, et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation[J]. Biosensors & Bioelectronics, 2015, 64(4): 189-195. |
24 | LI Y H, LIU L F, YANG F L, et al. Performance of carbon fiber cathode membrane with C-Mn-Fe-O catalyst in MBR-MFC for wastewater treatment[J]. Journal of Membrane Science, 2015, 484: 27-34. |
25 | LIU J, LIU L, GAO B, et al. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation[J]. Journal of Membrane Science, 2013, 430(8): 196-202. |
26 | HUANG L, LI X, REN Y, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RCS Advances, 2017, 7(34): 20824-20832. |
27 | WANG Y K, SHENG G P, SHI B J, et al. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment[J]. Scientific Reports, 2013, 3(5): 1864. |
28 | CHENG B, WANG J, LIU W, et al. Membrane fouling reduction in a cost-effective integrated system of microbial fuel cell and membrane bioreactor[J]. Water Science & Technology, 2017, 76(3): 653-661. |
29 | MODIN O, FUKUSHI K, RABAEY K, et al. Bioelectrochemical hydrogen peroxide production: an opportunity for sustainable mitigation of membrane bioreactor fouling[J]. Journal of the Textile Institute Transactions, 2010, 2010(7): 309-321. |
30 | WANG Y P, LIU X W, LI W W, et al. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment[J]. Applied Energy, 2012, 98(1): 230-235. |
31 | GAO C, LIU L, YANG F. Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment[J]. Bioresource Technology, 2017, 238: 472-483. |
32 | LI Y, LIU L, LIU J, et al. PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (alizarin red’s) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system[J]. Desalination, 2014, 349: 94-101. |
33 | FENG Z, FALK H, UWE S D, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(17): 5193-5199. |
34 | PARK Y, PARK S, NGUYEN V K, et al. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater[J]. Chemical Engineering Journal, 2017, 316: 673-679. |
35 | YANG S, LIU Z, HOU J, et al. Research progress of air cathode for microbial fuel cells[J]. Chinese Journal of Power Sources, 2015, 9: 2031-2034. |
36 | GUDE V G. Wastewater treatment in microbial fuel cells:an overview[J]. Journal of Cleaner Production, 2016, 122: 287-307. |
37 | ZUO K, LIANG S, LIANG P, et al. Carbon filtration cathode in microbial fuel cell to enhance wastewater treatment[J]. Bioresource Technology, 2015, 185(6): 426-430. |
38 | WU Y, YANG Q, ZENG Q, et al. Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J]. Chemical Engineering Journal, 2017, 316: 315-322. |
39 | GAO C, LIU L, YANG F J J O P S. Novel carbon fiber cathode membrane with Fe/Mn/C/F/O elements in bio-electrochemical system (BES) to enhance wastewater treatment[J]. Journal of Power Sources, 2018, 379: 123-133. |
40 | LI N, KAKARLA R, MOON J M, et al. Determination of microbial growth by protein assay in an air-cathode single chamber microbial fuel cell[J]. Journal of Microbiology & Biotechnology, 2015, 25(7): 1114-1118. |
41 | 李正. 水解酸化-悬浮载体复合MBR处理抗生素废水研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
LI Zheng. Study on treating antibiotic wastewater by hydrolysis acidification-suspended carrier hybrid MBR[D]. Harbin: Harbin Institute of Technology, 2009. | |
42 | ZHOU G, ZHOU Y, ZHOU G, et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation[J]. Bioresource Technology, 2015, 196: 648-655. |
43 | WU G, HAN B, ZHENG X, et al. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells[J]. Journal of Power Sources,2018, 384: 86–92. |
44 | JIA Y, FENG H, SHEN D, et al. High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash[J]. Journal of Hazardous Materials, 2018, 354: 27-32. |
45 | ERABLE B, OLIOT M, LACROIX R, et al. Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells[J]. Electrochimica Acta, 2018, 277: 127-135. |
46 | GAJDA I, GREENMAN J, SANTORO C, et al. Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode[J]. Energy, 2018, 144: 1073-1079. |
47 | SEVDA S, DOMINGUEZ-BENETTON X, VANBROEKHOVEN K, et al. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell[J]. Applied Energy, 2013, 105(2): 194-206. |
48 | LILIAN M, KRISHNA P K, BRUCE E L, et al. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment[J]. Environmental Science & Technology, 2013, 47(20): 11821-11828. |
49 | JIAN L, ZHENG G, ZHEN H. Advancing membrane bioelectrochemical reactor (MBER) with hollow-fiber membranes installed in the cathode compartment[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(9): 1330-1336. |
50 | ZHAI S, JI M, ZHAO Y, et al. Effects of salinity and COD/N on denitrification and bacterial community in dicyclic-type electrode based biofilm reactor[J]. Chemosphere, 2018, 192: 328-336. |
51 | WAN Y, ZHOU L, SHU W, et al. Syntrophic growth of geobacter sulfurreducens accelerates anaerobic denitrification[J]. Frontiers in Microbiology, 2018, 9: 1572. |
52 | KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems: a review[J]. Bioresource Technology, 2014, 153(2): 351-360. |
53 | YATES M D, SIEGERT M, LOGAN B E. Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes[J]. International Journal of Hydrogen Energy, 2014, 39(30): 16841-16851. |
54 | 冯玉杰, 沈宏, 杨靖明, 等. 电极生物膜法反硝化工艺条件及过程[J]. 哈尔滨工业大学学报, 2008, 40(12): 1956-1961. |
FENG Yujie, SHEN Hong, YANG Jingming, et al. Technological conditions and process analysis on denitrification of biofilm-electrode system[J]. Journal of Harbin Institute of Technology (China), 2008, 40(12): 1956-1961. | |
55 | 何细军, 田光明, 吴东雷, 等. 生物膜电极法反硝化脱氮研究进展[J]. 水处理技术, 2010, 36(9): 6-9. |
HE Xijun, TIAN Guangming, WU Donglei, et al. Progress of denitrification by biofilm-electrode process[J]. Water Treatment Technology, 2010, 36(9): 6-9. | |
56 | CHEN G W, CHOI S J, LEE T H, et al. Application of biocathode in microbial fuel cells: cell performance and microbial community[J]. Applied Microbiology Biotechnology, 2008, 79(3): 379-388. |
57 | WANG Y K, LI W W,SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. |
58 | LI W, ZHANG S, GANG C, et al. Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite[J]. Applied Energy, 2014, 126: 136-141. |
59 | MENG F, ZHANG S, OH Y, et al. Fouling in membrane bioreactors: an updated review[J]. Water Research, 2017, 114: 151-180. |
60 | ZSIRAI T, BUZATU P, AERTS P, et al. Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor[J]. Water Research, 2012, 46(14): 4499-4507. |
61 | AHMED F, LALIA B S, KOCHKODAN V, et al. Electrically conductive polymeric membranes for fouling prevention and detection: a review[J]. Desalination, 2016, 391: 1-15. |
62 | WANG J, BI F, NGO H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200: 420-425. |
63 | DUDCHENKO A V, ROLF J, RUSSELL K, et al. Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 468(20): 1-10. |
64 | LIU L, LIU J, GAO B, et al. Conductive and hydrophilic polypyrrole modified membrane cathodes and fouling reduction in MBR[J]. Journal of Membrane Science, 2013, 429(4): 252-258. |
65 | NA L, LIU L, YANG F. Highly conductive graphene/PANi-phytic acid modified cathodic filter membrane and its antifouling property in EMBR in neutral conditions[J]. Desalination, 2014, 338(2): 10-16. |
66 | LIU H, HUANG Q, WANG Y, et al. PTFE conductive membrane for EVMD process and the application of electro-catalysis[J]. Separation & Purification Technology, 2017, 187: 327-333 |
67 | WANG X, HU T, WANG Z, et al. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater[J]. Water Research, 2017, 123: 505-512. |
68 | BAI R, LEOW H F. Microfiltration of activated sludge wastewater-the effect of system operation parameters[J]. Separation & Purification Technology, 2002, 29(2): 189-198. |
69 | LI H, ZUO W, TIAN Y, et al. Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency[J]. Environmental Science and Pollution Research, 2017, 24(6): 5106-5117. |
70 | WANG Z, WU Z, TANG S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor[J]. Water Research, 2009, 43(9): 2504-2512. |
71 | QIANG L, XIKUN L, DEQIANG G, et al. Effects of SRT on LB-EPS and membrane fouling in a HMBR[J]. Technology of Water Treatment, 2018, 44: 99-102. |
72 | CHENG K Y, GINIGE M P, KAKSONEN A H. Ano-cathodophilic biofilm catalyzes both anodic carbon oxidation and cathodic denitrification[J]. Environmental Science & Technology, 2012, 46(18): 10372-10378. |
73 | CHENG K Y, HO G, CORDRUWISCH R. Anodophilic biofilm catalyzes cathodic oxygen reduction[J]. Environmental Science & Technology, 2010, 44(1): 518-525. |
74 | NA L, LIU L, YANG F. Power generation enhanced by a polyaniline-phytic acid modified filter electrode integrating microbial fuel cell with membrane bioreactor[J]. Separation & Purification Technology, 2014, 132: 213-217. |
75 | STRYCHARZGLAVEN S M, SNIDER R M, GUISEPPIELIE A, et al. On the electrical conductivity of microbial nanowires and biofilms[J]. Energy & Environmental Science, 2011, 4(11): 4366-4379. |
76 | ISHIZAKI S, TERADA K, MIYAKE H, et al. Impact of anodic respiration on biopolymer production and consequent membrane fouling[J]. Environmental Science & Technology, 2016, 50(17): 9515-9523. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[3] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[4] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[5] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[6] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[7] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[8] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[9] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[10] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[11] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[12] | 任重远, 何金龙, 袁清. 分子筛膜晶间缺陷控制与修复技术研究进展[J]. 化工进展, 2023, 42(5): 2454-2463. |
[13] | 王林, 辛梅华, 李明春, 陈琦, 毛扬帆. 季铵化/磺化壳聚糖的制备及其抗生物被膜活性[J]. 化工进展, 2023, 42(5): 2577-2585. |
[14] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[15] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |